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ABSTRACT Co-designing energy systems across multiple energy carriers is increasingly attracting attention
of researchers and policy makers, since it is a prominent means of increasing the overall efficiency of the
energy sector. Special attention is attributed to the so-called energy hubs, i.e., clusters of energy communities
featuring electricity, gas, heat, hydrogen, and also water generation and consumption facilities. Managing
an energy hub entails dealing with multiple sources of uncertainty, such as renewable generation, energy
demands, wholesale market prices, etc. Such uncertainties call for sophisticated decision-making techniques,
with mathematical optimization being the predominant family of decision-making methods proposed in
the literature of recent years. In this paper, we summarize, review, and categorize research studies that
have applied mathematical optimization approaches towards making operational and planning decisions
for energy hubs. Relevant methods include robust optimization, information gap decision theory, stochastic
programming, and chance-constrained optimization. The results of the review indicate the increasing
adoption of robust and, more recently, hybrid methods to deal with the multi-dimensional uncertainties of
energy hubs.

INDEX TERMS Energy hub, multi-carrier energy systems, mathematical optimization, robust optimization,
IGDT, stochastic programming, chance constrained, uncertainty.

ABBREVIATIONS DG diesel generator.
AC air conditioner. DR demand response
‘:g? a‘psorptlon chiller. E2HE electricity to heat.
air energy stora}ge. HE2E heat to electricity by Organic Rankine cycle.
CCHP combined cooling, heat and power,. ECH  electric chiller
CES  cooling energy storage. EES electricity energy storage.

CHP  combined heat and power. EH energy hub,
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G2H gas to hydrogen.
G2HE gas to heat.

GS gas storage.

GT gas turbine.

HE heat exchanger.
HEES heat energy storage.
HES hydrogen storage.
HP heat pump.

PV photovoltaic.

P2G power to gas.

P2H power to hydrogen.
RES renewable energy source.

SD seawater desalination.
SP stochastic programming.
WES  water energy storage.

WT wind turbine.

I. INTRODUCTION

The joint co-optimization of different energy carriers, tra-
ditionally operated and planned separately, forms a promi-
nent endeavor towards efficient energy and infrastructure
utilization [1], since co-optimizing decisions across multiple
energy carriers, features a synergistic effect [2]. Hence, the
Energy Hub (EH), an energy management unit that encom-
passes multiple energy carriers and technologies, is envi-
sioned as a new concept that enhances the integrated system’s
efficiency [3].

The operational decisions of an EH concern the quantities
dispatched for each of the EH’s energy carriers (and the
necessary conversions across carriers) in operational time; the
operational problem generally refers to satisfying the hub’s
energy demands (respecting energy flow constraints) in the
most economically efficient way. The planning decisions on
the other hand, concern the decisions of investing in infras-
tructure expansions for the EH relating to techno-economic
aspects of the EH’s future operation.

The spectrum of relevant technologies includes combined
heat and power (CHP) technology, boiler, heat exchangers,
different types of energy storage systems, power-to-X tech-
nologies, and more [4]. An architectural overview of an EH,
and its featured devices, inputs, and outputs is presented in
Fig 1.

A. LITERATURE REVIEW

Some of the well-known methods for decision making under
uncertainty in energy systems, including probabilistic meth-
ods, robust optimization, information gap decision theory,
possibilistic methods, and interval based analysis, have been
categorized and explained in [5]. A simple formulation for
each of these methods, as well as some energy related appli-
cations for each of them have been provided in this reference.
In [6] probabilistic methods, possibilistic methods, and their
combinations for the situations when the problem includes
both probabilistic and possibilistics uncertain variables
have been presented in details. In this reference numerical
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probabilistic approaches, including sequential, non-sequential
and pseudo-sequential Monte Carlo simulation; as well as,
analytical probabilistic approaches including convolution
method, cumulant method, Gram—Charlier method, Edge-
worth expansion, Taylor series, Cornish—Fisher expansion,
and point estimation method have been simply formulated.
A comprehensive review on optimization of energy systems
under uncertainty has been presented by [7]. In this reference
energy system model have been classified and different opti-
mization methodologies, including stochastic programming,
robust optimization, fuzzy programming, interval method and
hybrid models have been reviewed.

Previous review papers, specifically in the area of EHs,
have investigated the EH research from different points of
view. Article [8] reviews different models and concepts used
in the EH literature, identifying and discussing their chal-
lenges, strengths, and weaknesses. Models, concepts, and
technologies of EHs in the commercial, industrial, domes-
tic, and agricultural sectors are briefly reviewed in [9]. The
authors in [10] review the topologies, design methods, and
input-output relations of EHs, as well as design requirements
such as cost, robustness, pollution, flexibility, and resilience.
The study also briefly reviewes the mathematical models of
EHs. Article [11] reviews articles about multi-carrier energy
systems, published from 2007 to 2017. The reviewed papers
have been summarized based on their environmental and eco-
nomic considerations, applications, operation and planning,
as well as their modeling approaches. Article [12] presents
the EH as a solution concept to energy-related challenges
and proceeds to present a literature review on the operation,
planning and expansion planning problems of EHs, sum-
marizing the types of objective functions, planning horizon
length and granularity, and different forms of energy carriers
considered. The performance of existing energy storage sys-
tems and multi-energy system designs have been reviewed
and compared by [13]. The state-of-the-art research on EHs
is linked to the concept of energy-positive neighborhoods
in [14]. The authors in [15] present a bibliometric analysis
and a systematic review based on a qualitative synthesis of
the EH research studies.

B. MOTIVATIONS AND CONTRIBUTIONS

As it was clear from the literature review section, the
conducted research in the area of energy hubs have been
investigated and reviewed from various aspects. Moreover,
approaches for decision making under uncertainty in power
systems have been reviewed carefully. To the best of the
authors’ knowledge, no comprehensive review has been
previously conducted on the application of mathematical
optimization approaches towards solving operational and
planning decision problems of EHs under uncertainty. This
paper investigates the relevant approaches, including stochas-
tic programming (SP), robust optimization (RO), information
gap decision theory (IGDT), chance constrained (CC) opti-
mization etc, and identifies the various frameworks proposed
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FIGURE 1. Architectural overview of technologies and energy carriers in an EH.
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in the literature. The main purposes of this work are 1)
to present the relevant modeling frameworks, methods and
uncertainties in a systematic way, discussing each method
and categorizing the relevant literature, while performing a
critical review on the advantages and disadvantages of each
approach ; and, 2) to extract the research trend in the ares
of energy hubs. In other words, it has been intended to show
which mathematical optimization methods were popular to
date and why, and which mathematical optimization methods
are going to become more popular among researchers in the
energy hub domain and why. In addition, we also discuss
aspects related to the design of EHs’ inputs, outputs, and
devices.

In summary, the contributions of this paper are highlighted
as follows:

« presenting a comprehensive review on the application of
mathematical optimization approaches in the operation
and planning of EHs under uncertainty.

 categorizing and summarizing the research conducted
in the field of operation and planning of EHs from the
mathematical optimization’s point of view.

« revealing research trends in this field and presenting the
most possible future direction from the mathematical
optimization’s point of view.

C. PAPER ORGANIZATION

The rest of the paper is organized as follows. The methodol-
ogy of the literature review is given in Section 2. The math-
ematical modeling and the relevant optimization methods
applied to EHs are presented in Section 3. Hybrid methods
are presented in Section 4. Section 5 presents a summary
of the related literature and discusses the emerging research
directions. Finally, the conclusions are given in Section 6.

Il. METHODOLOGY

In this section, the justification of the optimization methods is
presented. The justification considers application of only the
mathematical optimization techniques. After that, the flow of
adequate papers selection based on research keywords (con-
sidering EH and mathematical optimization techniques), type
of database, date and language of publication is presented.

A. SELECTION OF OPTIMIZATION METHODS

Optimizing an EH’s operation and planning decisions can
be formulated as an optimization problem, involving one or
multiple objective function(s), subject to several technical
and non-technical constraints. In this review, we focus on
mathematical optimization approaches that provide formal
guarantees regarding global system optimality and constraint
satisfaction. It bears mentioning that a significant body of
the EH literature adopts approaches based on evolutionary
or meta-heuristic algorithms. These approaches are able to
manage non-convexities in the objective functions and con-
straints, but do not meet our criterion of global optimality
and constraint satisfaction guarantees. Hence, they are briefly
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reviewed in Appendix A for the interested reader, and are
not further discussed in this paper. In addition, Machine
Learning approaches have received great attention recently
for the operation and planning of EHs. Since they are in a
different category of study (it is not in the scope of mathemat-
ical optimization), they have been added to Appendix B for
interested readers. The mathematical optimization techniques
qualifying for detailed review, are categorized in Figure 2.

B. METHODOLOGY OF ARTICLE SELECTION

The methodology of the review investigation was based on
a structured selection with the Scopus database used as the
main resource, encompassing all WoS indexed journals, all
IEEE and IoP conferences, and other verified venues. Our
search method used the keywords “‘energy hub” or “multi-
carrier energy systems’’, in combination with the names of
the relevant optimization techniques (SP, IGDT, RO, and CC).
The considered articles were accessed before 31.12.2021 and
their language was English. The summary of articles selection
criteria is presented in Figure 3.

lIl. MATHEMATICAL MODELING AND OPTIMIZATION
TECHNIQUES

A. STOCHASTIC PROGRAMMING

Stochastic programming (SP) considers the optimization of
the expected value of an objective optimized over N (i.e. two
or more) decision stages [16]. The uncertainty over future
realizations of the problem’s parameters is captured using a
number 2, of realization scenarios, with each scenario bear-
ing a probability ., where zilzel 7w, = 1. The method uses
an optimal-in-hindsight decision x, for each scenario e and
constraints scenarios with common history up to stage k to
have the same up-to-k decisions. Such constraints are called
non-anticipativity constraints and make sure that, at any deci-
sion stage k, the algorithm only utilizes information that has
been revealed up and before k.

The general form of an N-stage SP optimization problem
is formulated in (1). The objective function f(-), typically
relates to minimizing the total economic cost of the system
or maximizing the RESs integration. Finally, the equality and
inequality constraints g, i refer to the system’s operational
and modeling constraints.

Q2
min Tof (Xe) (D
(Xe)ee[1,9e] p—
Subject to:
8((xe)eel1,2,1) <0 2
h((xe)eern,@.1) = 0 (3)

The main challenge of SP models is to handle the com-
plexity arising from multiple scenarios and decision stages.
Ideally, a small set of scenarios would need to be identified,
that captures enough information to achieve a satisfactory
level of efficiency while keeping the optimization problem
manageable within realistic timeframes and computational
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resources. A review of related cases and approaches follows.
A two-stage stochastic programming approach is considered
in [17] towards optimizing the operational decisions of a
multi-carrier energy building. The authors in [18], optimize
an EH’s planning decisions, while [19] uses SP to make
profit-maximizing decisions on behalf of an EH managing
entity. Generalizing to a cluster of multiple energy hubs, [20]
used two-stage SP to assess the system’s economic efficiency.

The work in [21] focuses on small scale EHs, namely
residential buildings, and controls the building’s lighting,
ventilation, cooling and heating systems as well as charge
and discharge of electric vehicles. In [22] a real case study
of a building-level smart EH is considered, minimizing the
weighted sum of the EH’s energy bill on one hand, and an
emissions’ penalization factor on the other.

The application of SP techniques in a real microgrid
with demand response capabilities is presented in [23].
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Minimizing the expected stacked operational costs of the
electricity and gas networks is the objective adopted in [24].
A stochastic-interval optimization was applied in [25]
towards achieving cost reduction for an EH with flexible
loads. In [26], the authors present a comprehensive uncer-
tainty modeling framework and scenario generation method
towards representing the uncertainty of demands (for elec-
tricity and heating), wind speed, solar irradiance, and prices
of energy carriers including electricity and natural gas. The
objective adopted was the maximization of the EH’s opera-
tor’s profit.

The study [27] formulates the scheduling problem of an
EH as a stochastic program. The EH features P2G storage,
a CHP unit, WT power, boiler, electrical and thermal storage,
as well as demand response (DR) capabilities. The formulated
objective is to meet all demands (electrical, heat, and gas) at
the least possible cost. The problem is cast as a mixed-integer
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linear programming problem. The coupling point between
the electricity and gas carriers is the P2G storage system,
since it can convert energy from one carrier to the other
through hydrogen. In [28], the authors formulate a stochastic
security-constrained unit commitment problem, considering
the coordinated operation of price-based DR and HES system
in the presence of wind generation uncertainty. The authors
also consider price responsive loads and demonstrate their
case study on a 6-bus and on a 24-bus system. The results
show the effects of joint consideration of a HES system
and a price-based DR program. In [29], the authors present
a mathematical formulation for the optimal planning prob-
lem of an EH considering operational constraints and mul-
tiple objectives related to investment and operational costs,
reliability, and emissions. The planning decisions are made
under uncertainty of wind generation, electricity prices, and
electricity demands. The EH features a transformer, a CHP,
G2HE, and HESS.

In [30], system featuring WT, EES and HESS, and elec-
trical and thermal DR programs, is optimized. The sys-
tem’s uncertainties include demands, market prices, and wind
speed. An additional degree of freedom is enabled by consid-
ering the existence of a market for allocating heat demand.
In [31], SP is used towards evaluating the impact of ESSs
on a local multi-energy system. The linepack model of gas
pipelines, is leveraged towards enabling the pipelines to act
as a buffer, i.e. energy storage. The problem is cast as a
mixed-integer linear program, solved by the CPLEX solver
in the GAMS environment. In [32], a SP formulation was
leveraged towards dealing with several sources of uncertainty,
stemming from day-ahead market prices, real-time market
prices, and WT generation. In [33], a SP formulation was
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deployed similarly to deal with the uncertainties of WT and
PV generation. In [34], a networked version of EH operation
has been taken into account with multiple uncertainties of PV
generation, electricity prices as well as demands.

In conclusion of this section, we highlight that EH man-
agement systems entail various uncertain parameters related
to each energy carrier, namely energy (electricity, gas, heat)
demands, wholesale (electricity, gas) prices, generation out-
put (from wind and solar panels for electricity) and more.
The EH receives the uncertainty realization as input and
decides upon its control actions over the available control-
lable resources (generally presented in Fig. 2). The result-
ing actions, i.e. the outputs, concern the control of energy
flows across the different energy carriers. The inputs, control-
lable resources, and outputs discussed vary among different
research studies. Table 1, summarizes the model (in terms of
inputs, resources, output) adopted in each paper that uses SP
as its optimization framework.

B. INFORMATION GAP DECISION THEORY

Information gap decision theory (IGDT), which was intro-
duced by Ben-Haim [57], [58], is a non-probabilistic
decision-making method to maximize the system’s robust-
ness under severely uncertain circumstances. In this method,
uncertainties are represented using expected values and a
sensitivity analysis is performed to determine the effect of
expected value perturbations on the optimization results [57].
To date, several uncertainty models, such as envelope-bound
models, energy-bound models, Minkowski-norm models,
slope-bound models, and Fourier-bound models [59], have
been developed to model the uncertainty parameters. The
most well-known uncertainty model is the envelope-bound
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TABLE 1. SP application to EH issues.

Year Reference Inputs EH Outputs

2022 [34] Electricity, Gas, PV CHP, EES, E2HE, Electricity, Heat, Cooling
Electricity, Gas, Water, CHP, EES, E2HE, Geothermal ..

2022 [33] Geothermal CHP Electricity, Heat, Hydrogen

2021 [35] Electricity, Gas CHP, EES, G2HE, EV Electricity, Heat

2021 [21] Electricity, Gas, PV, Wind CHP, HESS (HWS), EV Electricity, Heat, Cooling

2021 [36] Electricity, PV, Wind, Gas CHP, EES, HEES, WES Electricity, Heat, Gas

2021 (37] Electricity, Gas, PV, Wind, ECH, ACH, EES, HEES ,WES, Electricity, Heat, Water,
Heat , Water HEZ2E, SD, EV, P2H, FC, HP Cooling, Hydrogen
Electricity, Gas, Wind, CHP, CCHP, G2HE ECH, ACH, .. .

2021 [38] Heat EES. HEES, E2HE Electricity, Heat, Cooling

2021 [39] Electricity, PV, Gas CHP, G2HE, E2HE, AES Electricity, Heat

2021 [40] Electricity, PV EES, HP, DG Electricity, Heat

2021 [41] PV, Wind HES, FC, P2H Electricity, Gas, Hydrogen

2021 [42] Electricity, Wind, Gas CHP, HEES, GS, EV, E2HE Electricity, Heat, Gas

2020 [31] Electricity, Gas, Wind CHP, G2HE, EES, HESS Electricity, Heat, Gas

2020 [23] Electricity, PV, Hydrogen EES, FC Electricity

.. . E2HE, CCHP, ECH, EES, .. .

2020 [43] Electricity, Gas, PV, Wind HEES. HESS Electricity, Heat, Cooling

2020 [27] Electricity, Gas, Wind }(’:;I(f],is G2HE, EES, HEES, Electricity, Gas, Heat

2020 [18] Electricity, Gas, PV CHP, G2HE, ECH, EES Electricity, Heat, Cooling
Electricity, Wind, Gas, CHP, G2HE, ACH, IES, HEES, .. .

2020 [44] Heat P2H. GT Electricity, Heat, Cooling

2020 [45] Electricity, Wind Gas, Heat IC);{C? » GZHE, EES, HEES, EV, Electricity, Heat, Gas
Electricity, Wind, Gas, CHP, G2HE, EES, HEES, EV, .. .

2020 [46] Heat P2G Electricity, Heat

2020 [47] Electricity, Gas, Heat CHP, G2HE, HE Electricity, Heat

2020 [48] Electricity CHP, G2HE Electricity, Heat

2020 [49] Electricity, PV, Gas /SEI]P-;’ G2HE, EES, E2HE, HP, Electricity, Heat, Cooling

2019 [24] Electricity, Gas, PV, Wind ~ CHP, G2HE, DG, ESS, HESS Electricity, Heat

2019 [25] Eﬁmmy’ Gas, Wind,  yp GoHE, EES, HEES Electricity, Heat, Gas

2019 [26] Electricity, Gas, PV, Wind CHP, G2HE, ECH, EES, HEES  Electricity, Heat, Cooling

2018 [50] Electricity, PV, Gas CHP, G2HE, ACH, ESS, HEES,  Electricity, Heat, Cooling

2018 [22] Electricity, Gas CHP, G2HE, CCHP, ACH, EES  Electricity, Heat, Cooling

2018 [20] Electricity, Gas CHP, G2HE, EES, HEES Electricity, Heat
Electricity, Gas, PV, CHP, G2HE, B2HE, EES, ..

2018 [17] Biomass HEES Electricity, Heat

2018 [32] Electricity, Gas, Wind CHP, G2HE, EHP*, EES Electricity, Heat

2018 [28] Electricity, Wind gf;“"lyzer’ H2ES, P2G, P2H, gy ctricity

2018 [51] Electricity, Gas, PV, Wind  CHP, G2HE, EES, AC Electricity, ~Heat,  Water,

Cooling, Hydrogen

2018 [52] Electricity, PV, Wind, Gas G2HE Electricity, Heat

2017 [30] Ef;‘”C’ty’ Gas, Wind,  yp GoHE, EES, HEES Electricity, Heat, Gas

2017 [53] flf:tmc“y’ Gas, Wind, " cyp GoHE, EES, HEES Electricity, Heat

2016 [19] Electricity, Gas CHP, G2HE, ECH Electricity, Gas

2016 2] Electricity, Gas, Wind CHP, G2HE Electricity, Heat

2016 [29] EJ;:; icity,  Gas,  Wind,  pp GoHE, BES, HESS Electricity, Heat, Gas, Water

2015 [54] Electricity, Gas Electricity, Gas

2015 [55] Electricity, Gas, Heat CHP, G2HE, EES, HESS Electricity, Heat

2012 [56] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEES, EV Electricity, Heat

model, which is presented as follows:

E(a,é)={e:|%|sa}

where e is the uncertain parameter and e is its expected value.
Let o denote the uncertainty horizon which determines the

7214

upper and lower bounds of the fractional deviations of the

(4) uncertain parameter comparing to its expected value by (4).

The performance level of the decision can be expressed in
terms of profit, cost, or other relevant functions [60]. Let
f(x; e) denote the objective function that has to be maxi-
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mized, where x is a decision variable, and e is an uncertain
parameter. In conventional optimization approaches, f(x; e)
is maximized. In the IGDT approach, we are after maximiz-
ing robustness, as in:

max o (5)
S5 e) > feritical Ve € E(a, e) (6)

where f.risicar 1S the critical (i.e. worst acceptable) perfor-
mance level of the decision. In the IGDT method, the decision
making variables, x, are selected such that the safe interval
of the undetermined parameter, «, is maximized considering
the fact that the performance level has to be more than its
critical value. To do this, if the maximization objective is
the profit, in this approach instead of determining decision
making variables to maximize the profit, they are selected in
a way that the horizon of uncertainty in which the minimum
acceptable amount of profit is assured, is maximized.

Works using IGDT as the mathematical optimization tool
to make decision under uncertainty in EHs are summarized in
Table 2. While the basic IGDT has the ability to manage one
uncertain parameter, the method has been extended to manage
multiple sources of uncertainty. From this point of view, the
works summarized in Table 2 can be categorized into three
classes depending on the number of uncertain parameters that
each one considers.

In the first category, there is only one uncertain parameter.
Article [70] used IGDT to model the uncertainty of plug-in
hybrid electric vehicles’ power consumption during trips
under risk-averse and risk-seeking strategies. The electricity
price uncertainty [72], the electric load uncertainty [74], and
wind power generation uncertainty [68], [69] have also been
modeled using IGDT. Thermal demand, electricity demand,
and energy production of renewable resources are (separately
- one at a time) considered as uncertain parameters in [75].

The second and third category concern handling multiple
uncertain parameters. In the second category, although the
uncertain parameters are multiple, they are all modeled by
one uncertainty horizon. Parameters including the market’s
energy price, loads, and renewable energy sources’ output
power are assumed to be uncertain in [67]. In article [40], the
output of the renewable generation units and the electricity
loads are considered as the uncertain parameters. Real-time
electricity market prices and wind turbine generation are the
uncertain parameters that have been handled in [73]. The
main shortcoming of this approach is that it cannot han-
dle different scales of uncertainty for different parameters.
In this context, consider the operator of an EH, needing to
make a decision under the uncertainties of the wholesale
market’s price and the uncertainty of wind’s power output.
The forecasting error of the wholesale market’s price and
wind’s power output are not generally equal. Consequently,
using a single uncertainty horizon cannot guarantee finding
the most robust solution since the variations of the uncertain
parameters around their expected values are not the same.
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Studies in the third category, deal with multiple sources
of uncertainty. The authors in [63] consider uncertain WT
and PV generation, energy demands (including electrical,
thermal, and cooling), and day-ahead electricity prices. The
uncertainty horizon of electricity prices was maximized using
an enhanced version of the conventional e-constraint method,
named AUGMECON [76]. Towards this goal, the uncertainty
horizons of demands and renewable generations were calcu-
lated by a lexicographic optimization technique [77]. In this
approach, the management of multiple uncertain parameters
increases the computation time dramatically; consequently,
a trade-off between the computation time and the Pareto set
density emerges. In article [66], the uncertain parameters are
the electric demands, cooling demands, heat demands, bat-
tery charging station’s demands, PV’s power output, wind’s
power output and electricity prices. The authors proposed
maximizing the minimum uncertainty radius of the uncer-
tain parameters as a way of handling multiple sources of
uncertainty. However, this re-introduces the same drawbacks
as in the studies of the second category discussed above.
In [71] a multi-objective IGDT approach has been proposed
to model the uncertainties of demand, wind’s power output,
and PV’s power output. In this approach, the uncertainty
horizons of the three uncertain parameters are considered as
the objective functions of the multi-objective optimization
method. To do this, a modified version of the directed search
domain IT method [78] has been used as the multi-objective
optimization method.

C. ROBUST OPTIMIZATION

In RO, the system designer uses an uncertainty set to define
the possible region of uncertainty realization, A RO approach
aims at determining a solution to an optimization problem
that is valid for any realization of the uncertain parameter
within the predefined uncertainty set. The obtained solution
gives the optimal solution for the worst-case realization of the
uncertainties [79]. A generic formulation of the RO approach
is represented as follows:

min maxf (x, e) @)
a-x<b (®)
e=e+ Ae :¢ 9

Ae < Ae™*  :§>0 (10)

Eq. (7) declares a general cost function f(-), with e and
x being the uncertain parameters and decision variables,
respectively, while Eq. (8) represents the relevant inequality
constraints. The goal is to minimize the cost function (outer
minimization) under the worst-case uncertainty realization
(inner maximization). The maximum deviation of the uncer-
tain parameter e is given by (9). Eq. (10) shows that the
uncertain parameter can deviate up to the maximum value of
Ae™™ while ¢ and § denote the dual variables of the respec-
tive constraints. Using duality theory, the inner maximization
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TABLE 2. IGDT application to EH issues.

Year Reference Inputs EH Outputs
2021 [61] Electricity, Gas, Wind CHP, G2HE, EES, P2G Electricity, Heat, Gas
Electricity, Gas, PV, Wind, = G2HE, ECH, ACH, EES, HEES .. .
2021 [62] Solar thermal CES . HE Electricity, Heat, Cooling
.. . G2HE, CCHP, ACH, EES, .. .
2021 [63] Electricity, Gas, PV, Wind HEES .GS. CES. AES, HP, GT Electricity, Heat, Cooling
2021 [64] Electricity, Gas, PV, Wind, = G2HE, ECH, ACH, EES, HEES  Electricity, Heat, Gas, Cooling ,
Water ,WES, SD ‘Water
2021 [37] Electricity, Gas, PV, Wind, = ECH, ACH, EES, HEES ,WES, Electricity, Heat, Water,
Heat , Water SD, EV, P2H, HE2E, FC, HP Cooling, Hydrogen
2021 [65] Electricity, Wind CHP, G2HE, EES, HEES Electricity, Heat
.. . CHP, G2HE, ECH, ACH, EES, .. .
2021 [66] Electricity, Gas, PV, Wind, HEES., CES. EV, P2G Electricity, Heat, Cooling
2021 [40] Electricity, PV EES, HP, DG Electricity, Heat
Electricity, Gas, Wind, CHP, CCHP, G2HE ECH, ACH, .. .
2021 [38] Heat EES. HEES, E2HE Electricity, Heat, Cooling
2021 [41] PV, Wind HES, FC, P2H Electricity, Gas, Hydrogen
2020 [67] Ef;:”c”y’ Gas, PV, Wind,  pip g Electricity, Heat
2020 [68] Electricity, Gas,Wind, Heat EIII;IP’ GZHE, EES, HEES, AES, Electricity, Heat
2020 [69] Electricity, Gas, Wind CHP, EES, HEES, E2HE Electricity, Heat
2019 [70] Electricity, Gas, PV, Wind G2HE, HEES, EV, P2H, FC Electricity, Heat, Hydrogen
2019 [71] Electricity, Gas, PV, Wind CHP, G2HE Electricity, Heat, Gas
.. . G2HE, CCHP, ECH, ACH, .. .
2019 [72] Electricity, Gas, PV, Wind EES, HEES .CES Electricity, Heat, Cooling
2019 [73] Electricity, Gas, Wind CHP, G2HE, EES Electricity, Heat
2018 [51] Electricity, Gas, PV, Wind  CHP, G2HE, EES, AC Electricity, ~Heat, — Water,
Cooling, Hydrogen
.. CHP, G2HE, ECH, ACH, .. .
2017 [74] Electricity, Gas E2HE, HP Electricity, Heat, Cooling
2017 [53] plectricity, - Gas, - Wind:  cHp GoHE, EES, HEES Electricity, Heat
2015 [75] Electricity, Gas, Wind CHP, EV, G2HE Electricity, Heat

problem of the uncertainty deviation can be written as

r?ian[AemaXB + et (11)

subject to (8) and,
=x (12)
—-¢+46=<0 (13)

where (12) and (13) represent the duals’ constraints. This is
a general method towards rendering the original RO problem
solvable by commercial solvers.

The reviewed papers using RO are divided into three cate-
gories; 1) Classic RO, 2) Adaptive robust optimization (ARO)
and 3) Distributionally robust optimization (DRO). In what
follows, each category is seperately discussed.

1) CLASSIC RO

This is the most widely used RO approach. The static RO nor-
mally addresses the mathematical optimization to reach the
worst-case realization of uncertainties, disregarding binary
and integer variables. Therefore, it has attracted the attention
of researchers due to its simplicity compared to the ARO
and DRO. The typical objective of this category concerns
economical aspects, i.e., minimizing/maximizing the total
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cost/profit of the operation and planning of EHs. Several
articles have only taken into account the uncertainty of the
renewable energy sources, i.e., wind power and PV genera-
tion [104], [115], [124]. In addition, [80] utilized classic RO
to deal with the uncertainty of PV generation in a real case
study. Other studies have only focused on the uncertainty of
the electricity market prices e.g. [122], [125], [130], [131].
Article [99] deployed RO to cope with the uncertainty of elec-
tricity prices in a decentralized model, where the distribution
network and EH are managed separately using the alternating
direction method of multipliers (ADMM). Similarly, the arti-
cle [91] has only considered the market prices’ uncertainty,
while the main goal of the paper is to include and assess the
application of hydrogen energy. In [84], the authors focus an
designing a CHP in an EH, again under prices’ uncertainty.
Reference [4] considered the operation of a P2X unit under
uncertain electricity market prices.

Uncertainty on demands is another source of attention for
studies of this category. Articles [79], [106] have addressed
the uncertainties of various kinds of demands, e.g., electricity,
heating, and cooling. For instance, in [106] a robustness
constraint is formed, and the corresponding robust optimiza-
tion model is equivalently transformed into a mixed-integer
programming model. Only one of the mentioned papers in
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TABLE 3. RO application to EH issues.

Year Reference Inputs EH Outputs

2021 [35] Electricity, Gas CHP, EES, G2HE, EV Electricity, Heat

2021 [3] Electricity, PV, Wind, Gas CHP Electricity, Heat

2021 [42] Electricity, Wind, Gas CHP, HEES, GS, EV, E2HE Electricity, Heat, Gas
2021 [80] Electricity, PV, Gas CHP, G2HE, ACH, ESS, HEES, DG Electricity, Heat, Cooling, Oixigen
2021 [81] Electricity, Gas, Heat CHP, G2HE, EES Electricity, Heat

2021 [82] Electricity, Gas CHP, G2TE, HP, HEES Electricity, Heat

2021 [83] Electricity, Gas CHP, EES, Electricity, Heat

2021 [84] Electricity, Wind, Gas CHP, G2HE Electricity, Heat

2021 [85] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEES Electricity, Heat, Cooling
2021 [86] Electricity, Gas CHP Electricity, Heat

2021 [871] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEES, CES, ACH Electricity, Heat, Cooling
2021 [88] Electricity, PV, Wind, Gas CHP Electricity, Heat

2021 [36] Electricity, PV, Wind, Gas CHP, EES, HEES, WES Electricity, Heat, Gas
2021 [4] Electricity, Wind, Gas CHP, HEEES, P2G Electricity, Heat, Gas
2021 [89] Electricity, PV, Wind, Gas CHP, EES, GS Electricity, Heat

2021 [90] Electricity, Wind, Gas, Water CHP, G2HE,EES, E2HE, GT, ACH Electricity, Heat, Gas, Cooling, Water
2021 [39] Electricity, PV, Gas CHP, G2HE, E2HE, AES Electricity, Heat

2021 [91] Electricity, Wind, Gas ggg’, FGCZHE, EES, HEES, GS, P2H, Electricity, Heat, Gas
2021 [92] Electricity, Gas CHP, E2HE Electricity, Heat

2021 [93] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEEES Electricity, Heat

2021 [94] Electricity, Wind, Gas CHP, GT, HP Electricity, Heat

2020 [95] Electricity, PV, Gas CHP, HEES, EES, Electricity, Heat

2020 [44] Electricity, Wind, Gas, Heat CHP, G2HE, ACH, IES, HEES, P2H, GT  Electricity, Heat, Cooling
2020 [96] Electricity, PV CHP, G2HE, EES, WES, HP Electricity, Heat

2020 [97] Electricity, PV, Wind, Gas CHP, G2HE, HEES, P2G Electricity, Heat, Gas
2020 [98] Electricity, PV, Gas CHP, G2HE, EES, HEES Electricity, Heat

2020 [99] Electricity, PV, Wind, Gas SEP’ GZHE, EES, HEES, ACH, FC, DG, Electricity, Heat, Cooling
2020 [46] Electricity, Wind, Gas, Heat CHP, G2HE, EES, HEES, EV, P2G Electricity, Heat

2020 [100] Electricity, Gas CHP, G2HE, EES Electricity, Heat

2020 [101] Electricity, Wind, Gas CHP, EES Electricity, Heat

2020 [102] Electricity, Heat CHP Electricity, Heat

2020 [103] Electricity, PV, Wind, Gas CHP, EES, FC Electricity, Heat

2020 [104] Electricity, PV, Gas CH, G2HE, EES, WES, HP Electricity, Heat

2020 [105] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEEES, CES, AC Electricity, Heat, Cooling
2020 [45] Electricity, Wind Gas, Heat CHP, G2HE, EES, HEES, EV, P2G Electricity, Heat, Gas
2020 [106] Electricity, Gas CHP Electricity, Heat

2020 [107] Electricity, Gas, Heat CHP, G2HE, EES, HEES, EV Electricity, Heat

2020 [108] Electricity, PV, Gas CHP, G2HE, HP, WES Electricity, Heat

2019 [109] Electricity, Gas CHP, ESS, HEES Electricity, Heat

2019 [110] Electricity, PV, Wind, Gas CHP, GS, P2G Electricity, Heat

2019 [111] Electricity, PV CHP Electricity, Heat

2019 [1] Electricity, Gas CHP, G2TE, FC Electricity, Heat

2019 [112] Electricity, Gas, Heat CHP, EES, HEES Electricity, Heat

2019 [113] Electricity, PV, Wind, Gas CCHP, G2ZHE Electricity, Heat, Cooling
2019 [114] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEES Electricity, Heat

2019 [115] Electricity, Wind, Gas CHP, G2HE Electricity, Heat

2019 [116] Electricity, Gas CHP, EV Electricity, Heat

2019 [117] fllyegrt;lgcé;y PV, Wind, Gas, Heat.  oyp GoHE, HE, HP, FC Electricity, Heat, Hydrogen
2019 [118] Electricity, PV, Gas CHP, G2HE, EES Electricity, Heat

2019 [119] Electricity, Wind, Gas CHP, GT, HP Electricity, Heat

2019 [120] Electricity, Gas CHP Electricity, Heat

2019 [121] Electricity, Gas CHP, HP, ACH, AC, CES, EES, HEES Electricity, Heat, Cooling, Gas
2018 [122] Electricity, Gas CCHP Electricity, Heat, Cooling
2018 [123] Electricity, Gas CHP, EES, HEES, HP Electricity, Heat

2018 [79] Electricity, Gas G2HE, HEES, HP, GT Electricity, Heat

2018 [52] Electricity, PV, Wind, Gas G2HE Electricity, Heat

2018 [124] Electricity, Gas CHP Electricity, Heat

2018 [125] Electricity, PV, Wind, Gas ggp G2HE, ECH, EES, HEES, IES, HE, Electricity, Heat, Cooling
2018 [126] Electricity, Gas CHP, E2HE, EES, HEES Electricity, Heat, Gas
2017 [127] Electricity, Gas CHP, G2HE, AC Electricity, Heat

2013 [128] Electricity, Gas, Heat CHP, HE Electricity, Heat

2013 [129] Electricity, Wind, Gas CHP, G2HE Electricity, Heat

2012 [130] Electricity, Gas CHP, G2HE, HEES, P2H, FC Electricity, Heat, Hydrogen
2012 [56] Electricity, PV, Wind, Gas CHP, G2HE, EES, HEES, EV Electricity, Heat

2011 [131] Electricity, Gas CHP, G2HE, HEES, HES, P2H Electricity, Heat, Hydrogen
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this category, namely [81], has considered the uncertainty of
the driving pattern of electric vehicles (EVs).

The rest of the papers in this category have studied a
combination of uncertainties. Article [97] used RO to deal
with the uncertainties of wind and PV generations, as well as
electricity market prices. The wind power and PV have been
considered by one equation, only in the constraints. Thus,
the worst-case realization was only developed for the price
uncertainty. The uncertainties of electricity market prices,
wind, and demands have been studied by the RO also in [86]
and [117], with extended affine arithmetic and RO being used
respectively. The solution to the RO problem has been devel-
oped through an evolutionary algorithm in [85], where the
authors consider a combination of the mentioned uncertainty
sources.

2) ADAPTIVE ROBUST OPTIMIZATION

In an ARO the optimization variable vector, which may also
contain both discrete and continuous variables, is made once
the uncertain parameters vector is realized. In this case, this
reaction after the realization of uncertain parameters is called
recourse which leads to using ARO. On this occasion, the RO
framework requires extension to handle the computational
complexity, pointing to ARO methods. Generally, the papers
in this category have used iterative methods of column and
constraint generation (C&CG) algorithm or Benders decom-
position. Articles [89], [101], [107], [109], [112], [113],[126]
have used ARO to handle the binary variables stemming
from the start-up and shut-down generator constraints in the
economic dispatch and unit commitment problem. Regarding
uncertainty, [109] copes with the uncertainty of wind power
generation, while [101] has taken into account both renew-
able energy and price uncertainties. The unit commitment
constraints have led the authors in [82] to use ARO in the
presence of uncertainties of wind power, loads and electricity
prices, where all the uncertainties have been addressed by
one interval of deviation. In [118] a two-stage model was
proposed for an ARO problem. The planning of an ESS was
investigated in the first stage and the uncertainty of the loads
and market prices were investigated in the second stage. The
Benders decomposition method is utilized to handle the com-
putational complexity. Similarly, in [105], [111], and [120]
a two-stage planning and operation method was suggested,
where the planning of an EH is investigated in the first stage
and the operation problem is solved in the second stage.
The worst-case realization of the uncertainty of real-time
electricity market prices was modeled in the second stage of
an ARO in [1]. Finally, [94], [98] are the papers in this second
category that use C&CG to deal with the uncertainties.

3) DISTRIBUTIONALLY ROBUST OPTIMIZATION

Stochastic programming (discussed in section IT1I-A) assumes
a known probability distribution function describing the
uncertainty realization. However, in many cases, it is diffi-
cult or impossible to know a prior probability distribution
function. In the DRO formulation, the solution is taken with
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respect to the worst-case probability distribution of an uncer-
tain parameter, within a certain set of possible distributions.
DRO is based on an ambiguity set and is less conserva-
tive compared to classic RO and ARO. In addition, there
are various kinds of methods to solve DRO problems. Two
main of them are moment-based and Wasserstein distance
methods. Article [83] has used moment-based DRO focusing
on cyber-resilience alongside economical objectives taking
into account the uncertainty of wind power generation. The
other moment-based DROs are [102], [119], that consider
the uncertainty of renewable energy generation. The work
in [100] used the Wasserstein distance for the DRO for-
mulation, the considered uncertainty again being renewable
generation. In addition, [3] has used a CVar-Based DRO to
deal with the uncertainties of loads and renewables. Arti-
cle [108] has applied the DRO approach to a water-energy
nexus management problem, which indicates an operational
problem of a networked multi-EH system under renewable
energy uncertainty.

4) ADAPTIVE DISTRIBUTIONALLY ROBUST OPTIMIZATION
The combination of the second and third categories above,
results in the ADRO framework. Only one paper, [96], has
investigated a two-stage data-driven optimization framework
for an EH. The paper deals with the uncertainty of PV pro-
duction using a moment-based ADRO.

D. CHANCE CONSTRAINED

Chance constrained programming was originally developed
by Charnes and Cooper [132]. The formulation enforces the
so-called ““chance constraints”, which limit the probability
of violating a certain constraint to be below a certain thresh-
old value. The indicated CC approach may be used based
on the following general formulas for function minimiza-
tion (14), deterministic constrains (15), and separate chance
constraints (16), [132], [133]. In equations (14) - (15), x is
a decision vector, and e is an uncertain multi-dimensional
parameter vector. The CC formulation is a constrained opti-
mization problem (as shown in 16), where this time e is
s a random vector defined on some probability space and
n is a tolerance probability. The CC method allows for a
probability to violate the constraints in the presence of uncer-
tainties [134]. In contrast to the other mentioned methods,
CC is only applied to the constraints. In other words, a CC
application provides a feasible solution to the original prob-
lem with a probability at least n.

minf (x) (14)
s.t.g(x,e) >0 (15)
Prlh(x,e) > 0] = 7 (16)

Among the existing works, [135] utilized the CC method
to cope with the uncertainty of the driving pattern of EVs.
It applied the CC to the constraints of the state of charge
of the EVs. Article [136] implemented the CC on power
flow equations due to the presence of the fluctuation of wind

VOLUME 11, 2023



M. Jasinski et al.: Operation and Planning of EHs Under Uncertainty—A Review of Mathematical Optimization Approaches

IEEE Access

power generation. Similarly, article [137] has deployed CC to
transmission constraints in the presence of renewable energy
uncertainty. Papers [138], [139] have developed CC programs
to consider the constraints of power flows and pipe-line flows.
All mentioned works have focused on the operational cost of
EHs. However, [103] used CC programming to deal with the
uncertainties of wind and PV generations as well as electrical
loads in a planning problem. It addressed the constraints of
the power balance and capacity limit of EH devices. Table 4
summarizes the studies that applied CC programs for EHs.

IV. HYBRID METHODS
Various papers in recent years have used hybrid methods
to deal with uncertainties. In the majority of them, each
uncertainty source is investigated by one of the mentioned
methods. Table 5 summarizes the use of hybrid methods in
the relevant literature.

The relevant hybrid methods can be divided into five cate-
gories:

A. COMBINATION OF SP AND RO

The authors in [35] have taken into account the uncertainties
of the EV driving pattern using SP, while the uncertainty of
the electricity market prices was dealt using RO. The uncer-
tainty of wind power is managed through RO in [42], and
the uncertainties regarding electricity, heat, and gas demands
through SP. The uncertainties of wind speed and electric-
ity prices are handled by SP and RO respectively, in [44],
where the main objective is to minimize the total operation
cost of the EH. Reference [56] considers EVs’ uncertainty
parameters using RO, whereas the uncertainties of demands,
market prices, reserve requirements, and renewable power
are handled via SP. Among other works, [36], [39], [45],
[46] have utilized SP to deal with the uncertainty of wind
power (or PV generation), while deploying RO to cope
with the worst-case realization of electricity market prices.
Uncertainty of electricity demands is again handled using SP
n [36], [45], and [46] and EV driving patterns (arrival and
departure times of EVs to/from parking) are handled by SP
in [36], [45], and [46]. A timely observation is that uncer-
tain energy demands tend to be modeled using some known
probability distribution (allowing for SP methods to apply),
whereas wholesale market prices can be more volatile and/or
unpredictable, consequently handled using RO formulations.

B. COMBINATION OF SP AND IGDT

In [38], a hybrid method combined IGDT and SP to deal
with the uncertainties of wind generation, energy demands,
and electricity market prices. The SP has been developed
to take into account the uncertainties of the demands and
electricity prices, and IGDT has been used to cope with the
uncertainty of wind power. This is the only hybrid IGDT-SP
method that addresses the uncertainty of the wind speed by
IGDT. Other hybrid IGDT-SP papers, including [41], [51],
[53], [65], have deployed SP to take into account the uncer-
tainty of wind generation. In addition, [51] uses the IGDT
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to reach the worst-case realization of electricity prices and
demands. Study [41] has developed the IGDT to deal with the
uncertainty of the demands of EVs, and SP to face the uncer-
tainty of PV generation. Reference [53] forms a non-linear
objective function by having the electricity price uncertainty
handled via IGDT, which creates a bi-linear term. The other
uncertainty of this article is the energy demands which were
handled using SP.

C. COMBINATION OF RO AND IGDT

Only one paper - [61] - has focused on the combination of
RO and IGDT in the operation and planning of EH so far.
The authors deployed RO to deal with the uncertainty of
electricity market prices and IGDT to take into account the
uncertainty of wind power. The main purpose of the combi-
nation of the two mentioned methods is to propose a linear
and tractable objective function. It is worth mentioning that,
including market prices in the IGDT method results in a non-
linear framework, as discussed in the previous paragraph.

D. COMBINATION OF CC WITH OTHER METHODS

CC is quite different than the other mentioned methods,
in the sense that it only deals with the constraints instead of
the objective functions. A few papers have considered the
combination of CC alongside other methods. Article [48]
used a hybrid method combined by SP and CC for config-
uration problems of the EH involving the uncertainties of
energy demands where CC capture the probability of load
curtailment. Paper [49] proposed an operational model for
an EH in the presence of uncertainties of PV and energy
demands (i.e., electrical, thermal, and cooling). The proposed
framework used SP, while the constraints regarding demands;
satisfaction were modeled using CC. Similarly, heating, cool-
ing, and electricity have been considered as outputs in [50]
where, in addition to the operation of the EH, the authors
proposed a model for thermal services. The uncertainty of
renewable energy, electricity demands, and ambient tempera-
ture has been considered using SP, while the CC part handles
the thermal service quality. Paper [47] also represented the
demand satisfaction by a CC due to the existence of the
fluctuation of PV generation and electricity demands in a
multi-hub operation problem.

Finally, article [92] has investigated the energy manage-
ment problem of the retailers under the uncertainties of
renewable energy and electricity demands. The main balanc-
ing constraint has been modeled as a chance constraint, while
the proposed framework is robust against the mentioned
uncertainties.

E. OTHER HYBRID METHODS

Under this category, we refer to methods that generaly include
at least one of the mentioned methods and do not fall into
the previous categories. A two-stage stochastic method has
been proposed in [37], where the first stage formulates the
uncertainties connected to the demands and renewable power
using the two-point estimate method, while the second stage
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TABLE 4. CC application to EH issues.

Year Reference Inputs EH resources Outputs
2021 [136] Electricity, Wind, Gas CHP, E2HE Electricity, Heat
2021 [92] Electricity, Gas CHP, E2HE Electricity, Heat
2020 [135] Electricity, PV, Gas E2HE, HEES, CES Electricity, Heat, Cooling
2020 [48] Electricity CHP, G2HE Electricity, Heat
2020 [103] PV, Wind, Gas EéHE’ HES, G2H, P2H, Electricity, Heat
.. CHP, G2HE, EES, E2HE, - .
2020 [49] Electricity, PV, Gas HP, ACH, Electricity, Heat, Cooling
2020 [138] Electricity, PV, Gas CHP, G2HE Electricity, Heat
2020 [47] Electricity, Gas, Heat CHP, G2HE, HE Electricity, Heat
2019 [137] PV, Wind EES Electricity
2019 [134] Electricity, Gas ggp’ G2HE, EES, HEES, b1 tricity, Heat
2018 [139] Electricity, PV, Gas CHP, G2HE, HP, WES Electricity, Heat
2018 150] Electricity, PV, Gas CHP, G2HE, ACH, ESS, " 10 ricity, Heat, Cooling

HEES,

TABLE 5. Application of hybrid methods in EH issues.

year Reference SP IGDT RO CC Others
2021 [35] v v

2021 [92] v v
2021 [37] v v
2021 [56] v v

2021 [42] v v

2021 [36] v v

2021 [65] v v

2021 [61] v v

2021 [39] v v

2021 [38] v v

2021 [41] v v

2020 [44] v v

2020 [46] v v

2020 [45] v v

2020 [47] v v
2020 [48] v v
2020 [49] v v
2018 [51] v v

2018 [50] v v
2017 [53] v v

deploys the IGDT to take into account the uncertainty of gas
prices.

V. SUMMARY OF RESEARCH TREND

In this Section, we present a high-level bibliographic analysis
of the area of mathematical optimization applied to EH deci-
sion problems. The number of published papers in the area
of EHs is shown in Fig. 4. As it is obvious from the figure,
the total number of papers is almost continuously increased.
With the exception of the limited number of articles published
between 2011 and 2014, it is clear that in the early years (2015
to 2016) the greatest focus was on applying SP methods to
EH problems. The main disadvantage of these methods is
that they need a lot of information and their computational
burden is high. This problem forced researchers to drastically
reduce the number of scenarios, which could lead to inap-
propriate management of uncertainties. For these reasons, the
use of robust methods, such as IGDT and RO, which require
less information and has a lower computational burden than
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statistical methods, has been steadily increasing since 2017.
However, these methods are very conservative, increasing the
average cost of operation and planning of EHs. In contrast,
hybrid methods that borrow the advantages of both classes
naturally come as the next step in the area. This observa-
tion suggests a trend that expects the application of hybrid
methods to be increasing in the years to come. This trend can
indeed be observed by the steady increase of papers applying
hybrid methods in recent years.

VI. CONCLUSION

In this paper, the application of mathematical optimization
approaches to the operation and planning of EHs has been
presented and reviewed. The main part of the paper has been
dedicated to investigate and categorize existing mathematical
methods for dealing with the uncertainties pertaining EHs,
including stochastic programming, information gap decision
theory, robust optimization, and chance-constrained methods.
The literature has also been categorized on the basis of the
models’ inputs, controllable EH resources considered, and
corresponding outputs of the EH management module. Our
conclusions can be summarized as follows

o SP is an effective approach that has been developed
to consider the uncertainties (adhering to known prob-
ability distributions) in an EH or multi-carrier energy
system, e.g. demands and electricity prices, wind speed,
solar irradiation.

« Studies that have used IGDT to optimally make deci-
sions under uncertainty have been categorized into
three classes depending on the number of uncertain
parameters. Even though part of the literature uses
IGDT towards modeling EH management problems, the
method is not deemed particularly suitable due to the
fact that it cannot properly manage multiple uncertain
parameters.

o The investigation of the works that used robust opti-
mization methods demonstrates that the most common
approach points to the application of classic and adaptive
robust optimization, mostly in order to cope with the
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uncertainties of electricity market prices and sometimes
also renewable energy sources.

The chance-constrained method has been used in a few
papers, in most of which it is used to constraint the
probability of load shedding.

Hybrid methods have been widely deployed recently to
harvest the advantage of various methods in dealing with
uncertainties. Most characteristically, multiple studies
model the uncertainty of demands using a known proba-
bility distribution (pointing to SP), while the uncertainty
of market prices (which are more volatile) is handled via
robust optimization.

In terms of input, output, and controllable resources, the
penetration of hydrogen energy and as result, the related
devices such as electrolyzer within EHs, as well as water
management as an additional system that interacts with
the energy systems, can be seen in several recent works.
Further recent considerations include the application of
P2X devices, e.g., power to gas (P2G), which allow EHs
to use the surplus renewable energy to generate natural
gas.

Considering the extracted research trend in this area,
the following directions for future work will be highly
interesting:
to study how the newly introduced technologies
(namely, hydrogen and P2X) penetrate into the envi-
sioned EHs in the years to come.
to study the operation of waste heat that comes from the
conversion of energy carriers in the operation of EH.
to develop EH use cases and real business models due to
the expected substantial growth in this area.
to develop some real-time operational models to enable
the operation of the real-world EHs.
to investigate the interaction of energy markets in EHS,
i.e., electricity, natural gas, heat, and carbon.
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« to study the application of machine learning and rein-
forcement learning to the operation and planning of
smart EHs.

APPENDIX A

APPLICATION OF EVOLUTIONARY ALGORITHMS TO
OPERATION AND PLANNING OF ENERGY HUB

Numerous of meta-heuristic algorithms have been applied
to the operation and planning of power and energy sys-
tems so far e.g. [140], [141], [142], [143]. Among them,
the evolutionary and meta-heuristic algorithms applied to
EH energy management and planning problems include:
genetic algorithms [144], [145], [146], shuffled frog leap-
ing algorithm [147], grey wolf optimization [148], improved
water wave optimization algorithm [149], e-domination
based multi-objective evolutionary algorithm [150], differ-
ential evolution quantum particle swarm optimization algo-
rithm [151], group search optimizer [152], [153], non-
dominated sorting genetic algorithm [154], [155], [156], time
varying acceleration coefficient gravitational search algo-
rithm [157], [158], time varying acceleration coefficients
particle swarm optimization algorithm [159], flower polli-
nation algorithm [160], particle swarm optimization [161],
[162], [163], [164], modified teaching-learning based opti-
mization [165], [166], [167], [168], and quantum artificial
bee colony algorithm [169]; and, their hybrid versions, such
as combination of the multiple-mutations adaptive genetic
algorithm with an interior point optimization solver [170],
hybrid genetic particle swarm optimization [171], combina-
tion of adaptive neuro-fuzzy inference system and genetic
algorithms [172], hybrid algorithm of ant-lion optimizer and
krill herd optimization [81], hybrid teaching- learning-based
optimization and crow search algorithm [173], and hybrid
particle swarm - neurodynamic algorithm [174].

7221



IEEE Access

M. Jasinski et al.: Operation and Planning of EHs Under Uncertainty—A Review of Mathematical Optimization Approaches

APPENDIX B

APPLICATION OF MACHINE LEARNING TO OPERATION
AND PLANNING OF ENERGY HUB

Machine learning methods have been applied to both optimal
operation [175], [176], [177] and optimal planning [178],
[179] of EHs. They have a huge potential to improve the
EHs’ energy management, particularly when real-time con-
trol is needed [180], [181], [182], [183]. A distributed energy
management approach based on multi-agent reinforcement
learning has been applied to residential EHs to minimize the
operation cost of EHs [184], [185]. In [180] a Markov deci-
sion process has been developed for real-time management of
EHs by minimizing carbon emission and energy cost. In [186]
deep reinforcement learning has been used to develop a data-
driven model-free framework for the energy management of
EHs. Reference [187] has proposed linear programming of
the reinforcement learning approach to overcome the environ-
mental complexity of the problem. Multi-agent deep deter-
ministic policy gradient has been used in [188] to develop a
reinforcement learning-based approach for optimal operation
of multi-EH. In [189] a deep Q-learning has been used to
maximize the long-term profit of the EH’s prosumers in
both the local energy market and wholesale energy mar-
ket. A hybrid data-driven and model-driven framework have
also been developed by using a machine learning algorithm
in [190].
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