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ABSTRACT In the last few decades, deep learning based on neural networks has become popular for the
classification tasks, which combines feature extraction with the classification tasks and always achieves the
satisfactory performance. Non-parallel hyperplane support vector machine (NPHSVM) aims at constructing
two non-parallel hyperplanes to classify data and extracted features are always used to be input data for
NPHSVM. As for NPHSVM, extracted features will greatly influence the performance of the model to
some extent. Therefore, in this paper, we propose a novel DNHSVM for classification, which combines
deep feature extraction with the generation of hyperplanes seamlessly. Each hyperplane is close to its own
class and as far as possible to other classes, and deep features are friendly for classification and samples are
easy to be classified. Experiments on UCI datasets show the effectiveness of our proposed method, which
outperforms other compared state-of-the-art algorithms.

INDEX TERMS Deep learning, non-parallel hyperplane support vector machine, feature extraction.

I. INTRODUCTION
Support vector machine (SVM) [1] achieves relatively good
performance in many applications, which aims at construct-
ing a hyperplane that can classify samples with the structure
risk minimization principle. In recent decades, several vari-
ants for SVM have been proposed, such as least squares SVM
(LSSVM) [2], pinball SVM (Pin-SVM) [3], robust support
vector classifiers (RSVC) [4] and so on.

However, SVM strictly requires two parallel hyperplanes,
which will meet challenges when solving some learning
tasks. Consequently, Mangasarian et al. [5] proposed gener-
alized eigenvalue support vector machine (GEPSVM), which
can construct two non-parallel hyperplanes by solving gener-
alized eigenvalue problems. After that, Tian et al. presented
non-parallel support vector machine for pattern classifica-
tion [6]. The ϵ-insensitive loss function was introduced to
two primal problems instead of the quadratic loss function.
Li et al. [7] proposed robust L1 norm non-parallel proximal
support vector machine, which uses an iterative technique to
solve a pair of L1 norm optimal problems because L1 norm is
robust to outliers. Twin support vector machine (TSVM) [8]
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was presented by Jayadeva et al., which attempts to construct
two non-parallel hyperplanes by solving two small quadratic
programming problems (QPPs). In the last few years, many
variants for TSVM have also been proposed. For example,
Gao et al. proposed L1 norm least squares twin support
vector machine [9], which can automatically select relevant
features. Qi et al. [10] presented structural twin support
vector machine for classification, which can fully exploit
the prior structural information to enhance the classification
accuracy. Wang et al. proposed robust capped L1 norm twin
support vector machine [11] which is more robust to outliers,
and they designed a simple and efficient algorithm to solve
the resultant objective. Xie et al. [12] proposed multitask
twin support vector machine, which learns multiple related
tasks simultaneously and puts TSVM to multitask learning.
They also proposed multitask centroid twin support vector
machine [13], which overcomes the disadvantage that TSVM
is sensitive to outliers. In addition, Xie et al. also extended
TSVM to multi-view learning, such as general multi-view
semi-supervised least squares support vector machines with
multi-manifold regularization [14], multi-view twin support
vector machines [15], multi-view support vector machines
with the consensus and complementary information [16],
multi-view semi-supervised least squares twin support vector
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machines with manifold-preserving graph reduction [17]
and so on. Shao et al. [18] proposed an efficient weighted
Lagrangian twin support vector machine for imbalanced
data classification. They introduced a graph-based under-
sampling strategy to keep the proximal information, which is
robust to outliers. In addition, the weight biases are embedded
in Lagrangian TSVM formulations, which overcomes the
bias phenomenon for imbalanced data classification. Li et al.
[19] proposed generalized elastic net Lp norm non-parallel
support vector machine. Lp norm is used to measure the
distance of samples to each hyperplane and an appropriate
p can be chosen to achieve the desired performance. Li et al.
[20] proposed domain adaptive twin support machine learn-
ing using privileged information, and they also proposed an
effective method to generate two non-parallel hyperplanes to
minimize the distance between the source domain and target
domain. Xie et al. [21] proposed Laplacian Lp norm least
squares twin support vector machine, and the performance
can be improved with the appopriate p value and Lp norm
graph regularization term. Rezvani et al. [22] proposed intu-
itionistic fuzzy twin support vectormachinesd for imbalanced
data, which can easily deal with imbalanced datasets in the
presence of noises and outliers. Chen et al. [23] proposed
fuzzy support vector machine with graph for classifying
imbalanced datasets. Firstly, they designed a graph-based
fuzzy membership function to assess the importance of sam-
ples in the original feature space. Secondly, they proved that
the function can mine discriminative information between
samples in high-dimensional data. Thirdly, a method was
provided to calculate the fuzzy membership function in the
kernel space. Finally, the model analyzes samples of each
class independently.

In recent years, SVM and TSVM have been extended to
the field of deep learning. For example, Li et al. presented
deep twin support vector machine [24], which regards the
projection as a kind of location information and projects raw
data into 4-dimensional space to get new data. However,
it does not use deep neural network (DNN) to extract deep
features. Deep learning using support vector machines [25]
was proposed by Tang. In addition, there are also some appli-
cations for deep SVM. For example, Wu et al. [26] proposed
deep two-view support vector machine for facial expression
recognition. The visible and thermal facial images are viewed
as two views. Two deep neural networks are trained for visible
and thermal image data. In addition, Okwuashi et al. pro-
posed deep support vector machine for hyperspectral image
classification [27].

The kernel trick can be used to project the original data
to higher dimension space, which can be used to handle
linear nonseparable problem. Besides, neural network can
also be used to extract features. In this paper, inspired by the
success of non-parallel hyperplane support vector machine
(NPHSVM) [28] and deep learning, we propose a novel deep
non-parallel hyperplane support vector machine (DNHSVM)
for classification.

The contributions of this paper are summarized as follows:
(1) We extend non-parallel hyperplane support vector

machine to deep learning field, which can combine feature
extraction with the task of classification seamlessly.

(2) The parameters of neural networks and hyperplanes
can be optimized simultaneously by the algorithm of stochas-
tic gradient descent (SGD), and extracted deep features are
friendly for classification.

(3) Experiments onUCI datasets demonstrate the effective-
ness of our proposed method. Our proposed method outper-
forms other state-of-the-art compared methods.

The remainder of this paper is organized as follows:
Section II gives a brief introduction of SVM, TSVM,
NPHSVM and deep support vector machine (DSVM).
Section III elaborates our proposed DNHSVM and its opti-
mization procedure. Section IV shows experiments for our
proposed method and compared methods on benchmark
datasets. Finally, in section V, we make the conclusion.

II. RELATED WORK
Notations are summarized here throughout this paper. Matri-
ces are written in uppercase. As for matrix A ∈ Rn×d , Ai
denotes the ith row of matrix A and the transpose of matrix
A is denoted as A⊤. A−1 is the inverse matrix of A, I is
an identity matrix. The vectors and scalar are written in
lowercase.

A. SUPPORT VECTOR MACHINE
Suppose we are given n training data as matrix A ∈ Rn×d ,
where d is the number of dimension of samples. The ith row
of matrix A represents the ith sample and label for the ith
training data is yi, yi ∈ {−1, 1}.w ∈ Rd and b ∈ R are normal
vector and bias, respectively. In order to obtain hyperplane
with the structure risk minimization principle, the following
constraint should be satisfied

yi(Aiw+ b) ≥ 1, i = 1, 2, · · · , n. (1)

The hyperplane is denoted as w⊤x + b = 0 and the mar-
gin between two hyperplanes is 2

∥w∥
. The standard SVM is

given by solving the following optimization problem

min
w,b

1
2
w⊤w

s.t. yi(Aiw+ b) ≥ 1, i = 1, 2, · · · , n. (2)

The parameters of hyperplane can be obtained by solving a
complex QPP, then the decision function can be written as

f (x) = sign(w⊤x + b). (3)

The test sample x ∈ Rd can be assigned to positive class
‘‘+1’’ or negative class ‘‘−1’’ according to which side of
hyperplane it is on.

B. TWIN SUPPORT VECTOR MACHINE
TSVM attempts to construct two non-parallel hyperplanes by
solve a pair of small QPPs and each hyperplane is close to its

7760 VOLUME 11, 2023



F. Sun, X. Xie: Deep Non-Parallel Hyperplane Support Vector Machine for Classification

own class and keeps away from the other class. Positive and
negative samples are denoted as A ∈ Rn1×d and B ∈ Rn2×d ,
respectively, where n1 and n2 are the numbers of positive
and negative samples respectively and d is the dimension of
samples. Two hyperplanes can be given as:

x⊤w1 + b1 = 0 and x⊤w2 + b2 = 0, (4)

where w1 and w2 are normal vectors of hyperplanes, b1 and
b2 are bias terms. The primal problems of TSVM can be
formulated as

min
w1,b1,ξ

1
2
∥Aw1 + e1b1∥2 + c1e⊤2 ξ

s.t. − (Bw1 + e2b1) + ξ ≥ e2, ξ ≥ 0, (5)

min
w2,b2,η

1
2
∥Bw2 + e2b2∥2 + c2e⊤1 η

s.t. (Aw2 + e1b2) + η ≥ e1, η ≥ 0, (6)

where ξ and η are slack variables, c1 and c2 are hyperparam-
eters which need to be tuned, e1 and e2 are vectors whose
all elements are ones with the appropriate dimension. After
introducing the Lagrangian multipliers α and β, Eq. (5) can
be written as

L(w1, b1, ξ, α, β) =
1
2
(Aw1 + e1b1)⊤(Aw1 + e1b1)

+ c1e⊤2 ξ − α⊤
− (Bw1 + e2b1)

+ ξ − e2 − β⊤ξ, (7)

with KKT conditions, the following equations can be
obtained

A⊤(Aw1 + e1b1) + B⊤α =0, (8)

e⊤1 (Aw1 + e1b1) + e⊤2 α =0, (9)

c1e2 − α − β =0, (10)

−(Bw1 + e2b1) + ξ ≥ e2, ξ ≥0, (11)

α⊤(−(Bw1 + e2b1) + ξ − e2) =0, β⊤ξ = 0, α ≥ 0,

β ≥0. (12)

From the KKT condition and Eq. (5), Eq. (13) can be
obtained. Using the similar method, Eq. (14) can also be
obtained.

max
α

α⊤e2 −
1
2
α⊤H (G⊤G)−1H⊤α

s.t. 0 ≤ α ≤ c1, (13)

max
β

β⊤e1 −
1
2
β⊤G(H⊤H )−1G⊤β

s.t. 0 ≤ β ≤ c2, (14)

where G = [A e1],H = [B e2], vectors α and β are
Lagrangian multipliers. After solving QPPs, parameters of
two hyperplanes can be formulated as:

u1 = − (G⊤G+ δI )−1H⊤α, (15)

u2 =(H⊤H + δI )−1G⊤β, (16)

where u1 = [w⊤

1 b1]⊤, u2 = [w⊤

2 b2]⊤, I is an identity
matrix of the appropriate dimension, δI is a regularization

term to solve challenge that the inverse of G⊤G or H⊤H
is difficult to obtain. After we obtain parameters of two
hyperplanes, a new sample x ∈ Rd can be assigned to positive
class ‘‘+1’’ or negative class ‘‘−1’’ depending on which
hyperplane it is closer to, i.e.

f (x) = sign(
|w⊤

1 x + b1|

∥w1∥
−

|w⊤

2 x + b2|

∥w2∥
). (17)

C. NONPARALLEL HYPERPLANE SUPPORT
VECTOR MACHINE
Nonparallel hyperplane support vector machine aims at con-
structing two hyperplanes f1(x) = w⊤

1 x + b1 and f2(x) =

w⊤

2 x + b2. Each hyperplane is close to its own class and far
away from the other class. It maximizes the differences of
(X1w1+e1b1)− (X1w2+e1b2) and (X2w2+e2b2)− (X2w1+

e2b1), and the primal for NPHSVM is as follows

min
w1,b1,w2,b2,ξ1,ξ2

1
2
(∥w1∥

2
+ b21 + ∥w2∥

2
+ b22)

+
C1

2
(∥X1w1 + e1b1∥2 + ∥X2w2 + e2b2∥2)

+ C2(e⊤1 ξ1 + e⊤2 ξ2)

s.t. X1w1 + e1b1 − X1w2 − e1b2 ≥ e1 − ξ1,

X2w2 + e2b2 − X2w1 − e2b1 ≥ e2 − ξ2,

ξ1 ≥ 0, ξ2 ≥ 0, (18)

where C1 and C2 are regularization parameters. There are
three terms in equation (18), and the first is the regularization
term. The second is the sum of squared distances from the
two hyperplanes to samples in the corresponding classes
which keeps the hyperplane close to its own class. The third
is the sum of error variables corresponding to constraints.
With the Lagrangian and Karush-Kuhn-Tucker (KKT) con-
ditions, the dual to the problem can be obtained

max
α

−
1
2
α⊤X̂⊤[(I + C1X̂1

⊤
X̂1)−1

+ (I + C1X̂2
⊤
X̂2)−1]X̂α

+ e⊤α

s.t. 0 ≤ α ≤ C2e, (19)

where X̂1 = [X1, e1], X̂2 = [X2, e2], X̂ = [X̂1, −X̂2], e =

[e1, e2] and α = [α1, α2]. The solutions for w1, b1,w2, b2 in
equation (18) can be obtained from the solution of α. A new
sample x ∈ Rm can be assigned to class ‘‘+1’’ or ‘‘−1’’
depending on which of the two hyperplanes it is close to.

D. DEEP SUPPORT VECTOR MACHINE
Deep support vector machine [25] extends SVM to the deep
learning field. The top layer of neural network can be known
as parameters of hyperplane which is used to classify sam-
ples. DSVM combines features extraction with the construc-
tion of hyperplane. The parameters of hyperplane can be
optimized by SGD method and loss function for DSVM can
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FIGURE 1. The model of DSVM.

be written as

L =
1
2
∥w∥

2
+ c

n∑
i=1

max(0, 1 − yi(w⊤f M (xi) + b)), (20)

where w is a normal vector for hyperplane and b is a bias
term of DSVM, c is a hyperparameter that needs to be tuned,
f M (xi) = g(f M−1(xi)(wM )⊤ + bM ) is extracted features
throughM -layer neural network, g(·) is an activation function
such as Relu or Sigmoid, wM and bM are weight and bias for
Mth-layer of neural network. The model for DSVM is shown
in Fig. 1. After neural network is trained, test samples can be
assigned to corresponding labels according to which side of
hyperplane they are on.

III. OUR PROPOSED DEEP NON-PARALLEL HYPERPLANE
SUPPORT VECTOR MACHINE
A. BINARY CLASSIFICATION FOR DNHSVM
In this section, we elaborate our proposed deep non-parallel
hyperplane support vector machine. The loss function for our
DNHSVM can be defined as:

L = λ1(∥f M (A)w1 + e1b1∥2 + ∥f M (B)w2 + e2b2∥2)

+ λ2(∥f M (A)w1 + e1b1 − f M (A)w2 − e1b2 − e1∥2

+ ∥f M (B)w2 + e2b2 − f M (B)w1 − e2b1 − e2∥2)

+
1
2
(∥w1∥

2
+ ∥w2∥

2), (21)

where f M (A) and f M (B) are extracted features through
M -layer neural network for positive and negative samples,
respectively, w1 and w2 are normal vectors of hyperplanes,
b1 and b2 are bias terms, e1 and e2 are vectors whose all
elements are ones with the appropriate dimension.

To explain the principle of our DNHSVM, we provide the
following analyses.

(1) The first term indicates the squared distance from
samples to their own hyperplanes. The smaller the value is,
the closer they are to their own hyperplanes.

(2) The second term shows that the difference between
the distance from samples to their own hyperplane and the
other hyperplane should be at least one, which can be used to
classify two classes effectively.

FIGURE 2. The proposed model of deep non-parallel hyperplane support
vector machine.

(3) The third term 1
2 (∥w1∥

2
+ ∥w2∥

2) is a regularization
term which can be used to avoid over-fitting.

The model is shown in Fig. 2 and the red and blue lines are
parameters of two non-parallel hyperplanes we seek.

We jointly optimize parameters of two hyperplanes
{w1, b1,w2, b2} and DNN parameter θ using SGD method.
The gradients of L with respect to w1, b1, w2, b2 are shown
as:

∂L
∂w1

= 2λ1f M (A)⊤S1 + 2λ2f M (A)⊤(S1 − S3 − e1)

− 2λ2f M (B)⊤(S2 − S4 − e2) + w1, (22)
∂L
∂b1

= 2λ1e⊤1 S1 + 2λ2(e⊤1 (S1 − S3 − e1)

− e⊤2 (S2 − S4 − e2)), (23)
∂L
∂w2

= 2λ1f M (B)⊤S2 − 2λ2f M (A)⊤(S1 − S3 − e1)

+ 2λ2f M (B)⊤(S2 − S4 − e2) + w2, (24)
∂L
∂b2

= 2λ1e⊤2 S2 − 2λ2(e⊤1 (S1 − S3 − e1)

− e⊤2 (S2 − S4 − e2)), (25)

where S1 = f M (A)w1 + e1b1, S2 = f M (B)w2 + e2b2, S3 =

f M (A)w2+e1b2 and S4 = f M (B)w1+e2b1. The learning rate
for neural network is denoted as α, then w1, b1,w2, b2 can be
updated as follows:

w1 = w1 − α
∂L
∂w1

, b1 = b1 − α
∂L
∂b1

, (26)

w2 = w2 − α
∂L
∂w2

, b2 = b2 − α
∂L
∂b2

. (27)

The backward error will be passed to the previous layers. For
M -layer, the backward error for the ith positive and negative
samples is denoted as δMAi and δMBi , respectively, i.e.

δMAi =
∂L

∂f M (Ai)
·
∂f M (Ai)

∂zMAi
= (2λ1(f M (Ai)w1 + b1)w1 + 2λ2(f M (Ai)w1 + b1
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− f M (Ai)w2 − b2 − 1)(w1 − w2)) ⊙ g′(zMAi ), (28)

δMBi =
∂L

∂f M (Bi)
·
∂f M (Bi)

∂zMBi
= (2λ1(f M (Bi)w2 + b2)w2 + 2λ2(f M (Bi)w2 + b2
− f M (Bi)w1 − b1 − 1)(w2 − w1)) ⊙ g′(zMBi ), (29)

where zMAi and zMBi are positive and negative input data of
M -layer neural network. f M (Ai) and f M (Bi) are the ith posi-
tive and negative samples for output data ofM -layer, respec-
tively,⊙ is element-wise multiplication, g′(·) is the derivative
of activation function g(·). Then we can obtain the definition
of δ

(m)
i as follows

δ
(m)
i =


(
W (m+1)δ

(m+1)
i

)
⊙ g′

(
z(m)Ai/Bi

)
m ̸= M

(
δMAi/Bi

)
⊙ g′

(
z(M )
Ai/Bi

)
m = M .

(30)

According to the definition of f (m)i and back-propagation
algorithm, subgradient with respect to Wm and bm can be
formulated as 

∂L
∂W (m) = δ

(m)
i f (m−1)T

i

∂L
∂b(m)

= δ
(m)
i ,

(31)

where f (m−1)
i represents the ith positive or negative sam-

ple output data of (m − 1)-layer. Based on Eq. (30) and
Eq. (31) with SGD algorithm, W (m) and b(m) can be updated
as follows: 

W (m)
= W (m)

− α
∂L

∂W (m)

b(m) = b(m) − α
∂L

∂b(m)
.

(32)

Before the training, parameters of deep neural network are
initialized randomly. During the testing, decision function of
our proposed model is shown in Eq. (33)

f (x) = sign(
|w⊤

1 f
M (x) + b1|

∥w1∥
−

|w⊤

2 f
M (x) + b2|

∥w2∥
), (33)

where f M (x) is extracted feature through M -layer neural
network. The algorithm of our proposed method is described
in Algorithm 1.

B. MULTICLASS CLASSIFICATION FOR DNHSVM
An easy way to extend binary non-parallel support vector
machine to classification is using one − vs − one approach.
As for K class problems, K (K−1)

2 DNHSVM models will be
trained independently and the vote strategy is used to obtain
the final results.

Algorithm 1 Deep Non-Parallel Support Vector Machine
1: Input : The positive samples A and negative samples B,

hyperparameter λ1 and λ2 (selected by the strategy of
cross-validation), the learning rate α; maximum epochs
E , mini-batch mb, number of batchM ;

2: Output : The label of test samples is according to
Eq. (33);

3: Initial : Initialize the parameters of neural network
randomly;

4: for e = 1 : E do
5: for b = 1 : M do
6: Forward propagate with the mini-batch of mb

samples in dataset;
7: Backward propagate network to get ∂L

∂w1
, ∂L

∂b1
,

∂L
∂w2

, ∂L
∂b2

and gradients for weights and biases
of previous layers;

8: Update w1, b1,w2, b2 and weights and biases
of previous layers with obtained gradients;

9: end
10: end

IV. EXPERIMENTS
In this section, we make experiments on UCI datasets to
validate the effectiveness of our proposed method and com-
pare it with other algorithms including K nearest neighbors
(KNN) algorithm, SVM [1], TSVM [8], NPHSVM [28], least
squares recursive projection twin support vector machine
(LSPTSVM) [29] and DSVM [25]. Our experiments are
implemented on a Windows 10 computer with 3.6GHz Intel
Core i7-9700K with 32GB RAM and RTX 2080Ti. Before
training, as for KNN, SVM, TSVM, NPHSVM, LSPTSVM,
values of data are located in [0,1] and values for model
of DSVM and DNHSVM are standardized. The compared
methods are briefly introduced as follows:

• KNN: k nearest neighbor algorithm, the core idea of the
KNN algorithm is that if most of the k nearest samples in
the feature space belong to a certain category, the sample
also belongs to this category.

• SVM: it constructs a hyperplane with the structure risk
minimization principle and parameters of hyperplane
can be obtained by solving a QPP.

• TSVM: it aims to construct two non-parallel hyper-
planes and each hyperplane is close to its own class and
as far as possible to the other class, which can be solved
by two small QPPs.

• NPHSVM: it constructs two non-parallel hyperplanes
simultaneously by solving a single QPP and is consistent
between its prediction and training processes.

• LSPTSVM: it adds a regularization term to projection
twin support vector machine to ensure that the opti-
mization problems are positive definite and owns better
generalization ability.

• DSVM: it uses DNN to combine feature extraction with
the task of constructing hyperplane seamlessly and the
hinge loss is used to be the loss function.
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FIGURE 3. The accuracies versus λ1 and λ2 for UCI datasets.

TABLE 1. Characteristics of UCI datasets.

In order to show the performance and generalization of our
and other compared algorithms, we perform experiments on
UCI datasets and details of UCI datasets we use are shown
in Table 1.

A. IMPLEMENTATION
In this subsection, we introduce the setting of all methods.
For hyperparameters of all methods, they are determined
by the strategy of cross-validation and chosen from the set
{2i|i = −5,−4, −3, · · · , 3, 4, 5}. As for the nonlinear ver-
sion of compared methods, RBF kernel is used to be the
kernel function. SVM and TSVM we use in experiments
are nonlinear versions. The number of neighbors for KNN
algorithm is set to 3. Specifically, as for DSVM and our
DNHSVM in experiments, we train neural network with one

hidden layer with the number of neurons selected from the set
{50, 100, 200, 500, 1000} and all layers are fully connected.
The learning rate α is fixed to 0.01 and mini-batch mb is
set to 100. The maximum number of training epochs E in
the optimization process is set to 100 and Adam optimizer is
applied when training neural network and Relu is used to be
the activation function. We repeat algorithms for five times
and report average performance and standard deviation.

B. EXPERIMENT RESULTS
The results for all methods are shown in Table 2, and we
report the best performance in boldface. As we can see
from Table 2, our method obtains the optimal performance
nearly all the datasets. To be specific, DNHSVM achieves
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FIGURE 4. The objective function value for the increments of epochs on UCI datasets.

FIGURE 5. The accuracy for the increments of epochs on the UCI datasets.

about 0.58%, 1.09%, and 1.89% relative improvement over
accuracy compared to the second best algorithm on datasets
Austra, Breast, and Vehicle, respectively.

There are some reasons why our proposed method out-
performs other state-of-the-art methods: (1) The deep model
integrates feature extraction and construction of hyperplanes
seamlessly, and samples can be easy to be classified. (2) The
number of neurons is not fixed, and original data will be
projected to a suitable space in which positive and negative
samples have significant differences.

C. HYPERPARAMETER INFLUENCE AND
CONVERGENCE ANALYSIS
The parameter influence analysis is shown in this part and
parameter influence for UCI datasets Breast, Bupa, Heart,
Wpbc, Wine and Air is shown in Fig. 3. As for other UCI

datasets mentioned in Table 1, they are insensitive to the
choice of hyperparameters. To this end, the influence of these
datasets is not described in Fig. 3. As we can see from Fig. 3,
our method achieves the promising performance when both
λ1 and λ2 hold a small value. In addition, our method has a
poor performance when λ1 tends to a small value and λ2 tends
to a big value. Hence we suggest that setting parameter λ1 and
λ2 to a small value is beneficial to the performance of our
method.

The convergence is described in Fig. 4. We list conver-
gence condition of binary classification datasets for our meth-
ods as the classification is to train multiple classifiers and
their objective function value is just the sum of the multiple
classifiers. As we can see from Fig. 4, the objective function
value of our method is monotonically decreasing in the most
datasets and tends to be stable after dozens of iterations.
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TABLE 2. Comparison of classification performance (mean% ± standard deviation% ) and training time on UCI datasets.

TABLE 3. The p-value for the results of test datasets for ANOVA.

D. DISCUSSION
In this subsection, we give a discussion of the proposed
DNHSVM model. The results in Table 2 show that our
method outperforms other state-of-the-art methods, which
shows that the deep model can effectively extract friendly
features and that better hyperplanes can be obtained for our
method.

The influence of hyperparameter is described in Fig. 3.
We discuss the influence of hyperparameters and conver-
gence analysis in subsection IV-C andwe give suggestions for
the choice of hyperparameters. The figures of convergence

show that the objective function value tends to be stable after
dozens of iterations.

We report related results for the accuracy as the incre-
ments of epochs on UCI datasets in Fig. 5. As for datasets
Austra, Breast, Ionosphere and Sonar, the performance of
these datasets rises firstly and then fluctuates in a small range.
For other datasets, the performance of our methods fluctuates
on a relatively large scale.

Analysis of Variance (ANOVA) is a statistical hypothesis
test, which can be used to analyze the accuracy results and test
significance differences between several groups of results.
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In order to evaluate whether the performance improvement
observed from our proposed DNHSVM is statistically signif-
icant. The proposed DNHSVM and compared state-of-the-
art methods are used to pairwise comparison on test datasets.
The null hypothesis is that there is no significant difference
in accuracy between the two methods on these datasets. The
accuracy on test datasets are shown in Table 2, and we obtain
the p-value shown in Table 3. Since all the p-values in Table 3
are less than 0.1, the significant difference is at the 0.1
significant level.

V. CONCLUSION
In this paper, we propose a novel deep non-parallel hyper-
plane support vector machine that combines feature extrac-
tion and classification seamlessly and the features which are
extracted through neural networks are friendly for classifica-
tion. As for the construction of hyperplanes, each hyperplane
is closer to its own class and as far as possible to the other
classes. The experiments performed on UCI datasets show
that our proposed method outperforms other state-of-the-
art methods, which shows the effectiveness of our proposed
algorithms. In future work, we will extend our model to
multi-view learning and semi-supervised learning.
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