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ABSTRACT The smart grid integrates Information and Communication Technologies (ICT) into the
traditional power grid to manage the generation, distribution, and consumption of electrical energy. Despite
its many advantages, it faces significant challenges, such as detecting abnormal behaviours in the grid.
Identifying anomalous behaviours helps to discover unusual user power consumption, faulty infrastructure,
power outages, equipment failures, energy thefts, or cyberattacks. Machine learning (ML)-based techniques
on smart meter data has shown remarkable results in anomaly detection. However, traditional ML-based
anomaly detection requires smart meters to share local data with a central server, which raises concerns
regarding data security and user privacy. Server-based model training faces additional challenges, such as
the requirement of centralised computing power, reliable network communication, large bandwidth capacity,
and latency issues, all of which affect the real-time anomaly detection performance. Motivated by these
concerns, we propose a Federated Learning (FL)-based smart grid anomaly detection scheme where ML
models are trained locally in smart meters without sharing data with a central server, thus ensuring user
privacy. In the proposed approach, a global model is downloaded from the server to smart meters for on-
device training. After local training, local model parameters are sent to the server to improve the global
model.We secure themodel parameter updates from adversaries using the SSL/TLS protocol. Using standard
datasets, we investigate the anomaly detection performance of federated learning and observe that FLmodels
achieve anomaly detection performance comparable to centralised ML models while ensuring user privacy.
Further, our study shows that the proposed FL-based models perform efficiently in terms of memory, CPU
usage, bandwidth and power consumption at edge devices and are suitable for implementation in resource-
constrained environments, such as smart meters, for anomaly detection.

INDEX TERMS Anomaly detection, cybersecurity, data analysis, federated learning, Internet of Things,
machine learning, neural networks, smart grid, smart meter.

I. INTRODUCTION
The traditional power grid suffers from several disadvantages,
such as ageing infrastructure, reliability issues, lack of
consumer participation in power distribution, and limited
support for distributed energy sources [1], [2], [3]. The
Smart grid represents the next stage in the power grid
development that integrates technological advancements such
as artificial intelligence, big data, cloud computing, and 5G
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cellular technology to manage the generation, distribution,
and consumption of electrical energy [4]. Smart grids use
AdvancedMetering Infrastructure (AMI) or smart meters that
collect user data to monitor power flows and adapt to energy
demand and supply variations accordingly. Smart meters
facilitate additional benefits, such as rapid outage detection,
faster service restoration capabilities, and greater control over
billing by providing detailed information on power usage,
thus enabling customers to make informed decisions [5], [6].

Despite its significant benefits, smart grids still face many
technical challenges [7], [8]. Smart grids are susceptible
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to various vulnerabilities, such as faulty equipment, out-
ages, equipment failures, energy thefts, and cyberattacks,
which cause Non-Technical Losses (NTL) [9]. In particular,
adversaries may exploit the security vulnerabilities in the
grid to launch sophisticated cyber attacks (interrupt services,
damage infrastructure, and steal user data) [10] that may
affect the normal functioning of the grid. According to a
recent study, NTLs cause significant revenue losses globally,
which amounts to 96 billion dollars every year [11]. NTLs
can be identified by detecting abnormalities in the grid, which
gets reflected in the data collected by smart meters.

In conventional grids, abnormal usage patterns are usually
identified by regular analysis of utility bills or onsite
inspections, both of which are time-consuming and inef-
ficient. Smart meters enable the large-scale collection of
customer data by frequent sampling, which results in fine-
grained data available for data analytics. Since the energy
consumption data is readily available in smart meters,
identifying anomalous usage patterns can be performed
automatically using Machine Learning (ML) models. ML-
based techniques for anomaly detection can identify energy-
theft attacks, abnormal electricity consumption behaviours,
faulty smart meters, malfunctioning appliances, and NTLs,
such as meter tampering and meter modification [12], [13].
Anomaly detection techniques can assist utility companies
in minimising energy wastage, reducing power imbalance,
preventing power outages, and identifying malicious user
activities.

ML-based anomaly detection techniques use historical
power consumption data from smart meters to train ML
models. Traditionally, there are two major approaches for
building smart meter anomaly detection models. The first
approach builds dedicatedMLmodels for each smart meter in
the central server by collecting data from individual meters.
The second approach aggregates data from smart meters
to build a single global ML model to detect anomalies
in smart meters. Both methods involve transferring data
to a centralised server for model training, contributing to
substantial network traffic. In addition, centralised solutions
suffer from the following disadvantages

• Connectivity– Centralised ML solutions require stable
connection to continuously transmit data to the server.
Since IoT devices are often deployed in remote environ-
ments, maintaining a stable internet connection could be
challenging.

• Bandwidth – When there are thousands of IoT devices,
participating in the ML task, the bandwidth required
to transmit data to the centralised server may be
prohibitively large.

• Latency -Transmitting data to server, running ML
algorithms in the cloud, retrieving ML predictions lead
to high latency affecting real-time applications

• Privacy and Security- Sending data to server makes
it vulnerable to cyberattacks and may violate local
privacy regulations such as California Consumer Privacy

Act (CCPA) and General Data Protection Regulation
(GDPR) [14].

To address these concerns, in this work, we propose a novel
distributed strategy for anomaly detection in smart grids using
Federated Learning (FL), which has comparable anomaly
detection accuracy to centralised models [15]. Since bulk
of the computation in FL happens in the local device, the
impact of connectivity, bandwidth and latency issues in FL is
reduced compared to centralised training. In FL, ML models
are trained in a decentralised manner, where a copy of the
global ML model is sent to the clients, which gets trained on
clients using the local dataset. After training is completed,
each client sends only the updated model parameters to the
central server, which are then incorporated into the original
model. Since data for model training stays on client devices,
this approach ensures data privacy. Furthermore, FL reduces
network traffic as only incremental model parameter updates
are transmitted to the central server instead of sending large
volumes of data from client devices.

In this work, we investigate the anomaly detection
performance of federated learning models. We develop
seven ML models towards this goal: Logistic Regression,
Feed-forward Neural Network Classifier, 1D-CNN Binary
Classifier, Autoencoder Binary Classifier, Vanilla RNNClas-
sifier, LSTM Binary Classifier, and GRU Binary Classifier.
These models are evaluated on three standard anomaly
detection datasets for 100 clients using the Tensorflow
Federated framework [16]. Further, we train these models
on the same datasets using conventional centralised training.
In addition, the anomaly detection performance of federated
models is compared with their corresponding centralised
models.

Next, we use the developed FL models for identifying
anomalous energy consumption in smart grids. Similar to
the anomaly detection datasets, we train these models on a
server in the traditional centralisedmanner. Then, we federate
the proposed ML models using Raspberry Pi as a prototype
for smart meter hardware. Using a workstation as server
and Raspberry Pi as client devices, we set up a federated
learning environment to detect anomalous energy consump-
tion patterns in publicly available smart meter datasets. After
completing the FL training process, we evaluate the average
performance of the FL-trained models with that of their
corresponding centrally-trained ones.

Further, we investigate the feasibility of deploying the
proposed FL models for anomaly detection in terms of their
memory, CPU usage, bandwidth, and power consumption at
edge devices. Hardware evaluation of FL models is critical
as detection algorithms are required to identify anomalies
while being lightweight enough to be deployed in resource-
constrained devices with limited processing capabilities.
We observe that federate anomaly detection models operate
efficiently in terms of memory usage, CPU usage, and power
consumption on edge hardware with accuracy comparable
to server-trained models and are suitable for deployment in
smart meters.
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The following are the contributions of the paper:
• We investigate the anomaly detection performance of
federated learning by evaluating FL models on standard
anomaly detection datasets.

• We compare the anomaly detection performance of
federatedmodels with corresponding centralisedmodels
for standard datasets.

• We develop novel ML models for smart grid anomaly
detection using centralised training and evaluate their
performance on a real-world smart meter dataset.

• We develop a federated learning testbed for smart
grids by prototyping smart meters using a Raspberry
Pi device. We perform FL-based on-device anomaly
detection without data sharing using the prototype
devices as clients and a workstation as the server.

• Finally, we investigate the resource utilisation, memory,
CPU, power, and bandwidth requirements for training
FL models at the smart meter prototype.

The following are the key novelties of our work:
• We compare the anomaly performance of federated
and centralised ML models for KDD, NSL-KDD and
CIDDS datasets. To the best of our knowledge, this
is the first work that compares the anomaly detection
performance of centralised and federatedMLmodels for
different datasets.

• Another part of the novelty of this work is that, so far,
this is first work to apply federated ML models for
anomaly detection in a smart grid context.

• To authors’ knowledge, ours is the first research that
quantifies the resource usage of federated models
for potential application in resource-constrained IoT
devices.

• Finally, we perform the performance evaluation on
federated models for smart grid anomaly detection on
real hardware using smart meter prototypes. We believe
this has not been performed previously.

The rest of the paper is organized as follows: Section II
explains the related work, Section III explains the feder-
ated learning process for anomaly detection, Section IV
describes federated learning for anomaly detection datasets,
Section V discuss federated anomaly detection for smart
grids, Section VI explains the findings of our study, and
finally Section VII discusses the conclusion and future work.

II. RELATED WORK
This section examines the recent research articles that use
federated learning in different applications across various
domains. We also provide a comprehensive overview of the
recent works that use machine learning for anomaly detection
in smart grids. Finally, we discuss the latest research works
on FL-based anomaly detection. Table 1 gives the comparison
of our proposed work with existing works.

A. FEDERATED LEARNING APPLICATIONS
FL is an emerging discipline that has shown promising
results in various applications such as smartphones, smart

homes, image processing, health care, and electric vehi-
cles. Hard et al. [17] proposed a next-word predictor for
smartphone keyboards that used Recurrent Neural Networks
(RNN). The RNNmodel was trained using FLwith the partic-
ipation of client smartphones. Themodel achieved significant
improvements in next-word prediction but was constrained
by high communication costs. Leroy et al. [18] proposed a
smartphone voice assistant based on Convolutional Neural
Networks (CNN) trained using FL. The model was success-
fully used for wake-word detection. Ramaswamy et al. [19]
used FL to train a Long Short Term Memory (LSTM)
based model for predicting emojis on smartphone keyboards.
The model achieved better performance compared to server-
trained models.

In image processing, Han et al. [20] proposed an FL-
based framework for product defect detection in factories.
The proposed framework used CNN for identifying faulty
products. Silva et al. [21] performed the analysis of MRI
images from multiple hospitals for brain disorders in a
federated setting. The authors demonstrated the importance
of FL in medical image analysis, where privacy and security
are of the foremost concern. Feki et al. [22] proposed a CNN-
based FL for COVID-19 screening using chest X-Ray images.
In the proposed approach, multiple hospitals collaboratively
trained a CNN model without transferring their private data.
Lee et al. [23] used FL for analysis of thyroid ultrasound
images. The performance of the FL approach was found to be
comparable with centralised training with enhanced privacy
and significant savings in bandwidth.

In clinical research, Pfohl et al. [24] used FL on patient
records from multiple hospitals for clinical risk prediction
with guaranteed patient privacy. The performance of the
FL model was found to be comparable to the centralised
model. Brisimi et al. [25] utilised FL to train a Support
Vector Machine (SVM) classifier to predict cardiovascular
disease hospitalisations. The FL model converged faster
with less communication overhead than the centralised
model. Sanchez et al. [26] used FL to train a CNN model
for breast cancer detection. The authors observed better
classification performance for the FL model compared to
the centralised version. Tedeschini et al. [27] propose FL
for brain tumour segmentation. The authors implemented the
proposed approach on a real-time test bed with high training
accuracy.

In other applications, Mowla et al. [28] utilised FL
to detect jamming attacks in Flying Ad Hoc Networks
(FANETs) formed by Unmanned Aerial Vehicles (UAVs).
Saputra et al. [29] proposed predicting the energy demand
of electric vehicles using a novel clustering algorithm trained
using FL. Yu et al. [30] successfully applied FL for obstacle
avoidance in autonomous mobile robots.

B. ML-BASED SMART GRID ANOMALY DETECTION
This section describes recent works anomaly detection
techniques based on machine-learning for smart grids. In the
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TABLE 1. Comparison with existing works.

following subsections, we categorise these works based on
the types of machine techniques used.

1) UNSUPERVISED TECHNIQUES
Clustering, dimensionality reduction, and one-class learning
are the major unsupervised techniques widely used for
smart grid anomaly detection. In clustering-based techniques,
Yeckle et al. [39] successfully investigated the detection
of energy theft in smart grids using several unsupervised
algorithms such as K-Nearest Neighbour (KNN), Local
Outlier Factor (LOF), and Local Density Factor (LDF).
Rossi et al. [40] used categorical clustering to detect
anomalous customer behaviour from the smart grid dataset.
The proposed approach provided a visual representation of
anomalies in the smart grid. Arjunan et al. [41] proposed a
novel algorithm for detecting anomalous smart grid power
consumption using anomaly scores. The anomaly score of
users is periodically updated to identify abnormal behaviour.
Toshpulatov et al. [42] successfully used Hierarchical Self-
Organising Maps (HSOM) for detecting anomalies in smart
grids with an average F1-score exceeding .9%.
Among anomaly detection techniques based on One-Class

Support Vector Machines (OCSVM), Himeur et al. [43]

introduced an OCSVM-based anomaly detection approach to
identify abnormal energy usage in buildings. However, the
proposed approach has a limitation as it does not account
for information about user occupancy. Harrou et al. [44]
used OCSVM to identify anomalies in data generated from
photovoltaic arrays. The authors reported that the proposed
OCSVM-based approach yielded higher accuracy than other
clustering-based techniques.

Among dimensionality reduction-based techniques,
Sial et al. [45] proposed Principal Component Analysis
(PCA) and clustering to identify abnormal energy consump-
tion from normal behaviour. Anomalies were calculated
based on an anomaly consumption score. Zhang et al. [46]
utilised Gaussian Mixture Model (GMM) and Linear
Discriminant Analysis (LDA) for detecting abnormal power
consumption. The evaluation of the proposed GMM-
LDA approach showed higher accuracy than SVM-based
approaches.

2) SUPERVISED TECHNIQUES
Among supervised ML techniques, Neural Networks (NN)
have been gaining popularity recently for anomaly detection.
Abnormal energy consumption patterns in industrial plants
can be used as a metric for the early identification of plant
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degradation. Santolamazza et al. [47] used NNs to identify
system failure using anomaly detection from abnormal power
usage. Zheng et. al [48] used CNNs for detecting energy-
thefts in smart grids. The proposed approach combines
both wide and deep CNNs for electricity theft detection.
Evaluation of the approach on realistic datasets showed that
it outperforms existing methods. Zhou et al. [49] developed
a real-time anomaly detector for smart grids using LSTM
network. The proposed approach detected grid anomalies by
analysing voltage measurements.

Wang et al. [50] used LSTM neural network for identifying
abnormal smart grid power consumption. The proposed
model significantly reduced forecasting error compared to
the ARIMA (Autoregressive Integrated Moving Average)
algorithm. Pereira et al. [51] introduced an unsupervised
framework based on Variational Recurrent Autoencoder
(VRAE) time series anomaly detection on data collected
from solar panels. The evaluation of solar energy generation
data showed that the model detected anomalies with high
accuracy. Fenza et al. [52] introduced an LSTM-based power
anomaly detection technique that coniders the phenomenon
of concept drift. The proposed technique profiled user
behaviour based on their historical power consumption.

Among traditional supervised techniques, Fahim et al. [53]
used support vector regression to detect abnormal energy con-
sumption patterns in smart buildings. Saqaeeyan et al. [54]
used Bayesian Networks to detect abnormal occupant
behaviours in smart homes. Chen et al. [55] proposed an
approach based on the Autoregressive Conditional Het-
eroscedastic Model (ARCH) for abnormal energy usage
detection in smart homes. The proposed approach is validated
using real-world building energy consumption datasets.
Korba et al. [56] developed an SVM-based approach for
detecting anomalous power consumption patterns in smart
meters. Cody et al. [57] utilised decision trees to detect
fraudulent activities by analysing smart meter datasets.

3) ENSEMBLE METHODS
In ensemble learning, the dataset is split into multiple subsets,
and various ML models are applied to these subsets to
identify anomalies. Consequently, the anomaly detection
scores of these models are calculated. The score of the
best-performing model is selected as the final score of
the ensemble model. Touzani et al. [58] used gradient
boosting to model the baseline energy consumption of smart
buildings. This baseline was used to detect abnormal power
consumption. De Guia et al. [59] used bagging for anomaly
detection in photovoltaic systems. Liang et al. [60] introduced
a novel anomaly detection framework for power grids. The
proposed framework identifies abnormal usage patterns by
analysing the communication protocol of smart meters using
an ensemble of SVM and kNN algorithms.

4) HYBRID METHODS
Hybrid methods combine multiple ML algorithms to improve
anomaly detection performance. Wang et al. [61] proposed

a rule-based anomaly detector that combined SVM and
KNN methods for anomaly detection in residential build-
ings. The authors reported that the proposed approach
demonstrated better predictive accuracy than existing works.
Chahla et al. [62] developed a hybrid technique that
combined LSTM and K-means algorithms to detect unusual
behaviour in a real-world power consumption dataset.
Takkidin et al. [63] designed an attack detector for electricity
thefts. The proposed approach used a combination of an
autoencoder and LSTM to train theMLmodel on benign data.
Electricity thefts were detected by analysing the deviation
from the normal pattern.

C. ANOMALY DETECTION USING FEDERATED LEARNING
Recent research has demonstrated the promising prospect of
FL as a privacy-preserving alternative to centralised model
training in various domains. This section highlights the latest
works that use FL for anomaly detection across various
applications.

Nguyen et al. [38] used federated learning for network
intrusion detection in IoT devices. The proposed approach
was successfully implemented in a smart home setting with
a higher attack detection rate and faster response time.
Sater et al. [37] used an LSTM-based FL model for activity
prediction and anomalous energy usage detection in smart
buildings. The proposed FL-based method performed better
than centralised methods with faster training convergence.
Mothukuri et al. [36] used federated learning to identify and
classify attacks in IoT networks. The authors developed a
federated Gated Recurrent Unit-based approach with outper-
formed centralised ML algorithms. Liu et al. [35] developed
an FL-based anomaly detection scheme for time-series
IoT data. Further, the authors developed a communication-
efficient compression algorithm for FL gradients to reduce
network utilisation. Huong et al. [34] developed an FL-based,
lightweight anomaly detection framework based on autoen-
coder architecture for industrial IoT. The scheme detected
anomalies in time series data for IIoT with minimal CPU and
memory usage. Cui et al. [32] introduced an FL framework
for anomaly detection in IoT that used differential privacy
to enhance user privacy. Further, the proposed framework
used blockchain technology to secure FL algorithms against
model poisoning attacks. Troung et al. [31] proposed a fast,
FL framework for identifying anomalies in industrial control
systems which is both memory and computation efficient.
The authors reported that the proposed approach outper-
formed other anomaly detection solutions. Pei et al. [64]
proposed an FL-based anomaly detection framework using
LSTM for network traffic anomaly detection. The proposed
method produced higher detection accuracy compared to
existing methods. Guo et al. [65] developed an FL-based
framework called FLOG for anomaly detection in distributed
log data. Based on 1D-convolution, the authors proposed an
FL model named FLOGCNN, which outperformed baseline
methods in anomaly detection.
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FIGURE 1. Anomaly detection on smart meter data using federated learning.

D. PRIVACY IN FEDERATED LEARNING
As model training is performed in the device on local
data, FL inherently provides privacy guarantees compared
to centralised training. Upon closer inspection, it becomes
evident that some model parameters sent to the server
strongly correlate with training data. Therefore, this scenario
of inadvertent information leakage may be exploited by
adversaries to infer information regarding training data, thus
making FL susceptible to inference attacks [66]. Subse-
quently, it is necessary to further strengthen the privacy and
security of FL by employing other techniques. Motivated by
these concerns, we use the secure SSL/TLS communication
protocol to prevent adversaries from eavesdropping or
tampering with model parameter updates sent from client
devices to the server.

Among other techniques to enhance privacy in FL,
Truex et al. [67] present a privacy-preserving FL system using
local differential privacy with formal privacy guarantees.
Further, Truex et al. [68] introduce an approach that
utilises differential privacy and secure multi-party (SMC)
computation. SMC is at risk of inference attacks privacy
may not offer good accuracy. The proposed approach bal-
ances both techniques and produces highly accurate models

resilient against inference attacks. Xu et al. [69] introduce
HybridAlpha, a privacy-preserving FL framework that uses
SMC and functional encryption. The proposed approach is
faster and reduces network traffic and model training time
compared to existing methods. Zhao et al. [70] propose
a blockchain-based FL framework for IoT for predicting
customers’ requirements and behaviours in smart homes.
In addition, blockchain is used to trace the activities of
malicious customers.

III. FEDERATED LEARNING FOR ANOMALY DETECTION
Traditional ML-based anomaly detection techniques collect
energy consumption data from individual smart meters in a
centralised facility such as a server. The ML model is trained
for anomaly detection using collected data. In traditional
ML, a global machine learning model M is trained by N
number of smart meters (SM ) represented by SM1,. . . , SMN
by aggregating their local data D1,. . . , DN in a server S. The
local smart meter data are aggregated to a form global dataset
D such that D = D1 U D2 U ,. . . , DN . The dataset D is finally
used for global model training.

In contrast, in FL-based anomaly detection, the server
dispatches a copy of the global ML model to smart meters,
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which get trained using the local smart meter dataset. Here,
smart meters transfer only the updated parameters of the
global model to the central server, and the data remains
localised in smart meters. In FL, smart meters SM1,. . . , SMN
collaboratively train global model M without them sharing
their respective dataD1,. . . ,DN to a centralised server S. Each
smart meter SMi trains the global model M using their local
data Di such that only the parameter updates of modelM are
sent to the central server S.

A. FEDERATED LEARNING TRAINING
Figure 1 describes the FL training process for anomaly
detection. As described in the figure, a single global ML
model is transferred from the central server to smart meters.
In this work, we develop seven global models: Logistic
Regression, Feed-Forward Neural Network Classifier, 1D-
CNN Binary Classifier, Autoencoder Binary classifier, RNN
Classifier, LSTM Binary Classifier, and GRU Classifier for
federated anomaly detection in smart grids. Each model is
trained by each smart meter using its local dataset. The
FL process for one round of training proceeds through the
following steps.

• Step 1: In the first round of training, the weights of the
global model are initialised randomly in the server. Out
of a total of N smart meters (SM1, . . . , SMn), a subset
of devices, say K , are chosen at random. A copy of the
global modelM is sent from the server S to K devices.

• Step 2: Smart meters train this model using the local
smart meter data after receiving the copy of the global
model M . Before model training, the local data are
preprocessed.

• Step 3: Once the local FL training is completed, the K
smart meters that participate in training send new model
parameters of the trainedmodel to the server S. Since the
local data in each device is unique, the model parameters
sent to the server are different.

• Step 4: Using the model updates sent by smart meters,
the server S constructs an improved version of the
original global model by aggregating the updated model
parameters. The server uses the FedAVG algorithm to
aggregate the model updates. The process is repeated
from Step 1 to Step 4 until model convergence.

• Step 5: After model convergence, the updated global
model is sent to all smart meters.

• Step 6: Smart meters replace their outdated local model
with the updated global model. This updated model is
now used for detecting anomalous instances in smart
meter data.

Centralised model training assumes that the data and
model prediction are Independent and Identically distributed
(IID). FL does not adhere to this assumption as the data

Algorithm 1 Federated Averaging Algorithm
(FedAvg)

1: At the Server Side: Initialize weights ω0 of the
global modelM

2: for each round t do
3: St ← randomly selected m clients
4: Send modelM to St clients
5: for each client k do
6: ωk

t+1← Update client (wt , k)
7: ωt+1←

∑M
m=1

nm
n Lm(ω)

8: end
9: Send modelM to all clients
10: At the Client Side:
11: ClientUpdate(k , wt ) procedure
12: B← Split Pk into batches B of size bS
13: for each epoch e < E do
14: for batch b ∈ B do
15: ω← ω − η1L(ω)
16: end
17: send ω to server
18: end
19: end

generated in FL corresponds to different users with unique
behavioural patterns. Thus the dataset is non-IID, which leads
to differences in the statistical distribution of datasets among
each smart meter. The violation of IID assumption in FL may
impose challenges for FL training. However, we show in the
evaluation section that FL achieves comparable accuracy to
centralised training for anomaly detection.

B. FEDERATED LEARNING ALGORITHM
The federated learning problem of M client devices can be
formulated mathematically as an optimization problem as
follows

min
w
L(ω) =

∑M

m=1

nm
n
Lm(ω) (1)

where,

Lm(ω) =
1
nm

∑
iϵPm

Li(ω) (2)

In the above equations (1) and (2), L(ω) represents the loss
function of the global model whereas Lm(ω) denotes the loss
function of mth device. The term Li(ω) represents the loss of
ith data sample. In addition, the term Pm denotes the data
partitions in the client device m.

∑M
m=1 nm represents the

aggregate data from all devices. The objective of the FL
algorithms is to find ω which minimizes L(ω) over P such
that for 2 devices i and j, Pi ̸= Pj.

1) FEDERATED AVERAGING (FedAVG)
The FedAVG process is described by Algorithm 1. The
process begins by selecting a random subset of client devices
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(denoted as St ) and sending the global ML model to the
selected devices (lines 3 and 4). The selected devices train
the received ML model with their local dataset for multiple
epochs. The local data in client devices (denoted by Pk ) are
split into B batches, each of size sb (line 12). Lines 14 to
16 describe the local training of ML models in client devices.
After the training, the client devices send the newly updated
weights to the server. The server then computes the average
of the received weights from the client devices. The process is
repeated until model convergence, after which it is transferred
to client devices.

C. SSL FOR FEDERATED LEARNING
The MLmodel parameters exchanged between client devices
and the central server is confidential, but the client-
server communication channel is insecure and vulnerable
to cyberattacks. The data exchanged in the channel is
unencrypted and susceptible to eavesdropping, Man-in-the-
middle (MiTM) attacks, and data tampering. To secure the
FL training process against cyberattacks, we use SSL/TLS
protocol.

The SSL/TLS protocol provides the confidentiality,
integrity, and authentication of data transferred between
devices. SSL/TLS encrypts data being transmitted between
devices to guarantee data privacy. SSL starts a handshake
process for device authentication to ensure that interacting
device are confident of one other’s identities. The protocol
digitally signs data to maintain data integrity and prevent
data from being changed while transmitted to the destination.
Using SSL/TLS to secure the FL training process has various
benefits, including
• Security: SSL/TLS protects sensitive communication
by encrypting the model updates between the server
and client devices such that only intended recipients can
decrypt the data.

• Authentication: The model updates from the client
devices must be verified such that they reach only the
intended server. SSL/TLS ensures this in our FL training
by using server certificates for authentication.

• Man-in-the-Middle (MiTM) Attacks: In MiTM
attacks, the attacker positions himself between the
server and client devices and secretly relays data to
impersonate or eavesdrop on the communication. SSL
prevents MiTM attacks using certificates.

• Phishing: In phishing, malicious actors impersonate the
server and may send unauthorised messages to client
devices. Since SSL/TLS ensures authentication, the FL
training process is secure against phishing attacks.

• Data Validation: SSL/TLS ensures data validation
through the process of handshaking. The data exchanges
between server and client devices are validated. If data
validation is not successful, the operations are aborted.

In this work, we implement SSL/TLS using the OpenSSL
library. Specifically, we used the openssl version 1.1.1n
released in March 2022. This version of openssl implements
SSL/TLS version 1.3.

FIGURE 2. Aggregated power consumption of ten consumers over three
years (2011-2013).

FIGURE 3. Aggregated power consumption of ten consumers categorized
over four seasons.

1) SELF-SIGNED SSL/TLS CERTIFICATES
SSL/TLS protocol is implemented using self-signed certifi-
cates in our FL training setup. The certificate serves as an
identifier that validates the identity of a device. It contains
the devices’ public keys used for data encryption. The device
also has a secret private key used for data decryption.
A publicly trusted third party, the Certificate Authority
(CA), is responsible for creating, signing, and issuing SSL
certificates. In our FL setup, we develop a local CA for
signing certificates. These certificates are called self-signed
certificates that do not require the validation of a trusted third
party. As our FL training setup is an internal network, self-
signed certificates are sufficient for implementing SSL.

IV. FEDERATED LEARNING FOR ANOMALY
DETECTION DATASETS
We use the KDD 99 [71], NSL-KDD [72], and CIDDS-
001 [73] datasets to study the detection performance of
federated learning models. After preprocessing, each dataset
is divided into train and test sets. ML models are developed
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FIGURE 4. Comparison between Centralised and Federated models for KDD 99 dataset.

FIGURE 5. Comparison between Centralised and Federated models for NSL KDD dataset.

FIGURE 6. Comparison between Centralised and Federated models for CIDDS dataset.
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using the train sets. These models are developed using
centralised training in the local workstation. Next, the models
were trained in a federated manner using the TensorFlow
federated framework for 100 clients. Finally, we compare the
average performance of federated models with corresponding
centralised models in terms of Precision, Recall, and
Accuracy scores. Further, we use the smart meter dataset
provided by Ausgrid to analyze the performance of federated
learning for anomaly detection in smart grids.

In this section, we compare the performance of federated
learning-based models to that of centralised ML models
for anomaly detection. We formulate anomaly detection as
a classification problem, wherein various centralised ML
and federated learning techniques are applied to classify
the network data into normal and anomalous. We develop
seven ML models: Logistic Regression, Feedforward Neural
Network Classifier, 1D-CNN Binary Classifier, Autoencoder
Binary Classifier, Vanilla RNN Classifier, LSTM Binary
Classifier, and GRU Binary Classifier for anomaly detection
in three widely used datasets. Using Precision, Recall, and
Accuracymetrics, we compare the performance of centralised
models to that of the corresponding federated models.
The optimized model hyperparameters for each dataset are
estimated using five-fold cross-validation and are listed in
Table 2. For the simulations, we chose 100 clients and a
central server. The simulations were conducted on a Google
Colab instance with the following specifications:
• CPU: Intel (R) Xeon (R) processor clocked at 2.20 GHz
• RAM: 13 GB
• Storage: 145 GB
• GPU: Tesla T4 GPU with 16 GB memory

For Federated learning simulation, we use Tensorflow
Federated 0.36.0 with Tensorflow version 2.10 backend.
Details of the anomaly detection datasets used are described
in the following section.

A. DATASETS
1) KDD 99 DATASET
The KDD 99 dataset [71] is the most popular dataset
used for IDS research. It is a subset of the DARPA-98
dataset, comprising 41 feature vectors, including numeric and
categorical attributes. The dataset has five classes: Normal,
DoS (Denial-of-Service), U2R (User to Root), R2L (Remote
to Local), and Probe (Probing Attack). The other four classes,
except the Normal class, correspond to attack instances.
It includes 4, 898,000 cases, of which 1, 074,900 are unique
records. Due to redundancy in the records, the dataset
was pruned to 311,000 records. The data preprocessing
steps include removing/imputing NULL values, removing
redundant records, and vectorising categorical features using
one-hot encoding. To normalize the feature vectors of the
KDD 99 dataset, we use z score normalization given by the
following expression

xstandardisedi =
xi −Mean(X )
Std .Dev(X )

(3)

TABLE 2. Hyperparameter settings for ML models.

In the above expression, X is a feature vector, xi is
the ith instance of the feature vector, and xstandardisedi is
the transformed feature vector. The denominator of the
expression computes the standard deviation of X .

2) NSL-KDD DATASET
The NSL-KDD dataset [72] was proposed to improve the
performance of the KDD 99 dataset for intrusion detection.
It is composed of selected records of the KDD 99 data set.
The advantages of the NSL-KDD dataset over the KDD
99 dataset are 1.) No redundant records in the train and
test set. 2.) The reduced dataset size removes the need
for random sampling. 3.) The selected records in each
class of the NSL-KDD dataset are inversely proportional
to the percentage of records in the KDD99 dataset. The
accuracy of distinct machine learning methods varies over
a broader range, resulting in more accurate evaluation for
different models. The training dataset comprises 125,970
instances, whereas the test dataset contains 22,5440 samples.
It comprises four attack categories: R2L, U2R, Probe, DoS,
and a Normal class. The data preprocessing steps for the
NSL-KDDdataset include removingNULL values, removing
redundant records, and vectorising categorical features using
one-hot encoding. This method transforms the magnitude
of feature vectors to the [0, 1] scale using the following
mathematical expression:

x transformedi =
xi −Min(X )

Max(X )−Min(X )
(4)
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In the above expression, X is a feature vector, xi is the
ith instance of the feature vector, and x transformedi is the
transformed feature vector.

3) CIDDS-001 DATASET
The CIDDS dataset [73] is a recently reported dataset
growing in popularity for IDS research. It contains both
normal data and several types of cyberattacks, such as Port
scans, Ping scans, DoS attacks, and Brute Force attacks. The
dataset comprises thirteen feature vectors, including source
and destination ports, source and destination IDs, packet size,
and duration. Non-numeric features, such as the protocol type
and flags, were transformed into numeric forms for model
training. The dataset has five classes: attack, suspicious,
victim, normal and unknown. The dataset was divided into
two sets: training and testing sets. In our case, 80% of the data
was used for model training and the rest for model testing.
The training set contained 536,992 instances, whereas the
testing set comprised 134, 248 cases. The data preprocessing
steps for the CIDDS-001 dataset include removing NULL
values and redundant records, vectorising categorical features
using one-hot encoding, and normalisation using theMinMax
scaling method.

B. PERFORMANCE COMPARISON: CENTRALISED VERSUS
FEDERATED MODELS
The performance of centralised and federated models for
anomaly detection in KDD 99, NSL-KDD, and CIDDS-001
datasets are quantified in terms of Precision, Recall, and
Accuracy metrics. A clustered bar chart (Figures 4, 5 and 6)
is used for quantifying ML model performance in which
red, blue, and green bars correspond to Precision, Recall,
and Accuracy, respectively. To compare the performance of
federated and centralised models, we use an overlapping bar
chart. We overlay the clustered bar chart of federated models
(lighter shaded and thinner bars) over the corresponding
clustered bar chart of centralised models (darker shaded
and thicker bars) as described in Figure 4 (for KDD 99),
Figure 5 (for NSL-KDD) and Figure 6 (for CIDDS).
Such an arrangement allows us to visually compare the
different performance metrics of federated models to that of
centralised models. From Figures 4, 5, and 6, we observe
that in some cases, federated models marginally outperform
centralised models and vice versa in other cases, but
the difference is marginal. We conclude that there is no
substantial difference in performance between centralised
and corresponding federated models across all three datasets.

The performance difference between centralised and
federated learning models is attributed to the variation
in the distributions of datasets [74]. This is especially
true for federated learning, where it has been found that
the distribution of client data has a direct impact on FL
model performance. When data distribution varies between
clients, FL performs poorly than centralized training. The
performance of the federated model is equivalent to that of its

centralized version when data is close to being independently
and identically distributed (IID).

V. FEDERATED ANOMALY DETECTION FOR SMART GRIDS
A third of the world’s total energy consumption is estimated
to be consumed by households [75]. This trend is expected
to grow as new buildings are constructed and more devices
are connected to the grid. Anomalies in the smart grid
can be brought about by faulty sensors, abnormal customer
behavior, broken equipment, abnormal appliance usage,
or cyberattacks. By analysing the power usage habits of
homes, it is possible to reduce electricity waste and save
millions of dollars. Studies also show that detecting these
anomalies can cut energy use by 20% and prevent power
failures.

Household energy usage is affected by many factors, such
as weather, abnormal usage events, temperature variation,
daily, weekly, and yearly seasonality, and holidays. In this
section, we propose federated learning to detect anomalies
in smart grids using an open dataset provided by Ausgrid
Corporation, Australia. Similar to our approach used in
the datasets of the previous section, we develop seven ML
classifiers for centralised and federated learning and compare
their anomaly detection performance. Here, in contrast to
the evaluation in the Google Colab instance for anomaly
detection datasets, the federated models are evaluated on a
low-cost smart meter prototype developed on a Raspberry
Pi device. Besides measuring the performance of federated
models, we also quantify the hardware resource utilization
of federated models on a Raspberry Pi device to investigate
the feasibility of widespread adoption of federated learning
for on-device smart grid anomaly detection for resource-
constrained devices. The details of the dataset used are
described in the following section.

1) AUSGRID DATASET
We use the dataset provided by Ausgrid, a power utility
company in Australia [76]. The data was sourced from
smart meters belonging to 300 Ausgrid customers for three
years between July 1, 2010, and June 30, 2013. The energy
readings were recorded every 30 minutes for this period
in KWh. For customers, there were different meters for
three separate categories of measurements. The different
categories were Gross Generation (GG), which recorded
electricity generated per customer from rooftop solar panels;
Gross Consumption (GC), which measured the electricity
consumed per customer; and Controlled Load (CL), which
recorded off-peak controlled consumption. Each customer
had GG and GC measurements, as CL was only recorded
for a few customers. Since our work focuses on identifying
anomalous power consumption patterns, we use the category
GC.

A. EXPLORATORY DATA ANALYSIS
Exploratory Data Analysis (EDA) is a critical step for
performing preliminary studies on the dataset to detect
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FIGURE 7. Normal and anomalous power consumption patterns for
customer number 206 over three months.

specific patterns, spot anomalies, test hypotheses, identify
features and check assumptions with the help of statistical
graphs and data visualisation methods. This section describes
EDA of the Ausgrid dataset.

Figure 2 compares the total yearly power consumption
for the selected customers for three years starting from
2011. We observe that the highest power consumption for all
consumers was in 2012. The increased power consumption
in 2012 could be attributed to the relatively low temperatures
during that year’s winter. Failure to forecast such unusual
power consumption behaviour in advance might lead to
outages or grid imbalances.

Figure 3 describes the seasonal power consumption,
starting from the winter (June to August) of 2011 to
the spring (September-November) of 2013 for the selected
consumers. The figure also shows power consumption for
the summer (December-February) and autumn (March-May)
seasons. We observe that power consumption for the winter
of 2012 was unusually high compared to 2011 and 2013.

Figure 7 describes the power consumption pattern of
customer 206 over three months, starting from January 1,
2012, to April 1, 2012. In the figure, the curve in blue
represents regular power consumption, whereas the points in
red denote abnormal power usage.

B. FEATURE SELECTION
In the Ausgrid dataset, 96.57% of the total data points corre-
spond to normal behaviour, whereas only 3.43% correspond
to anomalous behaviour. The significant majority of normal
data points over anomalous ones leads to class imbalance.
The performance of standard classification algorithms drops
because of imbalanced classes. Various techniques have
been developed to address the class imbalance problem,
which includes under-sampling the majority class (normal
data) or oversampling the minority class (anomalous data).
Synthetic Minority Over-sampling Technique (SMOTE) is a

FIGURE 8. Receiver operating characteristic (ROC) of centralised ML
models.

FIGURE 9. Architecture of neural network classifier.

popular technique to balance imbalanced datasets. SMOTE is
designed to work with datasets with numerical features. Since
our dataset comprises numerical and categorical variables,
we use SMOTE-NC, a variant of the SMOTE algorithm,
which works with datasets with numerical and categorical
features. We use the MinMax scaling method to normalize
the feature vectors.

After re-sampling using the SMOTE-NC algorithm,
we observe that the training dataset is equally split between
normal and anomalous cases and therefore is well balanced.

C. ML ALGORITHMS FOR ANOMALY DETECTION
In this section, we describe the various ML algorithms
developed in this work for detecting anomalous energy
consumption patterns among consumers using the Ausgrid
smart meter dataset. Using three months of user energy
consumption data (January 1, 2012, to April 1, 2012) of
ten consumers, we perform ML model training using a
workstation. Since data from ten consumers are aggregated
at the workstation for training, the resulting ML models are
referred to as Centralised Models.
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FIGURE 10. Architecture of 1D-CNN binary classifier.

FIGURE 11. Architecture of Autoencoder binary classifier.

FIGURE 12. Architecture of RNN classifier.

After evaluating the performance of Centralised Models,
we use Federated Learning to delegate anomaly detection

FIGURE 13. Architecture of LSTM binary classifier.

FIGURE 14. Architecture of GRU binary classifier.

task to smart meters. Distributed anomaly detection using
smart meters positioned at the edge of the smart grid network
would enable the system to respond faster to anomalous usage
patterns. Finally, we compare the performance of Federated
and CentralisedML models.

1) LOGISTIC REGRESSION
Logistic regression is a statistical model used for classi-
fication tasks. For a dataset, logistic regression estimates
the probability of the occurrence of an event based on
independent variables. It uses logit transformation to give
probabilities as the outcome of the algorithm. The output Z
of logistic regression can be described as

Z = log
pi

1− pi
= β0 + β1xi1 + . . .+ βpxip (5)

Here, pi denotes the probability of success of ith instance,
xi represents predictor variables, p corresponds to the total
number of predictors, and β denotes the co-efficient of
predictors.

2) FEED-FORWARD NEURAL NETWORK (FFNN) CLASSIFIER
Feed-Forward Neural Network (FFNN) comprises an input
layer, several hidden layers, and an output layer. The
neurons in one layer are connected to the next layer through
weights. The magnitude of weight represents the strength
of the connection between neurons. Each neuron receives
inputs from neurons in the previous layer and generates a
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FIGURE 15. Experimental setup for FL-based smart grid anomaly detection using smart meter dataset.

weighted summation of its inputs. Next, the neuron applies
an activation function to the generated sum and passes on the
result to other neurons. For each neuron l in the hidden layer,
its output sl is calculated using the following mathematical
expression

sl =
N∑
i=1

siwil (6)

where w represents the weight of neurons and N denotes the
total number of neurons. Similarly, for each neuron p in the
output layer, the output of the neuron op is computed using
the following expression.

op =
N∑
i=1

slwlp (7)

Since our problem is a binary classification task,
we develop an FFNN classifier with a single output neuron
with a sigmoid activation function. Figure 9 describes the
architecture of the FFNN classifier used in this work.

3) 1D-CNN BINARY CLASSIFIER
The Convolutional Neural Network model develops an
internal representation of the 2D input for generating
predictions. CNNs are also widely used for classifying one-
dimensional data as they can learn from raw time series
data without requiring feature engineering. Since the energy
consumption data is essentially time-series data, we utilise
one-dimensional CNN (1D-CNN) to identify anomalous
samples. 1D convolution operation can be expressed as

yj =
m∑

k=−m

xj−kwk (8)

where x is the input sequence, w represents the kernel of
length 2m+ 1, and y denotes the output sequence. Figure 10
represents the architecture of the 1D-CNNmodel used in this
work.

4) AUTOENCODER BINARY CLASSIFIER
Autoencoder is an unsupervised neural-network architecture
that compresses high dimensional input data to a low dimen-
sional vector. The architecture of an autoencoder consists
of three components: the encoder, the hidden or bottleneck
layer, and the decoder. The encoder layer compresses the
input data to lower dimensions at the hidden layer, whereas
the decoder layer reconstructs the original input data from the
compressed code. Autoencoder can be used for compressing
higher dimensional data to a preferred dimensionality. The
following function represents the encoder

z = f (x) (9)

whereas the decoder is expressed as

r = g(z) (10)

Here, x is the input, z is the compressed code vector, and
r represents the reconstructed output. The data compression
at the encoder can be used as a feature extraction technique
to train a machine learning classifier. This feature extraction
technique saves the encoder layer and discards the decoder
layer aftermodel training of the autoencoder. The compressed
data at the hidden/ bottleneck layer is used to train a classifier.
In our approach, we train the autoencoder with our smart
meter dataset, discard the decoder and use a logistic
regression classifier as the final layer to classify normal and
anomalous samples. Figure 11 describes the architecture of
the Autoencoder binary classifier used in this work.

5) VANILLA RNN CLASSIFIER
A Recurrent Neural Network (RNN) is a type of neural
network which differs marginally in architecture from con-
ventional feed-forward neural networks (FFNNs). In contrast
to the traditional FFNN architecture, RNN architecture has
a directional loop that is used to compare the error of a
hidden layer to that of the previous layer and adjust the
weights between layers. If I = (i1, i2, i3, · · · , iT ), H =
(h1, h2, h3, · · · , hT ) and O = (o1, o2, o3, · · · , oT ) represent
the input vector, hidden layers, and the output vector of an
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RNN with time sequence t = 1, 2, · · · ,T . The output of the
RNN at time t is calculated as:

ot = htWho + by (11)

where ht is given by

ht = f (Wih + ht−1Wii + bh) (12)

In the above equations, f denotes a nonlinear activation
function, W represents a weight matrix, b corresponds to a
bias term and ht and ht−1 denote the hidden layers at t th,
and (t − 1)th time steps. Traditionally, RNNs were used
for time series prediction problems. In [18], [19], and [20],
researchers reported that RNN-based classifiers provide
excellent performance in intrusion detection. Figure 12
describes the architecture of the RNN binary classifier used
in this work.

6) LSTM BINARY CLASSIFIER
RNN-based models are prone to vanishing and exploding
gradient problems due to improperly assigned weights.
Long Short-Term Memory Units (LSTMs) were developed
to address this issue. An LSTM unit comprises several
regulating gates which control the information flow. It also
has a forget gate between input and output gates to reset the
memory if the information is no longer required. The output
ocj (t) of an LSTM unit is computed as:

ocj (t) = h(scj (t))o
out j (t) (13)

In the above equation, oout j (t) is output from the activation
function of the output gate, scj (t) denotes the internal state of
the output gate, and h represents the output of the hidden layer
at time t . Figure 13 describes the architecture of the LSTM
binary classifier used in this work.

7) GRU BINARY CLASSIFIER
The Gated Recurrent Units (GRU) were introduced as an
alternative to LSTM units with a comparatively simpler
architecture and faster training time. A typical GRU unit
comprises two gates, reset and update gates. The reset gate
in GRU is analogous to the forget gate in LSTM. Similar to
the LSTM unit, the output of the hidden state ht at time t is
computed using the hidden state ht−1 at time t−1 as follows:

ht = f (ot , ht−1) (14)

In the above equation, f denotes a nonlinear activation
function, and ot represents the output at time t . Figure 14
describes the architecture of the GRU binary classifier used
in this work.

D. ASSESSING MODEL PERFORMANCE
Predicting anomalous power consumption from smart meter
data is a binary classification problem. The minority group
(anomalous data points) is the positive class, and the
majority group (normal data points) is the negative class.
A classification algorithm’s effectiveness is evaluated by

comparing its projected and actual class labels. The training
set, which makes up 80% of the dataset, is used to train the
classification algorithm. The remaining 20% of the dataset is
used to assess the model performance. Four unique outcomes
are likely for the model’s predictions. They are defined as
follows:
• True Positive (TP): Outcomes when the ML model
correctly predicts the positive (anomalous) class.

• True Negative (TN): Outcomes when the ML model
correctly predicts the negative (anomalous) class

• False Positive (FP): Outcomes when the ML model
incorrectly predicts the positive (anomalous) class (True
label is negative).

• False Negative (FN): Outcomes when the ML model
incorrectly predicts the negative (anomalous) class (True
label is positive).

The standard metrics used for evaluating classification
models are Precision, Recall, Accuracy, F1-score, and AUC
(Area Under the Receiver Operating Characteristic (ROC)
curve). These metrics are defined as follows:
• Precision = TP

TP+FP
Precision measures the proportion of positive predic-
tions made by the classifier that is actually correct

• Recall = TP
TP+FN

Recall measures the proportion of actual positive
predictions that are identified correctly

• F1-score = 2Precison∗Recall
Precision+Recall

F1-score is the harmonic mean of precision and recall
metrics which combines them into a single metric

• Accuracy= TP+FP
TP+TN+FP+FN

Accuracy quantifies the proportion of predictions cor-
rectly made by the classifier out of its total predictions

• AUC=
∫ 1
0 TPR d(FPR)

Here, TPR denotes the True Positive Rate, and FPR
represents the False Positive Rate. (TPR = TP

TP+FN and
FPR = FP

FP+TN ).
AUC metric is a measure of the performance of the
model across all possible classification thresholds.
Higher values of AUC indicate better model perfor-
mance. The maximum value of AUC is 1, indicating that
the model perfectly distinguishes between positive and
negative classes.

E. CENTRALIZED MODEL TRAINING
We use the resampled Ausgrid dataset in centralized model
training to train the proposed anomaly detection models.
We divide the dataset into a training set of 50, 000 samples
(9.78 MB) and a test set of 20, 000 samples (3.03 MB). The
training set is used for model training, and the test set is
used for performance evaluation. We apply the Grid Search
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FIGURE 16. Percentage change (1%) in performance metrics between
federated and centralised models (1= Performance metric of federated
model - Performance metric of centralised model).

hyperparameter optimization for hyperparameter tuning. The
optimum hyperparameters of the models are given in Table 2.
After model training, we evaluate the model performance
metrics on the test dataset. Table 3 gives the performance
metrics of the proposed anomaly detection models. Figure 8
describes the ROC curves of centralised models with AUC
values. From the table, we observe that the 1D-CNN Binary
Classifier performs better compared to other models with
higher accuracy.

F. FEDERATED MODEL TRAINING
In this section, we investigate the performance of the
proposed FL-based smart meter anomaly detection models
on actual edge devices (client devices) operating in an FL
environment. In addition, using the Ausgrid dataset, we eval-
uate the computational and communication overheads, power
consumption, and time overhead incurred by running FL
anomaly detection models on client devices. Measuring the
resource utilisation of FL models on edge devices is critical,
as this provides a benchmark for FL-based anomaly detection
under real-world settings with limited hardware capabilities.
Figure 15 shows the experimental setup for the federated
anomaly detection on smart meter data. The figure has
3 panels. The first panel shows the whole experimental
setup, the second panel shows the workstation server and
client devices, and the third panel shows the setup for power
measurement of client devices using the USB voltmeter.

(a) Smart meter prototype: Figure 18 shows the smart meter
prototype used in our work. We use four Raspberry Pi
4 model B devices with the following specifications as
the smart meter prototype (client device):
• Operating System: Raspbian GNU/Linux 11 (bulls-
eye)

• Python: Python version 3.7.12
• Tensorflow: Tensorflow version 2.5.0
• Processor: ARM Cortex-A72
• Memory: 4 GB
• Storage: 64 GB

TABLE 3. Hyperparameter settings for ML models.

(b) Server: The server is a laptop with the following
specifications
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FIGURE 17. Resource usage comparison of federated models in Raspberry Pi 4 device.
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TABLE 4. Performance metrics of centralised ML models.

TABLE 5. Average performance metrics of FL models.

FIGURE 18. Smart meter prototype.

• Operating System: Ubuntu/Linux 20.04.4 LTS
(Focal Fossa)

• Python: Python version 3.8.10
• Tensorflow: Tensorflow version 2.8.0
• Processor: AMD A10-4600M APU
• Memory: 8 GB
• Storage: 1024 GB

(c) Communication Protocol: Raspberry Pi client devices
and the laptop (server) communicate using a router
through WiFi interface.

We implement our proposed FL-based smart meter anomaly
detection algorithms on four Raspberry Pi client devices
and a laptop server using the Flower federated learning
framework [77].

For the performance evaluation of FL anomaly detection
models on Raspberry Pi devices, we randomly sample a
training dataset of 20000 samples (3948 KB) and a test
dataset of 6000 samples (910 KB) from the resampled
Ausgrid dataset. Random sampling is performed four times
for each Raspberry Pi device such that the resulting dataset
is unique after each sampling. Using Flower framework
and TensorFlow 2.0, we train seven anomaly detection
models: Logistic Regression, Feed-Forward Neural Network
Classifier, 1D-CNN Binary Classifier, Autoencoder Binary
Classifier, Vanilla RNN Classifier, LSTM Binary Classifier
and GRU Binary Classifier in a federated setting for local
anomaly detection in each Raspberry Pi device.

For each of the proposed anomaly detection models,
the Raspberry Pi client devices collaboratively train the
model using their local dataset, without sharing data, while
periodically updating model updates to the central server.
For evaluation, we trained the FL models for 10 rounds.
After 10 rounds of model training, we evaluate the model
performance metrics on the test dataset. The performance
metrics of centralised models are described in Table 4.
We compute the average performance metrics of FL models
of four raspberry devices in Table 5. Table 5 shows that
similar to centralised model training, federated 1D-CNN
Binary Classifier outperforms other federated models.

G. PERFORMANCE COMPARISON: FEDERATED VERSUS
CENTRALISED MODEL TRAINING
In this section, we compare the performance of federated
and distributed ML models in smart grid anomaly detection.
Towards this goal, we define a metric 1, which is the
difference between the performance metric of a federated
model and that of a centralised model (1= Performance
metric of the federated model - Performance metric of the
centralised model). This metric is computed for all the
performance indicators (Precision, Recall, F1-Score, and
Accuracy). We calculate this metric for all the ML models
and plot the percentage change in 1 as 1% in a heat map,
as shown in Figure 16.
In the heat map, rows represent ML models, and columns

represent performance metrics. The cells represent the
percentage change (1%) in performance metrics. Cells in
red indicate that the performance of the federated model
was lesser than the corresponding centralised model, and for
cells in blue, vice versa. From the heat map, we observe
that Precision of the federated 1D-CNN Binary Classifier,
Accuracy of federated Vanilla RNN classifier, F1-Score and
Recall of federated LSTM Binary Classifier increased by 2%
compared to the centralised models. We also observe that the
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Accuracy of the centralised Autoencoder Binary Classifier
decreased by 8%, whereas Precision, F1-score of logistic
regression decreased by 6% compared to the federated
model. We conclude that the variation in the performance of
federated models over centralised models is minimal. The
performance of centralised and federated models for the
smart meter dataset is broadly comparable. Depending on
the specific application scenario, FL can replace centralised
models, mainly when data security and privacy are the
foremost concern. The diversity in dataset distributions is
thought to cause performance variation between centralised
and federated models. This is especially true for federated
learning, where it has been discovered that the distribution of
client datasets affects the effectiveness of FL models. When
data distribution changes across clients, FL performs worse
than centralised training. When data is almost Independently
and Identically Distributed (IID), the performance of the
federated model is roughly equivalent to that of its centralized
variant.

1) MEASUREMENT OF PERFORMANCE METRICS
(a) Memory Utilization: Measuring device memory usage

while running federated ML models is critical for
resource-constrained IoT devices. In our experiment,
we profile the memory usage of a Raspberry Pi device
as it runs federated anomaly detection models. The
Raspberry Pi 4 device used in our experiment has 3.7
GB of usable RAM available. We use Conky [78], a free,
lightweight system monitoring program to measure the
memory utilization of Raspberry Pi devices as they
run different federated anomaly detection models on
the Ausgrid dataset. Panel (a) of Figure 17 compares
the memory utilization of different federated anomaly
detectionmodels. From the plot, we observe that memory
utilization is maximum (1147 MB) for Autoencoder
binary classifier and minimum for the logistic regression
classifier (375 MB).

(b) CPU Utilization: Assessing the computational load of
federated ML models is a crucial issue of consideration
for devices with lesser computation capabilities, such
as IoT devices. In our experiment, we profile the CPU
utilization of Raspberry Pi devices as they run federated
anomaly detection models. The Raspberry Pi 4 device
used in our experiment uses a Broadcom BCM2711,
Quad-core Cortex-A72 processor clocked at 1.5 GHz.
Again, we use Conky to measure the CPU utilization
of Raspberry Pi devices as they run different federated
anomaly detection models. Panel (b) of Figure 17
compares the CPU utilization of federated anomaly
detection models. We observe that 1D-CNN uses 88.78%
(the maximum) CPU, whereas GRU Binary Classifier
uses 5.56% (the minimum) CPU.

(c) Power Consumption: IoT devices in many applications,
such as agriculture and disaster monitoring, operate on
battery power with limited recharging facilities. The

energy-constrained nature of IoT devices necessitates the
use of power-efficient ML algorithms. In panel (c) of
Figure 17, we measure the average energy consumption
of Raspberry Pi devices as they run federated anomaly
detection models. We useMakerHawk USB Power Meter
UM25C [79] to measure the power of Raspberry Pi
devices running different federated anomaly detection
models. The third panel of Figure 15 shows the third
panel shows the setup for power measurement of client
devices using the USB voltmeter. The idle power
consumption of the Raspberry Pi device is calculated to
be 2.85 W. We observe that power consumption is the
highest for 1D-CNN (5.19 W, including the idle power
consumption) and the lowest for GRU Binary Classifier
(3.16 W, including the idle power consumption)

(d) Time Overhead: In addition to the computational cost
of training federated ML models, estimating the time
required for model training is critical. For example,
extended training periods may negatively impact the
practical usability of ML models. In panel (d) of
Figure 17, we compare the average training times
of different federated anomaly detection ML models.
We use Conky to calculate the training times of federated
models. We observe that training time is the highest
for 1D-CNN (256 s) and the lowest for Autoencoder
Classifier (33 s).

(e) Communication Overhead: In FL, the communication
between client devices and the server may suffer from
network-related issues such as limited data plans and
poor or unreliable connections. Even though training data
remains in the client devices, the clients continuously
send model updates to the server during each training
round. Therefore, minimizing network usage for FL
is of primary interest. In panel (e) of Figure 17,
we compare the communication overhead of different
federated anomaly detection models using overlay bar
plots. We use iftop [80], a network bandwidth monitoring
tool, to calculate the bandwidth utilization of different
federated models. We observe that communication over-
head is the highest for 1D-CNN (1191KB) and the lowest
for Logistic Regression (48.8 KB) for a single round of
training.

(f) Peak Bandwidth Usage: In addition to measuring the
communication overhead, we also measure the peak
bandwidth usage of FL models using iftop. In panel (f)
of Figure 17, we compare the peak bandwidth usage of
different FL models using overlay bar plots. We observe
that bandwidth overhead is the highest for Feed-Forward
Neural Network Classifier (57.8 KB/s) and the lowest for
Autoencoder Classifier (1.53 KB/s).

VI. DISCUSSION
The growing concerns regarding data security and user
privacy have motivated the development of ML techniques
for training ML models locally in edge devices without
sending data to the centralised server. Federated learning has
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emerged as a promising technique in this direction, where
edge or client devices send only local model updates to the
server, such that user data remains locally in the client device.
In this work, we investigated the feasibility of using federated
learning to detect anomalous energy consumption patterns in
smart grid data.

To examine the anomaly detection performance of fed-
erated learning models for anomaly detection, we use the
KDD 99, NSL-KDD, and CIDDS-001 datasets. Each dataset
is separated into train and test sets after preprocessing.
ML models, including Logistic Regression, Feed-forward
Neural Network Classifier, 1D-CNN Binary Classifier,
Autoencoder Binary Classifier, Vanilla RNN Classifier,
LSTM Binary Classifier, and GRU Binary Classifier, were
developed. These models were trained centrally, followed
by federated training for 100 clients using the TensorFlow
federated framework. Finally, the average scores for Pre-
cision, Recall, and Accuracy of federated and centralised
models were compared. Based on our study, we concluded
that the anomaly detection performance of federated models
was comparable to centralised models.

Next, we analysed the anomaly detection performance of
the developed ML model for smart meter data. We first
evaluate our proposed models in the conventional way, where
the models are trained centrally in a workstation using the
aggregate data collected from all smart meters. The 1D-CNN
Binary Classifier had the highest accuracy, followed by Feed-
forward Neural Network Classifier.

Finally, we federate the proposed ML models using the
Flower federated learning framework. Using Raspberry Pi
devices as a prototype for smart meters (client/edge device)
and a workstation as the server, we set up a federated learning
environment for training ML models for local anomaly
detection at Raspberry Pi edge devices. The FL setup
comprises four Raspberry Pi devices, each with its dataset
collaboratively training the local ML model for anomaly
detection at the edge.

The FL training process presents another challenge:
the client-server communication channel is vulnerable to
cyberattacks. The FL model updates among clients and
the server are susceptible to eavesdropping, Man-in-the-
middle (MiTM) attacks, and tampering. Therefore, we use
SSL/TLS protocol to secure the FL training process against
cyberattacks, ensuring that client-server communication is
encrypted. SSL encryption ensures authentication, data
validation, protection from phishing, and data security.
After the FL training process is completed, we evaluate
the average performance of the FL models. Similar to
centralised training, the 1D-CNN Binary Classifier had the
highest accuracy, followed by Feed-forward Neural Network
Classifier.

Then, we compare the performance of centralised and
federatedmodels in terms ofPrecision, Recall, Accuracy, and
F1-Score. We observe that the anomaly detection of federated
models was comparable to their corresponding centralised
models. For smart grid applications, where user privacy and

data security issues are crucial, the marginal variations in the
performance of FL are not a significant disadvantage.

However, implementing FL for anomaly detection in smart
grids is subject to resource constraints at the edge device.
Therefore, we investigate the memory, CPU, power, and
bandwidth requirements for training FL models at the edge
device. Our experiments show that Logistic regression and
GRU Binary classifier consume fewer CPU resources for FL
training, whereas the 1D-CNN Binary Classifier is the most
compute-intensive model.

A. CHALLENGES IN FEDERATED LEARNING
We identify the following as the challenges for the practical
implementation of federated learning for smart grid anomaly
detection.
• Lightweight ML models: Since models are deployed
at resource-constraint edge devices, FL requires the
development of lightweight, less compute-intensive
models

• Improving communication efficiency: Since FL
involves client-server communication between many
devices, communication-efficient protocols that reduce
the size of data packets or the number of communication
rounds may be developed.

• Handling device heterogeneity: Client devices taking
part in the FL process may vary in computational capa-
bilities, network connectivity, and battery capacity. The
FL system must be able to address such heterogeneity
among clients.

• Data heterogeneity: Centralised machine learning
models assume data to be Independent and Identically
Distributed (IID). FL does not adhere to this assumption,
and hence we observe marginal variation between
centralised and federated model performance. FL sys-
tems must account for this statistical heterogeneity in
datasets.

VII. CONCLUSION AND FUTURE WORK
Traditional ML-based anomaly detection involves transfer-
ring data to a central server where the ML model gets
trained to identify abnormal patterns in data. However, this
approach of sending data over an open channel makes data
vulnerable to increased privacy and security risks from
adversaries. In addition, traditional model training demands
extensive centralised computation resources with stable
network infrastructure and large bandwidth requirements.
Furthermore, offloading model training to a centralised
location introduces latency, affecting the real-time anomaly
detection performance of the model.

We formulate anomaly detection as a classification prob-
lem, wherein various centralised ML and federated learning
techniques are applied to classify the network data into
normal and anomalous. We develop seven ML models:
Logistic Regression, Feedforward Neural Network Classifier,
1D-CNN Binary Classifier, Autoencoder Binary Classifier,
Vanilla RNN Classifier, LSTM Binary Classifier, and GRU
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Binary Classifier for anomaly detection in three widely
used datasets. Using precision, recall, and accuracy metrics,
we compare the performance of centralised models to that of
the corresponding federated models.

We also proposed a Federated Learning (FL)-based
approach for anomaly detection in smart grids where ML
models are trained in a distributed manner by each smart
meter device without requiring to share its local data with a
central server. In the proposed approach, a global model is
downloaded from the server to smart meter devices for on-
device training using their local dataset. Parameters of the
localmodels are sent to the server after training to improve the
global model. We secured the server-client communication
using the SSL/TLS protocol to safeguard model updates from
adversaries.

Next, we used the centrally trained ML models for smart
grid anomaly detection and compared their performance with
corresponding federated implementations in edge hardware.
We found that FL models provide strong centrally-trained
models while enhancing security and privacy. In addition,
our work demonstrated that the proposed FL-based anomaly
detection models operate efficiently in terms of memory
usage, CPU usage, and power consumption on edge hard-
ware. The memory utilisation of proposed FL-based models
ranges from 10% to 31% at edge devices, whereas CPU utili-
sation ranges from 5.56% to 88.78%. Furthermore, FL power
consumption at the edge hardware ranges from.33 W to
2.34 W. Moreover, compared to centralised solutions, the
overall communication overhead ranges from 48.8 kbps to
1191 kbps, resulting in significant bandwidth savings. These
indicators demonstrate that the proposed FL-based anomaly
detection models are suitable for deployment at smart meters
as part of smart grid infrastructure.

In future work, we aim to optimize our FL models
further so that the edge devices consume fewer computational
resources as possible. Additionally, we plan to evaluate the
performance of the proposed approach after deployment at a
large number of smart homes.
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