
Received 15 December 2022, accepted 9 January 2023, date of publication 16 January 2023, date of current version 24 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237738

Cache-Efficient Approach for Index-Free
Personalized PageRank
KOHEI TSUCHIDA 1, NAOKI MATSUMOTO2, ANDREW SHIN 2,
AND KUNITAKE KANEKO2,3, (Member, IEEE)
1Graduate School of Science and Technology, Keio University, Kanagawa 223-8522, Japan
2Research Institute for Digital Media and Content, Keio University, Kanagawa 223-8523, Japan
3Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan

Corresponding author: Kohei Tsuchida (nora@inl.ics.keio.ac.jp)

ABSTRACT Personalized PageRank (PPR) measures the importance of vertices with respect to a source
vertex. Since real-world graphs are evolving rapidly, PPR computation methods need to be index-free and
fast. Unfortunately, existing index-free methods suffer from cache misses. They follow the state-of-the-
art algorithm that first performs the Forward Push (FP) phase and subsequently runs the random walk
Monte-Carlo simulation (MC) phase. Although existing methods succeed in reducing cache misses in
the FP phase, an inefficient data layout limits their performance improvement. Besides, existing methods
have overlooked the importance of reducing cache misses in the MC phase. In this paper, we propose a
cache-efficient approach that accelerates both FP and MC phases. In the FP phase, we first reorder the data
layout with low overheads. Specifically, we utilize the Breadth First Search result so that vertices near the
source vertex are co-located on the reordered data layout. We subsequently perform optimized FP, namely
Distance-Extension Forward Push (DEFP). By preferentially proceeding FP around the source vertex, DEFP
improves memory access locality. In the MC phase, we perform optimized MC, namely Vertex-Centric
Random Walk (VCRW). VCRW aggregates random walks at each vertex to eliminate redundant memory
access for repeatedly obtaining neighbor vertices. We prove that most of the randomwalks can be aggregated
while maintaining accuracy guarantees. Experimental results show that the proposed method is up to 4.7x
faster than existing index-free methods and outperforms the state-of-the-art index-oriented method under
rigorous accuracy guarantees.

INDEX TERMS Personalized pagerank, index-free, graph reordering, forward push, random walk monte-
carlo simulation.

I. INTRODUCTION
Personalized PageRank (PPR) [1] is one of the most popular
graph computations to measure the proximity of vertices.
Of our particular interest is the single-source PPR (SSPPR)
among several PPR variants, such as single-target PPR, pair-
wise PPR, and fully PPR. Given a graph G = (V ,E),
a termination probability α, a source vertex s, and a target
vertex t , the SSPPR score π(s, t) is defined as the probability
that an α-decay random walk starting from s terminates at t
in G. When performing an α-decay random walk, a random

The associate editor coordinating the review of this manuscript and

approving it for publication was Chong Leong Gan .

walker starting from s terminates at the current vertex with
probability α or moves to a neighbor vertex with probability
1 − α. By this definition, the SSPPR scores can also be
regarded as the measure of relative importance of all vertices
with respect to s. Based on this, SSPPR has various real-world
applications, such as spam detection [2], link prediction [3],
social recommendation [4], community detection [5], [6], [7],
graph learning [8], [9], [10], and so on.

Nowadays, massive real-world graphs are evolving rapidly.
In this scenario, index-oriented SSPPR computation meth-
ods [11], [12], [13] are impractical because they need to
hold huge indices and update them frequently. Therefore,
SSPPR computation methods need to be index-free and fast.

6944 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5576-357X
https://orcid.org/0000-0002-0969-9925
https://orcid.org/0000-0002-2951-1192

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

FIGURE 1. Suppose that vertex 2 in Fig. 1(a) and vertex 0 in Fig. 1(b)
access neighbor vertices’ data. Even though the two vertices have
identical positions in each graph, memory access locality in Fig. 1(b) is
better than that in Fig. 1(a).

The state-of-the-art index-free methods [14], [15] follow
the FORA algorithm [16] that first performs the Forward
Push (FP) phase and subsequently runs the random walk
Monte-Carlo simulation (MC) phase. Although these meth-
ods have steadily accelerated SSPPR computation, they still
suffer from a large number of cache misses in both FP and
MC phases.

In the FP phase, irregular memory access primarily causes
frequent cache misses. As shown in Fig. 1(a), a real-world
graph tends to have an unstructured data layout. Assum-
ing that vertex 2 accesses its neighbor vertices, irregular
memory access occurs because these neighbor vertices are
not co-located on memory. On an unstructured data layout,
every vertex repeatedly accesses neighbor vertices until the
FP phase finishes, which leads to a significant number of
cache misses in total. Since existing methods [14], [15] opti-
mize the FP phase without considering the data layout, their
performance improvement is insufficient. Graph reordering
[17], [18], [19], [20], [21], [22] is widely used to optimize the
data layout by relabeling vertex IDs. As shown in Fig. 1(b),
a reordered data layout improves memory access locality.
In general, reordering methods assign close IDs to frequently
accessed vertices so that processors can reuse cached data.
Although existing reordering methods can accelerate vari-
ous graph computations, their time-consuming procedures to
find an optimal relabeling cause an end-to-end slowdown.
Therefore, to alleviate irregular memory access, we need
to conduct lightweight reordering that captures the memory
access pattern of the FP phase.

In the MC phase, cache misses are mainly caused by
redundant memory access. For accuracy guarantees, existing
methods perform a large number of α-decay random walks
sequentially to memorize the starting vertex of each random
walk. Through this sequential process, each random walk
needs to obtain neighbor vertices for every single step to
decide the next destination. Therefore, we need to obtain
neighbor verticesmultiple times at each vertex, which leads to

redundant memory access. Notably, existing index-free meth-
ods have only focused on optimizing the FP phase, and they
overlook this redundant memory access. To overcome this
problem, we need to reduce the total number of operations
to obtain neighbor vertices at each vertex.

In this paper, we propose a cache-efficient approach that
significantly accelerates the FORA algorithm. To reduce
cache misses, we focus on optimizing the computational
procedure of both FP and MC phases. While some methods
[14], [23] accelerate the FORA algorithm by modifying the
timing at which the FP phase switches to the MC phase,
examining an appropriate switching timing lies outside the
scope of this paper. To optimize the FP phase, we first conduct
lightweight reordering. We observe that vertices near the
source vertex are frequently accessed during the FP phase.
Therefore, the FP phase can be accelerated if vertices near the
source vertex have close IDs. To realize this, we reorder the
data layout according to the Breadth First Search (BFS) result
from the source vertex. This reordering can preferentially
assign close IDs to vertices near the source vertex with low
overheads. To fully utilize the reordering result, we introduce
the optimized FP, namely Distance-Extension Forward Push
(DEFP). DEFP executes FP within k distances from the
source vertex and gradually increases the k value, which can
reduce the total number of operations during the FP phase.
In the MC phase, we perform Vertex-Centric Random Walk
(VCRW). VCRW aggregates random walks at each vertex to
reduce the total number of operations to obtain neighbor ver-
tices. This aggregation eliminates redundant memory access
for repeatedly obtaining neighbor vertices at each vertex.
We prove that VCRW can aggregate most of the random
walks while maintaining accuracy guarantees.

Our contributions are summarized as follows:

• We propose a cache-efficient approach for fast
index-free PPR computation. In the FP phase, the
proposed method first conducts lightweight reordering
according to the Breadth First Search result. On the
reordered data layout, the proposed method performs
Distance-Extension Forward Push. In the MC phase,
the proposed method performs Vertex-Centric Random
Walk. These techniques can significantly reduce cache
misses.

• We conduct extensive experiments using six real-world
graphs. Experimental results show that the proposed
method is up to 4.7× faster than the existing methods.
We confirm that the proposed method reduces cache
misses on both the L1 cache and L3 cache. Notably, the
proposed method outperforms the state-of-the-art index-
oriented method under rigorous accuracy guarantees.

This paper extends our previous work [24] that originally
proposed the idea of aggregating random walks. While [24]
measures the computational efficiency simply through the
running time, this paper further investigates the cache perfor-
mance, which is our major interest, in addition to the running
time measurement. Additionally, this paper has the following

VOLUME 11, 2023 6945

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

three novelties. First, we focus on optimizing the FP phase
by graph reordering and extend the survey to include graph
reordering methods. Second, we theoretically prove that the
proposed method guarantees the accuracy. Third, we conduct
far more extensive experiments considering various applica-
tions scenarios.

The rest of this paper is organized as follows. Section II
states the problem definition. Section III discusses related
work. Section IV describes the details of the proposed
method. We evaluate the proposed method through extensive
experiments using real-world graphs in Section V. The source
code of the proposed method can be found online.1 Finally,
we conclude this paper in Section VI.

II. PRELIMINARIES
A. PROBLEM DEFINITION
Let G = (V ,E) be a directed unweighted graph with a set
of vertices V and a set of edges E . n = |V |, m = |E|
are the number of vertices and edges, respectively. For an
undirected graph, we convert every undirected edge (u, v) into
two directed edges (u, v) and (v, u). Let Nin(v) (resp. Nout (v))
denote the set of in-neighbor vertices (resp. out-neighbor
vertices) of v ∈ V , and let din(v) (resp. dout (v)) denote the
in-degree (resp. out-degree) of v ∈ V . Given a source vertex
s, the SSPPR score π (s, t) of t is defined as the probability
that an α-decay random walk starting from s terminates at
t in G. An α-decay random walk terminates at the current
vertex with α probability or moves to an out-neighbor vertex
with 1 − α probability. In addition, let dist(s, v) denote the
shortest distance from s to v in G, Vk = {v ∈ V | dist(s, v) =
k} denote the set of vertices whose dist(s, v) = k , and
Uk = {v ∈ V | dist(s, v) ≤ k} denote the set of vertices
whose dist(s, v) ≤ k . In this paper, we focus on the Approx-
imate SSPPR query, hereafter referred to simply as PPR
(Definition 1). Table 1 summarizes the notations we fre-
quently use in this paper.
Definition 1: (PPR Query) Given a graph G = (V ,E),

a source vertex s, a threshold δ, an error bound ϵ, and a failure
probability pf , PPR query returns the estimated PPR score
π̂ (s, t) for all t ∈ V , such that for any π (s, t) > δ,

|π (s, t)− π̂(s, t)| ≤ ϵ · π (s, t) (1)

holds with at least 1− pf probability.
Graph format: We represent a graph G by the well-known
Compressed Sparse Row (CSR) format [25]. CSR uses two
arrays, namely Coordinate Array (CA) and Offset Array
(OA). The CA contiguously stores the neighbor vertices of
each vertex v ∈ V . The OA stores each vertex’s starting
offset in the CA. For instance, to obtain neighbor vertices
of a vertex v, a program accesses from the OA[v]-th entry to
the OA[v+ 1]-th entry on the CA. A directed graph requires
two CSR representations for out-neighbor vertices and in-
neighbor vertices, respectively. We show an example of CSR

1https://github.com/StyLishPoor/Cache-Efficient-PPR

TABLE 1. Frequently used notations.

FIGURE 2. The CSR representation for out-neighbor vertices in a toy
directed graph.

Algorithm 1: Forward Push
Input: Graph G, source vertex s, termination probability

α, threshold rmax
Output: residue r(s, t) and reserve π̂ (s, t) for all t ∈ V

1 π̂ (s, t)← 0 and r(s, t)← 0 for all t ∈ V ;
2 r(s, s)← 1;
3 while ∃t ∈ V such that r(s, t) > dout (t) · rmax do

Pushing operation
4 π̂ (s, t)← π̂ (s, t)+ α · r(s, t);
5 if dout (t) ̸= 0 then
6 for each u ∈ Nout (t) do
7 r(s, u)← r(s, u)+ (1− α) · r(s,t)dout (t)

;

8 else
9 r(s, s)← r(s, s)+ (1− α) · r(s, t);

10 r(s, t)← 0;

11 return r(s, t) and π̂ (s, t) for all t ∈ V ;

representation for out-neighbor vertices in Fig. 2. Note that
in-neighbor vertices can be represented in the same way.

B. FORWARD PUSH
Forward Push (FP) [26] is a local update method. FP simu-
lates randomwalks in a deterministic way by repeatedly push-
ing the probabilitymass to out-neighbor vertices. Algorithm 1
shows the pseudo-code of FP. FPmaintains residue r(s, t) and

6946 VOLUME 11, 2023

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

reserve π̂ (s, t) for each vertex t ∈ V . At the beginning, FP ini-
tializes r(s, t) and π̂ (s, t) (Lines 1-2). A vertex t becomes
active when r(s, t) > rmax ·dout (t). An active vertex t executes
pushing operation that increases π̂ (s, t) by converting α por-
tion of r(s, t) and transfers 1− α portion of r(s, t) to Nout (t)
(Lines 4-7). If t is a dangling vertex, t transfers 1−α ·r(s, t) to
s (Lines 8-9). t finishes the pushing operation after resetting
r(s, t) to zero (Line 10). When there are no active vertices,
r(s, t) and π̂ (s, t) are returned as final residue and the PPR
score, respectively (Line 11). The expected running time of
FP is O

(
1

α·rmax

)
. However, FP cannot provide any accuracy

guarantees.

C. RANDOM WALK MONTE-CARLO SIMULATION
Random walk Monte-Carlo simulation (MC) is a classic and
straightforward solution to answer PPR queries [27], [28].
MC performs ω random walks from s, and measures the
fraction of randomwalks that terminate at t . ThenMC uses its
fraction to estimate π̂ (s, t). To satisfy Definition 1, MC needs

to perform ω = �
(
(2·ϵ/3+2)·log(2/pf)

ϵ2·δ

)
random walks [27].

Assuming that a given graph is scale-free, where the number
of edges is m = O (n · log n), the expected running time is
bounded by O

(
log(1/pf)

ϵ2·δ

)
, which is infeasible with massive

real-world graphs.

III. RELATED WORK
A. PERSONALIZED PAGERANK
FORA [16] is the first method that combines FP and MC.
FORA first invokes FP with early termination and subse-
quently performs random walks to obtain accuracy guaran-
tees. FORA utilizes the following invariant [26]:

π (s, t) = π(s, t)◦ +
∑
v∈V

r(s, v) · π (v, t), (2)

where π (s, t)◦ is the reserve of a vertex t after the FP phase.
Since computing π(v, t) for all v ∈ V is infeasible, FORA
computes π̂ (s, t) as follows:

π̂ (s, t) = π (s, t)◦ +
∑
v∈V

r(s, v) · π (v, t)′, (3)

where π (v, t)′ can be obtained by MC. In the MC phase,
each vertex v performs ⌈r(s, v) · ω⌉ random walks, where
ω =

(2·ϵ/3+2)·log(2/pf)
ϵ2·δ

. Recall that the expected running time

of FP isO
(

1
α·rmax

)
andMC in FORA has at mostO

(m·rmax ·ω
α

)
running time. By setting rmax = 1

√
m·ω , the total expected

running time of FORA is bounded by O
(
log(1/pf)

ϵ·δ

)
, which

is a factor of 1/ϵ smaller than that of MC.
To optimize the computational procedure of the FP phase,

ResAcc [14] and SpeedPPR [15] have been proposed. Their
main idea is to reduce the total number of pushing opera-
tions. Specifically, ResAcc exploits the looping phenomenon,
where some residues return back to s. By accumulating
returned residues, ResAcc avoids multiple pushing opera-

tions at s. SpeedPPR gradually reduces rmax so that ver-
tices holding a large residue execute the pushing operation.
Although both ResAcc and SpeedPPR have outperformed
FORA, they have overlooked the importance of reordering
the data layout and optimizing the computational procedure
of the MC phase.

Index-orientedmethods [11], [12], [23], [29] aim to answer
PPR queries rapidly by using precomputed results. Matrix-
based methods [11], [29] convert the adjacent matrix so
that the converted matrix has a large and easy-to-invert sub-
matrix. Since these methods hold the converted matrix as
indices, they cause huge space overheads. HubPPR [12] exe-
cutes random walks from high-degree vertices and stores the
results as indices. The indices are combined with Backward
search [30]. FORA+ [23] is the state-of-the-art method.
FORA+ samples random walk from all the vertices in
advance and uses them directly in the MC phase. Despite
the efficiency of query responses, index-oriented methods are
impractical due to high overheads of updating indices.

Other methods answer PPR queries with particular set-
tings. Depending on the query types, there are three lines of
research: top-k query [31], [32], batch one-hop query [33],
and setting small α [34]. Several methods focus on dynamic
graphs [35], [36], [37] or weighted graphs [38]. In addition,
there are a number of methods considering distributed envi-
ronments [39], [40], [41] and parallel computation [42].

B. GRAPH REORDERING
Connectivity-based methods [18], [19] assign close vertex
IDs to densely connected vertices. Rabbit-Order [19] reorders
the data layout based on the community structure. Since com-
munities consist of densely interconnected vertices, Rabbit-
Order assigns consecutive IDs to vertices in each community.
Gorder [18] is the state-of-the-art method that offers signif-
icant performance improvement. Gorder assigns consecutive
IDs to vertices sharing a large number of common vertices.
Specifically, let Rw be w vertices that are recently relabeled
with a new ID. A vertex v obtains a new ID if v shares
the largest number of common neighbor vertices with Rw.
Although connectivity-based methods can accelerate various
graph computations, time-consuming reordering procedures
in these methods cause an end-to-end slowdown.

To alleviate huge reordering overheads, degree-based
methods [20], [21], [22] have attracted much attention in the
literature. In general, degree-based methods assign close IDs
to high-degree vertices because these vertices tend to be fre-
quently accessed in graph computations. Since degree-based
methods simply use the degree information of vertices, they
can reduce the reordering time. However, it remains challeng-
ing to realize enough performance improvement comparable
with connectivity-based methods.

IV. PROPOSED METHOD
In this section, we present the proposed method. We first
outline the overall approach in Section IV-A. The details
of the proposed method are described in Section IV-B and

VOLUME 11, 2023 6947

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

Algorithm 2: the Proposed Method
Input: Graph G, source vertex s, termination probability

α, threshold rmax
Output: PPR score π̂ (s, t) for all t ∈ V

1 G∗← BFS-based lightweight reordering with G, s;
2 invoke Distance-Extension Forwrd Push with G∗;
3 perform Vertex-Centric Random Walk with G∗;
4 return π̂ (s, t) for all t ∈ V ;

FIGURE 3. Analyzing the workload of Vk during the FP phase on Pokec
dataset [43].

Section IV-C. Finally, we elaborate the running time analysis
in Section IV-D.

A. OVERVIEW
Algorithm 2 shows the pseudo-code of the proposed method.
To reduce cache misses, the proposed method optimizes the
computational procedure of both FP and MC phases. In the
FP phase, the proposed method first conducts lightweight
BFS-based reordering (Line 1). This reordering preferentially
assigns close vertex IDs to vertices with small dist(s, v)
because these vertices perform a large number of push-
ing operations. On the reordered data layout, the proposed
method invokes Distance-Extension Forward Push (DEFP)
(Line 2). In the MC phase, the proposed method performs
Vertex-Centric Random Walk (VCRW) (Line 3). VCRW
aggregates random walks at each vertex to reduce the total
number of operations to obtain neighbor vertices. Finally,
the proposed method returns the PPR score π̂(s, t) satisfying
Definition 1 for all t ∈ V (Line 4).

B. DISTANCE-EXTENSION FORWARD PUSH
We first analyze the workload of the FP algorithm shown
in Algorithm 1 focusing on dist(s, v). Let Ds denote the
maximum distance from s in G. We selected one source
vertex, and then measured the average number of pushing
operations and the average unit-cost benefit [15] of Vk . Note
that unit-cost benefit of the pushing operation on v is defined
as α·r(s,v)

dout (v)
because v needs to access dout (v) vertices to reduce

the sum of residues rsum by α ·r(s, v). We conducted the same
analysis on 50 source vertices selected uniformly at random,
and we confirmed that all vertices indicate a similar tendency.
Therefore, we report the results from source vertex s whose
Ds is closest to the average Ds computed from 50 source
vertices. Fig. 3 shows the corresponding results. We can see

Algorithm 3: BFS-Based Lightweight reordering
Input: Graph G, source vertex s
Output: Reordered Graph G∗, DistanceIdx

1 Found[t]← false for all t ∈ V ;
2 Order[t]← empty for all t ∈ V ;
3 DistanceIdx[d]← empty for 0 ≤ d ≤ Ds;
4 Order[0]← s,DistanceIdx[0]← 0;
5 sentinel ← 1;
6 distance← 1;
7 left ← 0, right ← 1;
8 while left < right do
9 if left == sentinel then
10 DistanceIdx[distance]← right;
11 distance← distance+ 1;
12 sentinel ← right;

13 v← Order[left];
14 for each u ∈ Nout (v) do
15 if Found[u] == false then
16 Found[u]← true;
17 Order[right]← u;
18 right ← right + 1;

19 left ← left + 1;
Relabel the vertex IDs

20 for new_id = 0 to n do
21 convert Order[new_id] in G to new_id in G∗;

22 return G∗,DistanceIdx;

that vertices near s tend to perform a large number of pushing
operations with large benefits.

Based on this, the proposed method reorders the data lay-
out to improve memory access locality of Vk with small k .
Moreover, the proposed method establishes the Distance-
Extension strategy that performs pushing operations with Uk
and gradually increases the k value. Since pushing operations
on Vk with small k have large benefits, our strategy can
efficiently proceed the FP phase.

Algorithm 3 shows the pseudo-code of the reordering
procedure. We perform BFS from s and assign a new ID
in ascending order to a found vertex. Considering that a
vertex v ∈ Vk with small k expands the searching area, the
majority of Nout (v) have not been found yet. Therefore, most
of Nout (v) can obtain consecutive vertex IDs. As a result,
vertices in Vk+1 have close IDs because Vk+1 consists of
out-neighbor vertices ofVk . To quickly determineUk , we also
calculate DistanceIdx along with the BFS procedure, where
DistanceIdx[k] denotes the maximum vertex ID of Vk . Con-
sidering that BFS has O(m + n) = O

(∑
v∈V (dout (v)+ 1)

)
running time, Algorithm 3 is fairly lightweight compared
with the representative reordering method Gorder [18] that
has O

(∑
v∈V (dout (v))2

)
running time.

Algorithm 4 shows the pseudo-code of DEFP. As men-
tioned before, DEFP performs FP with Uk and iteratively

6948 VOLUME 11, 2023

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

Algorithm 4: Distance-Extension Forward Push
Input: Graph G∗, source vertex s, termination

probability α, threshold rmax , DistanceIdx
Output: residue r(s, t) and reserve π̂ (s, t) for all t ∈ V

1 π̂ (s, t)← 0 and r(s, t)← 0 for all t ∈ V ;
2 r(s, s)← 1;
3 for k = 0 to Ds do
4 for t = 0 to DistanceIdx[k] do
5 if r(s, t) > dout (t) · rmax then
6 π̂ (s, t)← π̂ (s, t)+ α · r(s, t);
7 if dout (t) ̸= 0 then
8 for each u ∈ Nout (t) do
9 r(s, u)← r(s, u)+ (1− α) · r(s,t)dout (t)

;

10 else
11 r(s, s)← r(s, s)+ (1− α) · r(s, t);

12 r(s, t)← 0;

13 while ∃t ∈ V such that r(s, t) > dout (t) · rmax do
14 π̂ (s, t)← π̂ (s, t)+ α · r(s, t);
15 if dout (t) ̸= 0 then
16 for each u ∈ Nout (t) do
17 r(s, u)← r(s, u)+ (1− α) · r(s,t)dout (t)

;

18 else
19 r(s, s)← r(s, s)+ (1− α) · r(s, t);

20 r(s, t)← 0;

FIGURE 4. rsum v.s elapsed time (sec) on Pokec dataset.

increases the k value (Lines 3-12). Since vertices in Vk
with small k are assigned close vertex IDs and pushing
operation on these vertices have large benefits, DEFP can
rapidly reduce rsum. Fig. 4 shows the rsum versus the elapsed
time. Compared with the result without Distance-Extension
strategy, we can see that DEFP shows the superiority. DEFP
switches to the original FP algorithm shown in Algorithm 1
after k reaches Ds (Lines 13-20).

C. VERTEX-CENTRIC RANDOM WALK
In theMC phase, a vertex vwith r(s, v) > 0 performs ⌈r(s, v)·
ω⌉ randomwalks and increases π̂ (s, t) of the termination ver-
tex t . Letting Iv =

r(s,v)
⌈r(s,v)·ω⌉ , existing methods increase π̂ (s, t)

by Iv. Since Iv depends on r(s, v) and therefore differs for each
vertex v, existing methods need to perform all random walks
sequentially to memorize the starting vertex of each random
walk. In this case, the total number of operations to obtain
neighbor vertices is excessively large because each random
walk needs to obtain neighbor vertices for every single step.
We show an example in Fig. 5. Assume that there are three
random walks having similar paths, where 0 → 3 → 4 →
6→ 7 (red), 3→ 4→ 6→ 7 (blue), 4→ 6→ 7 (green).
Even though all these random walks pass through vertex 4, 6,
and 7 in the same order, we need to obtain neighbor vertices
of vertex 4, 6, and 7 three times, respectively.

VCRW is an effective solution for this problem. Our idea
is to aggregate random walks at each vertex v so that these
aggregated randomwalks canmove by obtainingNout (v) only
once. We show an example of the aggregation in Fig. 5(b).
The three random walks shown in Fig. 5(a) can reach the
termination vertex 7 at the same time. Since it suffices to
obtain neighbor vertices at vertex 4, 6, and 7 only once for
each, we can reduce the total number of operations to obtain
neighbor vertices from twelve in Fig. 5(a) to five in Fig. 5(b).
To realize the aggregation, we need to perform random

walks that depend on r(s, v) as little as possible. Therefore,
we unify the increment value of π̂(s, t) while maintaining
accuracy guarantees. Specifically, we unify the increment
value of ⌊r(s, v) ·ω⌋ random walks out of all ⌈r(s, v) ·ω⌉ ran-
dom walks. By unifying most of the increment value, we can
aggregate a large part of random walks, which significantly
reduces the total number of operations to obtain neighbor
vertices. Althoughwe still need to perform sequential random
walks whose increment value depends on r(s, v), it is guaran-
teed that each vertex v performs ⌈r(s, v) · ω⌉ − ⌊r(s, v) · ω⌋
sequential random walks. Since the value of ⌈r(s, v) · ω⌉ −
⌊r(s, v) · ω⌋ is either 0 or 1, the running cost of sequential
random walks is fairly low.

Algorithm 5 shows the pseudo-code of VCRW. VCRW
consists of two types of random walk, namely Independent
Random Walk (IRW) (Lines 2-13), and Dependent Random
Walk (DRW) (Lines 14-18). In IRW, each vertex v initially has
⌊r(s, v) · ω⌋ random walks (Line 2). A vertex v that has one
or more random walks first obtains its own neighbor vertices
(Line 4) and decides the next destination of each randomwalk
(Lines 7-8). The destination vertex u chosen by v aggregates
a random walk (Line 9). If a random walk terminates at v,
v’s reserve is increased by 1

ω
, which is a unified constant

value (Lines 10-12). Since we do not need to memorize where
each random walk is from, all random walks at v can move
by obtaining Nout (v) only once. In DRW, each vertex v with
r(s, v) > 0 performs a sequential random walk only once.
Letting cv = r(s, v) ·ω−⌊r(s, v) ·ω⌋, this sequential random
walk increases π̂ (s, t) of a termination vertex t by cv

ω
(Lines

14-18).
We show that VCRW returns π̂ (s, t) satisfying Definition 1

for all t ∈ V . We first introduce a generalization of the Cher-
noff inequalities (Lemma 1), and subsequently guarantee the
accuracy (Theorem 2).

VOLUME 11, 2023 6949

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

FIGURE 5. Assuming that there are three random walks from vertex 0, 3, and 4 that have the same path 4 → 6 → 7, sequential random
walks need to obtain neighbor vertices every time as shown in Fig. 5(a). On the other hand, VCRW can reduce the total number of operations
to obtain neighbor vertices by aggregating three random walks at vertex 3 and vertex 4 as shown in Fig. 5(b).

Algorithm 5: Vertex-Centric RandomWalk
Input: Graph G∗, source vertex s, termination

probability α, threshold rmax
Output: PPR score π̂(s, t) for all t ∈ V

1 ω←
(2·ϵ/3+2)·log(2/pf)

ϵ2·µ
;

Independent Random Walk
2 IRW(v)← ⌊r(s, v) · ω⌋ for all v ∈ V ;
3 while ∃v ∈ V such that IRW (v) > 0 do
4 Neighbors← Nout (v);
5 for i = 1 to IRW(v) do
6 Generate a random number r between (0, 1);
7 if r > α then
8 Choose u randomly from Neighbors;
9 IRW(u)← IRW(u)+ 1;

10 else
11 t ← v;
12 π̂ (s, t)← π̂ (s, t)+ 1

ω
;

13 IRW(t)← 0;
Dependent Random Walk

14 for each v ∈ V with r(s, v) > 0 do
15 cv← r(s, v) · ω − ⌊r(s, v) · ω⌋;
16 Generate a sequential random walk from v;
17 Let t be the termination vertex;
18 π̂ (s, t)← π̂ (s, t)+ cv

ω
;

Lemma 1 (Chernoff Bound [44]): Let X1, . . . ,Xn be inde-
pendent random variables with

Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi.

Letting X =
∑w

i=1 aiXi with ai > 0, ν =
∑w

i=1 a
2
i pi, a =

max{a1, . . . , an} and λ ≥ 0, we have

Pr[|X − E[X]| ≥ λ] ≤ 2 exp
(

−λ2

2ν + 2aλ/3

)
. (4)

Theorem 2: For any vertex t with π (s, t) > δ, if ω ≥
(2ϵ/3+2)·log(2/pf)

ϵ2·δ
, VCRW returns π̂ (s, t) satisfying (1) with at

least 1− pf probability.

Proof: Let ωsum be the total number of random walks,
and Xj(t) be a random variable as follows:

Xj(t) =

{
1 if j-th random walk terminates at t ,
0 otherwise.

(5)

To apply Lemma 1, let X =
∑ωsum

j=1 aj · Xj(t), and ν =∑ωsum
j=1 a2j · E

[
Xj(t)

]
, where aj takes value 1 if j-th random

walk starting from v is IRW, and value r(s, v)·ω−⌊r(s, v)·ω⌋
if j-th random walk starting from v is DRW.
By definition, aj ≤ 1. Therefore, ν ≤ E [X] and a ≤ 1,

where a = max{a1, . . . , aωsum}. Applying them to Lemma 1,
we have

Pr[|X − E [X] | ≥ λ] ≤ 2 exp
(

−λ2

2E [X]+ 2λ/3

)
. (6)

Let cv = r(s, v) ·ω−⌊r(s, v) ·ω⌋, and Yk (t) denote a random
variable that takes value 1 if k-th random walk starting from
v terminates at t , and value 0 otherwise. By definition,

E [Yk (t)] = π (v, t). (7)

Then we have,

E
[
X
ω

]
= E

ωsum∑
j=1

aj
ω
· Xj(t)

= E

∑
v∈V

⌊r(s,v)·ω⌋∑
k=1

1
ω
· Yk (t)+

cv
ω
· Yk (t)

= E

[∑
v∈V

r(s, v) · Yk (t)

]
=

∑
v∈V

r(s, v) · π (v, t). (8)

Observing that
∑⌊r(s,v)·ω⌋

j=1
1
ω
· Yk (t) is exactly the amount of

increment that π̂ (s, t) receives from a vertex v during IRW,
and cv

ω
·Yk (t) is that of during DRW. Hence, we can rewrite (2)

and (3) as follows.

π (s, t) = π (s, t)◦ +
1
ω
· E [X] (9)

π̂ (s, t) = π (s, t)◦ +
1
ω
· X (10)

6950 VOLUME 11, 2023

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

Based on (9) and (10), we have 1
ω
· (E [X]− X) = π (s, t)−

π̂ (s, t), andE [X] ≤ ω·π (s, t). Therefore, (6) can be rewritten
as

Pr[|π(s, t)− π̂ (s, t)| ≥ λ/ω]

≤ 2 exp
(

−λ2

2 · ω · π (s, t)+ 2λ/3

)
. (11)

Finally, letting λ = ω · ϵ · π (s, t), ω ≥ (2·ϵ/3+2)·log(2/pf)
ϵ2·δ

, and
π (s, t) > δ, (11) follows

Pr[|π(s, t)− π̂ (s, t)| ≥ ϵ · π (s, t)] < pf . (12)

This completes the proof. □

D. RUNNING TIME ANALYSIS
It has been proved that the expected running time of the
FP algorithm shown in Algorithm 1 can be bounded by
O

(
m · log 1

m·rmax

)
[15]. Since the proposed method follows

Algorithm 1, we can also define the expected running time of
DEFP as O

(
m · log 1

m·rmax

)
.

Letting ωsum be the total number of randomwalks, existing
methods expect that MC has O

(
ωsum

α

)
running time This is

because every random walk is performed sequentially, and
one random walk moves 1

α
steps on average. Obviously, the

expected running time of the MC phase is determined by
the total number of operations to obtain neighbor vertices.
Therefore, we estimate this number to define the expected
running time of VCRW.

We first investigate the expected running time of DRW.
In DRW, each vertex v with r(s, v) > 0 performs a ran-
dom walk only once. Therefore, we easily know that there
are at most n random walks. Since these random walks are
performed sequentially, we can define the total running time
of DRW as O

(n
α

)
.

Next, we investigate the expected running time of IRW.
For the ease of analysis, we first define the iteration of IRW.
We denote I (k) as the set of all active vertices at the beginning
of the k-th iteration, where a vertex v is active if v has one
or more random walks. Therefore, I (k) consists of vertices
that still have random walks after all vertices in I (k−1) move
their randomwalks. Initially, I (0) contains every vertex vwith
⌊r(s, v)·ω⌋ ≥ 1. In addition, we denoteω

(k)
sum as the remaining

number of randomwalks at the beginning of the k-th iteration.
Based on these definitions, we prove the following theorem.
Theorem 3: The expected running time of IRW is

O (n · log(m · rmax · ω)).
Proof:

Considering the (k + 1)-th iteration, we have

ω(k+1)
sum ≤ (1− α) · ω(k)

sum. (13)

Based on this, we can easily get

ω(k)
sum ≤ (1− α)k · ω(0)

sum. (14)

TABLE 2. Datasets (K = 103, M = 106, B = 109).

Besides, ω(0)
sum follows

ω(0)
sum =

∑
v∈V

⌊r(s, v) · ω⌋ ≤
∑
v∈V

⌊rmax · dout (v) · ω⌋

≤ m · rmax · ω.

(15)

We assume that IRW finishes when ω
(k)
sum < 1. By com-

bining (14) and (15), we know that IRW needs K =

O (log(m · rmax · ω)) iterations to satisfy the condition
ω
(k)
sum < 1.
In the k-th iteration,

∣∣I (k)∣∣ vertices are still active. Observ-
ing that

∣∣I (k)∣∣ ≤ n, the total number of operations to obtain
neighbor vertices follows

K−1∑
k=0

∣∣∣I (k)∣∣∣ ≤ K−1∑
k=0

n = n · K . (16)

Therefore, the expected running time of IRW is
O (n · log(m · rmax · ω)). This completes the proof. □

V. EVALUATION
A. EXPERIMENTAL SETUP
We conducted all experiments on a Linux 20.04 server with
dual Intel Xeon E5-2643 processors and 94GiB memory. The
size of the L1 data cache, L1 instruction cache, L2 cache,
and L3 cache were 384KiB, 384KiB, 3MiB, and 50MiB,
respectively. All algorithms were implemented with C++
and compiled with G++ 9.4.0 using the -O3 optimization.

1) REAL-WORLD GRAPHS
We used six real-world graphs; web pages from Stanford
University (WebStan) [45], DBLP collaboration network
(DBLP) [46], Pokec social network (Pokec) [43], LiveJour-
nal social network (LiveJournal) [47], Orkut social network
(Orkut) [46], and Twitter social network (Twitter) [48]. All
the graphs are typically used as the benchmarks and available
on the Stanford SNAP library.2 Details of all the graphs are
shown in Table 2.

2) EXPERIMENTS
We compared the proposed method with three index-free
methods: FORA [16], ResAcc [14], and SpeedPPR [15], and
the state-of-the-art index-oriented method FORA+ [23]. The
computational efficiency was measured through the overall

2https://snap.stanford.edu/data/

VOLUME 11, 2023 6951

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

running time and the cache performance. Before starting the
experiments, we shuffled the vertex IDs randomly. This is
because the given vertex IDs have been modified by pub-
lishers, which might influence the experimental results unin-
tentionally [19]. After shuffling the vertex IDs, we generated
50 query source vertices uniformly at random. We report the
average results of these 50 vertices. To generate random num-
bers efficiently, we used the latest version of SIMD-oriented
Fast Mersenne Twister Library.3

As for cache performance analytics, we used the perf tool.4

We measured five events on processors: L1-r, L1-m, L3-r,
L3-m, and Total-m. L1-r denotes the number of L1 cache
references and L1-m denotes the number of L1 cache misses.
L1-r is equal to the total number of cache references because
processors first reference the L1 cache. L1-r and L1-m can
be measured with the perf options L1-dcache-loads and
L1-dcache-misses, respectively. Similarly, L3-r and
L3-m denote the corresponding numbers at the L3 cache,
and these numbers can be measured with LLC-loads and
LLC-misses options, respectively. Total-m denotes the per-
centage of the total cache misses to the total cache references,
such that Total-m = L3-m/L1-r. Note that we made sure
that all caches were initialized before each experiment by
executing sysctl -w vm.drop_caches=3.

3) PARAMETER SETTINGS
By default, we set α = 0.2, δ = 1

n , pf =
1
n , and

ϵ = 0.5 following the existing methods. Specifically, we set
rmax = 1

ω
, where ω =

(2·ϵ/3+2)·log(2/pf)
ϵ2·δ

, as default because
this setting can theoretically establish the lowest expected
running time [15]. Moreover, ResAcc has two additional
parameters h and rhopmax . In a nutshell, ResAcc first performs
the FP algorithm shown in Algorithm 1 with rmax = rhopmax
on vertices within h distances from the source vertex s, and
accumulates residues at s. After distributing accumulated
residues, ResAcc continues running Algorithm 1 with the
entire graph. We empirically set h and rhopmax to realize the best
performance.

B. OVERALL RUNNING TIME
Fig. 6 shows the overall running time of the index-free meth-
ods in log scale. The running time of the proposed method
was smaller than the existing methods on all the datasets
except for WebStan. On WebStan, the proposed method
slightly underperformed the existing methods. However, this
level of performance gap is negligible because the overall run-
ning time on WebStan is fairly low. Compared with FORA,
ResAcc, and SpeedPPR, the average speedup of the pro-
posed method was 3.2×, 3.9×, and 2.5×, and the maximum
speedup was 4.5×, 4.7×, and 3.9×, respectively. It is worth
pointing out that the proposed method was more effective on
larger graphs. The proposed method was over ten seconds
faster on LiveJournal, over 50 seconds faster on Orkut, and

3http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/SFMT/
4https://perf.wiki.kernel.org/index.php

TABLE 3. Cache performance on DBLP (K = 103, M = 106).

TABLE 4. Cache performance on LiveJournal (M = 106, B = 109).

TABLE 5. Cache performance on Twitter (B = 109).

over 400 seconds faster on Twitter than the fastest existing
method SpeedPPR. This shows a considerable superiority of
the proposedmethod in terms of the computational efficiency.

To analyze the overhead of the reordering procedure,
we further examined the breakdown of the overall running
time. The overall running time is divided into reordering time
and PPR computation time. Fig. 7 shows the corresponding
results. On all the datasets, reordering procedure completed
faster than PPR computation. Moreover, we defined the over-
head of reordering procedure as the ratio of reordering time
to PPR computation time. Except for WebStan, this ratio was
0.24 on average. This low overhead enhances the computa-
tional efficiency of the proposed method.

C. CACHE PERFORMANCE
Tables 3, 4, and 5 show the cache performance on DBLP
(small size graph), LiveJournal (medium size graph), and
Twitter (large size graph), respectively. The best result in
each column is highlighted in bold. The proposed method
greatly reduced both L1-m and L3-m on LiveJournal and
Twitter. Notably, Total-m on Twitter was up to 11.6% lower
than the existing methods. Since the cache reference is over
two orders of magnitude faster than the main memory ref-
erence, the cache miss reduction primarily accelerates the
proposed method. These results on LiveJournal and Twitter
are consistent with the overall running time results shown in
Fig. 6. While the proposed method succeeded in reducing
L1-m on DBLP, L3-m was nearly identical to the existing
methods. This is mainly because the graph size of DBLP
is so small that the L3 cache can hold a large part of data.
Interestingly, the proposed method reduced L1-r compared to
FORA and ResAcc, even though the proposed method needs
to go through the reordering procedure before the FP phase.

6952 VOLUME 11, 2023

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

FIGURE 6. The overall running time on each dataset. The number d.dx over each bar means that Proposed is
d.dx faster than the others.

FIGURE 7. The PPR computation time and the reordering time of the
proposed method.

FIGURE 8. Effect of each optimization on the running time.

This shows that DEFP andVCRW improve the computational
efficiency.

D. EFFECT OF EACH OPTIMIZATION
We investigated the respective effects of DEFP and VCRW
on the running time. Fig. 8 shows the running time of each
approach in log scale on Pokec, LiveJournal, and Orkut.
We first compare the running time of Algorithm 1 (Base-
line) and DEFP in Fig. 8(a). We measured the running time

until there are no active vertices with respect to the default
rmax . Compared with Baseline, DEFP was 3.3×, 4.1×, and
2.4× faster on Pokec, LiveJournal, and Orkut, respectively.
Considering that the running time of DEFP includes the
reordering time, this speedup shows that DEFP can proceed
the FP phase efficiently.

Next, we compare the running time in the MC phase.
Since the proposedmethod performsVCRWafter conducting
the reordering in the FP phase, the reordered data layout
might have a positive effect on the running time in addition
to the aggregation technique. To clearly separate the effect of
the aggregation technique and the reordering, we measured
the running time of VCRWon original layout (VCRW-O) and
on reordered layout (VCRW-R). Fig. 8(b) shows the running
time of Baseline, VCRW-O, andVCRW-R, respectively. Note
that Baseline represents the original approach that performs
random walks sequentially. The running time was measured
up to the point where each vertex v has performed ⌈rmax ·
dout (v) · ω⌉ random walks. We can see that VCRW-R was
4.7×, 5.2×, and 6.5× faster than Baseline on Pokec, Live-
Journal, and Orkut, respectively, which shows a significant
speedup. On the other hand, VCRW-Rwas slightly faster than
VCRW-O on the three datasets. Therefore, we confirm that
the speedup of the MC phase by VCRW is mostly due to the
aggregation technique.

E. EFFECT OF SETTING rmax

We examined the effect of setting rmax on the overall running
time using Pokec and Twitter. Recall that rmax determines
when the FP phase switches to the MC phase. Theoreti-
cally, the default setting can achieve the fastest running time.
However, previous works have observed that the best setting
differs from the default setting and the running time is too
sensitive to rmax . Therefore, we measured the overall running

VOLUME 11, 2023 6953

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

FIGURE 9. The overall running time with different rmax
(
×r◦max

)
.

time against different rmax varying from 10−2 × r◦max to
101 × r◦max , where r

◦
max denotes the default setting.

Fig. 9 shows the corresponding results of SpeedPPR and
the proposed method. As previous works have reported,
we observed that r◦max cannot achieve the fastest running
time on both Pokec and Twitter. The proposed method (resp.
SpeedPPR) was fastest with rmax = 0.25× r◦max and rmax =
0.5 × r◦max (resp. rmax = 0.1 × r◦max and rmax = 0.1 ×
r◦max) on Pokec and Twitter, respectively. At the fastest point,
SpeedPPR was 2.1× and 2.2× faster than the default setting
on Pokec and Twitter, respectively, which shows SpeedPPR is
sensitive to rmax . On the other hand, in the proposed method,
the difference between the fastest running time and the run-
ning time with r◦max was 1.2× and 1.1× on Pokec and Twitter,
respectively. These results show that the proposed method is
less sensitive to rmax than SpeedPPR.

F. EFFECT OF PARAMETER SETTINGS FOR ACCURACY
GUARANTEES
Recall that the parameters ϵ and δ determine the condition
of Approximate SSPPR query. Specifically, the value of ϵ

determines the acceptable relative error and the value of
δ determines the applicable scope of accuracy guarantees.
According to numerous demands from applications, PPR
queries are conducted with various parameters settings. Moti-
vated by this, we evaluated the overall running time against
different ϵ and δ.
Fig. 10 shows the overall running time against different ϵ

varying from 0.5 to 0.1. We can see that the proposed method
significantly outperformed the existing methods with any ϵ

on all the datasets except forWebStan. Note that both the pro-
posed method and SpeedPPR showed a linear increase on the
overall running time. On the other hand, the overall running
time of FORA and ResAcc sharply increased with a decrease
of ϵ, especially on Twitter. This is mainly due to the difference
in the way to access active vertices during the FP phase. Since
FORA and ResAcc adopt a queue-based implementation,
active vertices are accessed in a nonconsecutive manner with
respect to vertex IDs, which leads to irregular memory access.
Alternatively, the proposed method and SpeedPPR adopt an
array-based implementation, and both methods can therefore
access the active vertices consecutively in the order of vertex
IDs.

Fig. 11 shows the overall running time against different δ.
Letting δ◦ = 1

n be the default parameter, we measured the

TABLE 6. The percentage of vertices that are the target of accuracy
guarantees.

overall running time with δ = δ◦

δ∗
. Note that we varied δ∗

from {1, 5, 10}. In addition, Table 6 shows the percentage of
vertices that are the target of accuracy guarantees. To calcu-
late the percentage, we need to know the ground truth score
π (s, t) for all t ∈ V . Therefore, we ran Algorithm 1 until
rsum satisfied rsum < θ , where θ = min{10−8, 1

m }, and we
then regarded the returned result as the ground truth. Similar
to the results varying the parameter ϵ as shown in Fig. 10,
the proposed method outperformed the existing methods.
Notably, the proposed method with δ∗ = 10 was faster than
the existing methods with δ∗ = 1 on larger graphs: LiveJour-
nal, Orkut, and Twitter. Therefore, the proposed method can
obtain more accurate results than existing methods with the
same running cost.

G. COMPARISON WITH INDEX-ORIENTED METHOD
Fig. 12 shows the overall running time of the proposed
method and FORA+ [23] on LiveJournal, Orkut, and Twitter
against different ϵ varying from 0.5 to 0.1. We obtained the
source code of FORA+ from the authors.5 For FORA+,
we generated the index with smallest ϵ = 0.1 because the
index generated with ϵ = ϵHigh cannot be reused to answer
PPR queries with a smaller ϵ = ϵLow < ϵHigh.

Overall, FORA+ was faster than the proposed method
because FORA+ simply reads the index in the MC phase.
Specifically, FORA+ outperformed the proposed method
with larger ϵ, and FORA+ was 2.9×, 3.4×, and 1.7× faster
with ϵ = 0.5 on LiveJournal, Orkut, and Twitter, respectively.
One interesting finding is that the proposed method achieved
a comparable running time with smaller ϵ. In particular, the
proposed method outperformed FORA+ on LiveJournal and
Twitter under rigorous accuracy guarantees, i.e., ϵ = 0.1.
It is worth pointing out that the proposed method is over
100 seconds faster than FORA+ with ϵ = 0.1 on Twitter.

Table 7 summarizes the online running time with ϵ = 0.1,
offline index generation time, the index size, and the graph
size. While FORA+ requires O

(
n·log n

ϵ

)
space consumption

and impractical index generation time, our index-free method
has zero precomputation costs. We can see that FORA+
consumed minutes or hours of precomputation time and huge
space overheads beyond the graph size, which is unacceptable
in real-world scenarios. Assuming that users request rigorous
accuracy guarantees and set a small ϵ, the performance of
FORA+ is apparently degraded in terms of online query time

5https://github.com/wangsibovictor/fora

6954 VOLUME 11, 2023

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

FIGURE 10. The overall running time against different ϵ.

FIGURE 11. The overall running time with δ =
δ◦
δ∗

, where δ◦ is the default parameter.

FIGURE 12. The overall running time of FORA+ and the proposed method against different ϵ.

TABLE 7. Performance comparison with FORA+ and the proposed method. The index of FORA+ was generated with ϵ = 0.1.

and offline precomputation overheads. These results verify
that the proposed method can achieve significant computa-
tional efficiency without any precomputations.

H. COMPARISON WITH GORDER
Finally, we compared the proposed method with SpeedPPR
incorporated with the state-of-the-art graph reorder-
ing method Gorder [18]. Gorder is the representative
heavyweight reordering method that achieves remark-
able speedup by deeply inspecting the connectivity of
vertices. Fig. 13 shows the overall running time of
SpeedPPR, SpeedPPR+Gorder, and the proposed method
on LiveJournal. The result of SpeedPPR+Gorder repre-
sents the running time of SpeedPPR on the reordered
LiveJournal dataset. We observe that SpeedPPR+Gorder

FIGURE 13. The boxplot of the overall running time on LiveJournal.

greatly outperformed SpeedPPR, and the average run-
ning time of SpeedPPR+Gorder was 1.5× smaller than

VOLUME 11, 2023 6955

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

SpeedPPR. Notably, the proposed method was still faster
than SpeedPPR+Gorder. Note that the result of the proposed
method includes reordering time. On the other hand, the result
of SpeedPPR+Gorder excludes it. Considering that Gorder
took 70.1 seconds to complete the reordering procedure on
LiveJournal, we confirm that the proposed method is more
practical than SpeedPPR+Gorder. Interestingly, we find that
the running time of the proposed method is stable. The
standard deviations of three methods were 0.29, 0.46, and
0.16, respectively, which shows that the proposed method
performed stably regardless of the characteristics of source
vertices. This is mainly because the proposed method always
reorders the data layout according to a given source vertex.

VI. CONCLUSION
We proposed a cache-efficient approach for fast index-free
PPR computation. The proposed method significantly accel-
erates the FORA algorithm by optimizing the computational
procedure of both FP and MC phases. Experiment results
using real-world graphs showed that the proposed method
reduces the cache miss ratio by up to 11.6% over existing
methods on the largest dataset. As a result, the proposed
method was faster than the fastest existing method by an
average of 2.5× and a maximum of 3.9×. Moreover, the
proposed method outperformed the state-of-the-art index-
oriented method in query time under rigorous accuracy guar-
antees. Since various real-world applications, including link
prediction, community detection, and social recommenda-
tion, utilize the PPR scores, the proposed method can be used
to further improve the efficiency of these applications.

REFERENCES
[1] L. Page, S. Brin, R. Motwani, and T. Winograd, ‘‘The pagerank citation

ranking: Bringing order to the web,’’ Stanford InfoLab, Stanford, CA,
USA, Tech. Rep. 1999-66, 1999.

[2] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, K. Jain, V. Mirrokni,
and S. Teng, ‘‘Robust PageRank and locally computable spam detection
features,’’ in Proc. 4th Int. Workshop Adversarial Inf. Retr. Web, Apr. 2008,
pp. 69–76.

[3] L. Backstrom and J. Leskovec, ‘‘Supervised random walks: Predicting and
recommending links in social networks,’’ in Proc. 4th ACM Int. Conf. Web
Search Data Mining, Feb. 2011, pp. 635–644.

[4] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh, ‘‘WTF: The
who to follow service at Twitter,’’ in Proc. 22nd Int. Conf. WorldWideWeb,
May 2013, pp. 505–514.

[5] Y. Gao, X. Yu, and H. Zhang, ‘‘Overlapping community detection by
constrained personalized PageRank,’’ Exp. Syst. Appl., vol. 173, Jul. 2021,
Art. no. 114682.

[6] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, ‘‘Local higher-
order graph clustering,’’ in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2017, pp. 555–564.

[7] J. J. Whang, D. F. Gleich, and I. S. Dhillon, ‘‘Overlapping
community detection using neighborhood-inflated seed expansion,’’
IEEE Trans. Knowl. Data Eng., vol. 28, no. 5, pp. 1272–1284,
May 2016.

[8] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, and S.
Jegelka, ‘‘Representation learning on graphs with jumping knowl-
edge networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML), vol. 2018,
pp. 5453–5462.

[9] J. Klicpera, A. Bojchevski, and S. Günnemann, ‘‘Predict then propagate:
Graph neural networks meet personalized pagerank,’’ in Proc. 8th Int.
Conf. Learn. Represent., 2019.

[10] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózember-
czki,M. Lukasik, and S. Günnemann, ‘‘Scaling graph neural networks with
approximate PageRank,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2020, pp. 2464–2473.

[11] J. Jung, N. Park, S. Lee, and U. Kang, ‘‘BePI: Fast and memory-efficient
method for billion-scale random walk with restart,’’ in Proc. ACM Int.
Conf. Manage. Data, May 2017, pp. 789–804.

[12] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, ‘‘HubPPR: Effective index-
ing for approximate personalized PageRank,’’ Proc. VLDB Endowment,
vol. 10, no. 3, pp. 205–216, 2016.

[13] M. Yoon, J. Jung, and U. Kang, ‘‘TPA: Fast, scalable, and accurate method
for approximate randomwalk with restart on billion scale graphs,’’ in Proc.
IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 1132–1143.

[14] D. Lin, R. C.-W. Wong, M. Xie, and V. J. Wei, ‘‘Index-free approach with
theoretical guarantee for efficient randomwalkwith restart query,’’ inProc.
IEEE 36th Int. Conf. Data Eng. (ICDE), Apr. 2020, pp. 913–924.

[15] H. Wu, J. Gan, Z. Wei, and R. Zhang, ‘‘Unifying the global and local
approaches: An efficient power iteration with forward push,’’ in Proc. Int.
Conf. Manage. Data, Jun. 2021, pp. 1996–2008.

[16] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, ‘‘FORA: Simple and
effective approximate single-source personalized PageRank,’’ in Proc.
23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 505–514.

[17] Y. Lim, U. Kang, and C. Faloutsos, ‘‘SlashBurn: Graph compression and
mining beyond caveman communities,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 12, pp. 3077–3089, Dec. 2014.

[18] H. Wei, J. X. Yu, C. Lu, and X. Lin, ‘‘Speedup graph processing by graph
ordering,’’ in Proc. Int. Conf. Manage. Data, Jun. 2016, pp. 1813–1828.

[19] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura, ‘‘Rabbit
order: Just-in-time parallel reordering for fast graph analysis,’’ in Proc.
IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016, pp. 22–31.

[20] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
‘‘Making caches work for graph analytics,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2017, pp. 293–302.

[21] V. Balaji and B. Lucia, ‘‘When is graph reordering an optimization?
Studying the effect of lightweight graph reordering across applications
and input graphs,’’ in Proc. IEEE Int. Symp. Workload Characterization
(IISWC), Sep. 2018, pp. 203–214.

[22] P. Faldu, J. Diamond, and B. Grot, ‘‘A closer look at lightweight graph
reordering,’’ inProc. IEEE Int. Symp.Workload Characterization (IISWC),
Nov. 2019, pp. 1–13.

[23] S. Wang, R. Yang, R. Wang, X. Xiao, Z. Wei, W. Lin, Y. Yang, and
N. Tang, ‘‘Efficient algorithms for approximate single-source personalized
PageRank queries,’’ ACM Trans. Database Syst., vol. 44, no. 4, pp. 1–37,
Dec. 2019.

[24] K. Tsuchida, N. Matsumoto, and K. Kaneko, ‘‘Node-centric random walk
for fast index-free personalized PageRank,’’ in Proc. Int. Conf. Inf. Netw.
(ICOIN), 2023.

[25] J. Siek, L. Q. Lee, and A. Lumsdaine, The Boost Graph Library: User
Guide and ReferenceManual. Reading,MA, USA: Addison-Wesley, 2002.

[26] R. Andersen, F. Chung, and K. Lang, ‘‘Local graph partitioning using
PageRank vectors,’’ in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci.
(FOCS), Oct. 2006, pp. 475–486.

[27] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, ‘‘Towards scaling fully
personalized PageRank: Algorithms, lower bounds, and experiments,’’
Internet Math., vol. 2, no. 3, pp. 333–358, 2005.

[28] G. Jeh and J. Widom, ‘‘Scaling personalized web search,’’ in Proc. 12th
Int. Conf. World Wide Web (WWW), 2003, pp. 271–279.

[29] K. Shin, J. Jung, S. Lee, andU. Kang, ‘‘BEAR: Block elimination approach
for random walk with restart on large graphs,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, May 2015, pp. 1571–1585.

[30] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, V.Mirrokni, and S.-H. Teng,
‘‘Local computation of PageRank contributions,’’ Internet Math., vol. 5,
nos. 1–2, pp. 23–45, Jan. 2008.

[31] Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J.-R. Wen, ‘‘TopPPR:
Top-k personalized PageRank queries with precision guarantees on large
graphs,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), 2018, pp. 441–456.

[32] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M. Onizuka,
‘‘Efficient personalized PageRank with accuracy assurance,’’ in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2012,
pp. 15–23.

6956 VOLUME 11, 2023

K. Tsuchida et al.: Cache-Efficient Approach for Index-Free Personalized PageRank

[33] S. Luo, X. Xiao, W. Lin, and B. Kao, ‘‘BATON: Batch one-hop personal-
ized PageRanks with efficiency and accuracy,’’ IEEE Trans. Knowl. Data
Eng., vol. 32, no. 10, pp. 1897–1908, Oct. 2020.

[34] M. Liao, R.-H. Li, Q. Dai, and G.Wang, ‘‘Efficient personalized PageRank
computation: A spanning forests sampling based approach,’’ in Proc. Int.
Conf. Manage. Data, Jun. 2022, pp. 2048–2061.

[35] S. Chakrabarti, ‘‘Dynamic personalized pagerank in entity-relation
graphs,’’ in Proc. 16th Int. Conf. World WideWeb, May 2007, pp. 571–580.

[36] M. Yoon,W. Jin, and U. Kang, ‘‘Fast and accurate randomwalk with restart
on dynamic graphs with guarantees,’’ inProc.WorldWideWebConf. World
Wide Web (WWW), 2018, pp. 409–418.

[37] D. Mo and S. Luo, ‘‘Agenda: Robust personalized PageRanks in evolving
graphs,’’ in Proc. 30th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2021,
pp. 1315–1324.

[38] H. Wang, Z. Wei, J. Gan, Y. Yuan, X. Du, and J.-R. Wen, ‘‘Edge-based
local push for personalized PageRank,’’ Proc. VLDB Endowment, vol. 15,
no. 7, pp. 1376–1389, Mar. 2022.

[39] B. Bahmani, K. Chakrabarti, and D. Xin, ‘‘Fast personalized PageRank on
MapReduce,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2011,
pp. 973–984.

[40] T. Guo, X. Cao, G. Cong, J. Lu, and X. Lin, ‘‘Distributed algorithms on
exact personalized PageRank,’’ in Proc. ACM Int. Conf. Manage. Data,
May 2017, pp. 479–494.

[41] G. Hou, X. Chen, S. Wang, and Z. Wei, ‘‘Massively parallel algorithms
for personalized PageRank,’’ Proc. VLDB Endowment, vol. 14, no. 9,
pp. 1668–1680, May 2021.

[42] R. Wang, S. Wang, and X. Zhou, ‘‘Parallelizing approximate single-source
personalized PageRank queries on shared memory,’’ VLDB J., vol. 28,
no. 6, pp. 923–940, Dec. 2019.

[43] L. Takac and M. Zabovsky, ‘‘Data analysis in public social networks,’’
in Proc. Int. Sci. Conf. Int. Workshop Present Day Trends Innov., 2012,
pp. 1–6.

[44] F. Chung and L. Lu, ‘‘Concentration inequalities and Martingale inequali-
ties: A survey,’’ Internet Math., vol. 3, no. 1, pp. 79–127, 2006.

[45] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, ‘‘Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,’’ Internet Math., vol. 6, no. 1, pp. 29–123, Jan. 2009.

[46] J. Yang and J. Leskovec, ‘‘Defining and evaluating network communities
based on ground-truth,’’ Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
Jan. 2015.

[47] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, ‘‘Group forma-
tion in large social networks:Membership, growth, and evolution,’’ inProc.
12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2006,
pp. 44–54.

[48] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social network
or a news media?’’ in Proc. 19th Int. Conf. World Wide Web, Apr. 2010,
pp. 591–600.

KOHEI TSUCHIDA received the B.E. degree from
the Faculty of Science and Technology, Keio Uni-
versity, in 2021, where he is currently pursuing
the master’s degree with the Graduate School
of Science and Technology. His research interest
includes graph analysis.

NAOKI MATSUMOTO received the M.S. and
Ph.D. degrees from the Graduate School of Envi-
ronment and Information Sciences, Yokohama
National University. He is currently a Project
Assistant Professor with the Research Institute
for Digital Media and Content, Keio University.
In 2019, he joined at the Research Institute for
Digital Media and Content (DMC). His research
interests include graph theory and combinatorial
game theory and their applications.

ANDREW SHIN received the M.S. degree from
the Interdisciplinary Graduate School of Science
and Engineering, Tokyo Institute of Technology,
and the Ph.D. degree from the Graduate School of
Information Science and Technology, The Univer-
sity of Tokyo. He is currently a Project Assistant
Professor with the Research Institute for Digital
Media and Content, Keio University. Prior to join-
ing Keio University, he was a Research Engineer
at Sony Group Corporation Research and Devel-

opment Center. His research interests include computer vision and natural
language processing.

KUNITAKE KANEKO (Member, IEEE) received
theM.S. degree from the Graduate School of Engi-
neering, The University of Tokyo, and the Ph.D.
degree from the Graduate School of Information
Science and Technology. He is currently an Asso-
ciate Professor with the Faculty of Science and
Technology, Keio University. In 2006, he joined at
the Research Institute for Digital Media and Con-
tent (DMC), Keio University. His major research
interest is data networking as a new generation

network architecture. He is a member of SMPTE, IPSJ, and IEICE.

VOLUME 11, 2023 6957

