
Received 8 December 2022, accepted 12 January 2023, date of publication 16 January 2023, date of current version 24 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237545

Multimodal Hierarchical CNN Feature
Fusion for Stress Detection
RADHIKA KUTTALA 1, RAMANATHAN SUBRAMANIAN 2, (Senior Member, IEEE),
AND VENKATA RAMANA MURTHY ORUGANTI 1, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
2Faculty of Science and Technology, University of Canberra, Bruce, Canberra, ACT 2617, Australia

Corresponding author: Venkata Ramana Murthy Oruganti (ovr_murthy@cb.amrita.edu)

ABSTRACT Stress is one of the most severe concerns in modern life. High-level stress can create various
diseases or loss of focus and productivity at work. Being under stress prevents people from recognizing their
stress levels, so early stress detection is essential. Recently, multimodal fusion has enhanced the performance
of stress detection models using Deep Learning (DL) techniques. The low, mid, and high-level features of
a Convolutional Neural Network (CNN) are discriminative. A comprehensive feature representation can
be obtained by fusing all three levels of CNN’s features. This study mainly focuses on detecting stress
by exploiting these advantages using a multimodal hierarchical CNN feature fusion. The two multimodal
physiological signals used in this study are Electrodermal activity (EDA) and Electrocardiogram (ECG).
We develop a hierarchical feature set by concatenating multi-level CNN features for each modality. Multi-
modal fusion on both hierarchical feature sets is performed using theMultimodal TransferModule (MMTM).
The experiments are carried out with raw frequency domain data and the features from the frequency bands
to study the effectiveness of both. The model’s performance is compared to the different combinations of
hierarchical features from low, mid, and high levels. To verify the generalizability, the proposed approach
has been evaluated on four benchmark datasets - ASCERTAIN, CLAS, MAUS, and WAUC. The proposed
method showed its effectiveness by outperforming existing models by 1-2%, respectively, on frequency band
features. It is observed that the hierarchical feature set from all three levels performed better than all other
combinations by 2-4%. As a result, this strategy can be a useful addition to stress detection.

INDEX TERMS Multimodal, EDA, ECG, CNN, hierarchical feature fusion, stress detection, subject-
independent.

I. INTRODUCTION
Stress is a way of responding to overwhelming demands or
challenges from a scenario that manifests as emotional, phys-
ical, or behavioural changes by the human body [1]. The way
an individual views the scenario has a significant impact on
how stressed they are.When an individual faces a challenge in
achieving their goal, they evaluate the scenario in two stages–
(i)the need to achieve the desired goal and (ii) the external and
internal resources to meet the challenges [2]. Human stress
is classified as positive and negative. Positive or acute stress
is the stress that lasts for a short time when an individual’s
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capabilities are sufficient to meet the challenge [3]. Negative
or chronic stress is the stress that lasts for a long time when
a challenge exceeds an individual’s capabilities [4]. At some
point in life, every individual is exposed to a stressful scenario
and will react accordingly. If an individual can cope with
stressful scenarios, the next time a similar scenario arises, the
individual won’t have as much of a stressful impact [5]. Sim-
ilarly, if an individual cannot cope with a stressful situation
and is repeatedly exposed to a similar situation, the individual
will develop chronic stress [6]. Each time the body encounters
a stressful scenario, the brain triggers the stress response to
visual input from the ears, nose, and eyes. This response is
known as ‘‘fight-or-flight’’ [7]. Instantly, the hypothalamus
receives a distress signal from the brain. The hypothalamus
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is the brain’s command center. The hypothalamus regulates
involuntary body activities through the Autonomic Nervous
system (ANS) [8].

During stress, most organs are controlled by ANS without
human knowledge [9]. The ANS is divided into two main
divisions: the Sympathetic Nervous System (SNS) and the
Parasympathetic Nervous System (PNS). The stress response
is controlled by the complementary interaction of SNS and
PNS in different physiological conditions [10]. The SNS
initiates the fight or flight stress response, which results in a
series of changes, including physiological, behavioural, and
so on [11]. On the other hand, the PNS plays an essential
role in reducing stress responses in individuals by suppress-
ing the SNS [12]. The initial symptoms that emerge from
a stressful scenario are called acute stress reactions [13].
These symptoms are visible within minutes during a stress-
ful scenario and settle down quickly. Sweating, difficulty
breathing, palpitations, nausea, chest pain, headaches, etc.,
are the physical symptoms of acute stress reactions [14]. If the
symptoms last longer, theywill cause chronic stress reactions.
Depression, anxiety, memory loss, heart attack, stroke, high
blood pressure, cholesterol, ulcer, weight loss, shortness of
breath, weak immune system, etc., are the long-term health
effects linked to chronic stress [15]. Because of the negative
impacts of stress, it is crucial to build an effective stress
detection system. A timely and accurate diagnosis of stress
can improve an individual’s life as productive, healthier, and
happier [16].

Stress is detected through physiological, psychological,
and behavioural markers [17]. Psychological interactions
include increased negative feelings like anger, anxiety,
depression, etc [18]. Self-report questionnaires or an exam-
ination with a psychologist are used to conduct a psycholog-
ical assessment of stress. The disadvantage of such assess-
ments is that they are only performed once the affected person
or those around them recognize the intensity of the stress,
which is usually too late [19]. In as short as 24 hours, people
can experience memory lapses regarding the day’s emotional
mood, which lead to inaccurate stress level measurements
using self-reports or questionnaires [20]. An individual’s
behaviour is affected by stress. Emotions like irritation, anger,
sadness, etc., are the resulting changes. But they are hard
to measure, as individuals can hide these emotions [21].
Physiological signals can reveal an individual’s inner affect’s
strength and quality without any manipulations [12]. These
physiological changes are non-voluntary responses that are
difficult to notice externally. Hence, hormone monitoring is
widely considered reliable for assessing stress [22].

The physiological aspects have several distinct advan-
tages, like reliability, simplicity, continuous readings,
cost-effectiveness, user-friendliness, non-maskability, non-
invasiveness, etc., which makes them popular among
researchers for stress detection [23]. Common physiological
signals for stress detection are EDA, electroencephalogra-
phy (EEG), ECG, respiration pattern, electromyogram, skin

temperature, blood pressure, etc. [24]. For most physio-
logical signal-based stress detection research, ECG and
EDA signals are widely used either separately or in com-
bination [25]. The ECG signal determines the electrical
activity of the heart. As the ANS directly affects the
heart rate, there will be variations in the heart rate dur-
ing stress [16]. The EDA signal determines the change
in the electrical characteristics of the skin. During stress,
the body sweats more, which leads to increased skin
conductance [26].

An innovation that right away benefits society in healthcare
is the growing application of machine learning (ML), deep
learning (DL), and wearable technology [27]. For different
tasks using physiological signals, ML or DL models are
trained using benchmark physiological datasets [28]. Support
Vector Machine (SVM), random forest, K-Nearest Neigh-
bour, decision tree, linear discriminant analysis, etc., are com-
monMLmethods used for the study [29]. ML approaches are
frequently employed and get state-of-the-art for most stress
detection studies, whereas DL methods are less extensively
used because of the need for large data [30]. CNN, Recurrent
Neural Networks (RNN), Long Short TermMemory (LSTM),
etc., are the DL algorithms commonly used for stress detec-
tion [31]. Recently, multimodal fusion using the DL approach
was found effective for stress detection [32]. There are three
different levels of multimodal fusion: early, late, and interme-
diate [33]. The early fusion method merges feature represen-
tations of eachmodality at the feature level and starts training.
After being trained separately, the different models are inte-
grated at the decision level in the late fusion technique [34].
Intermediate fusion begins training by fusing higher-level
feature representations of each modality from independent
modality models [35]. The multimodal fusion model learns
the highly linked representation across multiple modalities
simultaneously, which enhances the model’s performance
over unimodal approaches [36].

In the last few years, the popularity of CNN has signifi-
cantly increased. CNN extracts the most discriminating char-
acteristics from the data while learning from it. Recent stud-
ies have proven that CNN can generate statistically relevant
results for various applications [37]. To link input layers to the
output layer, a CNN model consists of several layers, includ-
ing convolution, pooling, dense, etc. Deep CNN’s several
layers can encode various low, mid, and high-level features.
The deep layers are used to learn high-level features, and the
shallower layers are used to determine low-level features [38].
The availability of the most discriminating features is one of
the most important factors for increased classification accu-
racy [39]. Furthermore, the probability of getting a high clas-
sification accuracy with just one conventional feature extrac-
tion method is relatively low. The model’s performance could
be better with more information. Researchers also point out
that information loss in the networkmay increase as the layers
increase [40]. Due to these reasons, in recent studies, feature
fusion methodologies like hierarchical features at each level
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are integrated and used for training. The relevant information
can be retained, and information loss is minimized by this
hierarchical feature fusion [41]. In most end-to-end CNN
networks, the last convolution layer’s feature maps, mainly
global features without hierarchy features, serve as discrim-
inative features. However, low and mid-level features from
the initial layers have discriminative features. The model can
learn more efficient quality-aware feature representation with
the help of hierarchical features (low, mid, and high-level
features) [42].

Recent research shows that integrating features are often
more efficient than independent features. This motivates us
to apply the concept of feature fusion to enhance the effi-
ciency of CNN-based stress detection models. We propose
a multimodal hierarchical CNN feature fusion model that
uses complementary features from various layers to enhance
the performance rate of stress detection models. To the best
of our knowledge, the proposed methodology has not yet
been systematically addressed for stress detection. Hence,
this paper presents a multimodal hierarchical CNN feature
fusion model for stress detection using EDA and ECG sig-
nals. Initially, frequency domain features from EDA and
ECG frequency bands or the raw frequency domain data are
given as input to the CNN model. Inspired by the effec-
tiveness of hierarchical feature fusion on CNN from the
literature’s [38], [39], [40], [41], [42], we concatenate the
high, mid, and low-level features from the convolutional
layers of EDA and ECG separately to form a hierarchical
feature set. Unlike single-level fusion, gradual fusion has
shown better performance [43]. So, each hierarchical feature
set is used for multimodal fusion using MMTM (gradual
fusion). Finally, we perform late fusion on the classifica-
tion probabilities of each modality. This study also explores
the performance of the distinct combination of hierarchical
features concatenation from the low, mid, and high-level
features. The proposed method is examined on four standard
datasets- CLAS [44], ASCERTAIN [45], MAUS [46], and
WAUC [47]

The following four folds provide a summary of the major
contributions of this study:

1) Multimodal hierarchical CNN feature fusion: The
low, mid, and high-level features from the initial con-
volutional layers are concatenated separately for each
modality, and multimodal fusion is performed on the
hierarchical feature set using MMTM.

2) Combinations of hierarchical features: Examine the
performance of the concatenated distinct combina-
tion of hierarchical features from the low, mid, and
high-level.

3) Raw data and frequency band feature: Compare the
effectiveness of the raw frequency domain data, and the
features from the frequency bands.

4) Generalization ability: To ensure generalizability, the
proposed stress detection model has been evaluated
on four benchmark datasets- CLAS, ASCERTAIN,
WAUC and MAUS.

Organization:The remainder of this paper is organized as
follows. Section II examines recent works on hierarchical
feature fusion and the identified research gap. Details of
the proposed framework are provided in Section III. The
experiment results are presented in Section IV and compared
with existing works. The paper is concluded in Section V.
We have defined the key terms used in this paper for better
understanding and clarity. The list of abbreviations used in
the paper is shown in Table 1.

TABLE 1. List of abbrevations.

II. RELATED WORKS
Recently, hierarchical CNN feature fusion methods were fre-
quently used in image classification tasks. An overview of
such works and it’s effectiveness is briefly discussed in this
section.

In order to classify fruit diseases, Akram et al. [38] pro-
posed a hierarchical pipeline for deep feature fusion and
selection.Pre-trained models were used to extract deep fea-
tures, which were then fine-tuned via transfer learning.Multi-
level fusion was performed before feature selection. Fruit
diseases were classified with Multi-SVM using the selected
features from the plant village dataset [48]. The proposed
method’s efficiency was revealed in the classification results
in terms of accuracy as 97.8%, sensitivity, G-measure and
precision as 97.6%.

A face recognition algorithm with hierarchical feature
fusion was proposed by Zhang et al. [41]. The proposed
framework learned shallow and deep facial aspects using
supervisory information. The features are combined to
enhance face recognition efficiency in the face of occlusion
and illumination. The visual geometry group network and
lightened CNN are both altered using this method. The pro-
posed approach provided significant recognition results in
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both the AR face database [49] and the labelled faces in the
wild [50] database.

In the wild images, blind quality assessment using hierar-
chical feature fusion was proposed by Sun et al. [42]. The
features from the intermediate layers to the final feature
representation were hierarchically integrated using a staircase
structure. The proposed method allowed the model to fully
use visual data at all levels, from low to high. An iterative
mixed database training approach was proposed to train the
model simultaneously on multiple datasets. The proposed
model benefited from the additional training samples and
the capacity to learn a more generic feature representation.
Experiments were conducted on six real-world image quality
assessment datasets, and the results revealed that the proposed
model performed significantly better than other state-of-the-
art models.

A multiple hierarchical feature fusion for an end-to-end
steel surface flaw detection is presented by He et al. [51].
The developed method uses a baseline CNN to produce fea-
ture maps to attain good classification abilities at each level.
A feature fusion network with multiple levels merges several
hierarchical features into a single feature with more details.
A region proposal network creates regions of interest based
on these multilayer properties. The final detection results are
generated for each ROI by a detector composed of a bounding
box regressor and a classifier. A defect detection dataset
called NEU-DET [52] is compiled to evaluate the proposed
method. Using baseline networks, the proposed technique
yields 74.8/82.3 mean average precision on the NEU-DET
dataset.

A selective feature connection mechanism for concate-
nating CNN features from multiple layers is proposed by
Du et al. [53]. A feature selector created by high-level
features links low-level features to high-level features. The
proposed method shows universal acceptance, superiority,
and efficacy on various challenging computer vision tasks.
Ma et al. [54] proposed a multi-layer feature fusion on CNN
to classify satellite image scenes. Since combining feature
maps of various scales is not practical, the proposed method
first transforms each feature map to fit its dimensions. Instead
of just the final convolution layer, two methods for fusion
were created to combine feature maps of various layers, and
these features were given to the next layer or a classifier.
Empirical findings showed that the proposed methods per-
form efficiently on public datasets.

A multiscale and hierarchical feature aggregation net-
work is proposed for segmenting medical images by
Yamanakkanavar et al. [55]. Two modules for feature aggre-
gation are used to effectively combine data across end-to-
end network layers: Hierarchical Feature Aggregation (HFA)
and Multiscale Feature Aggregation (MFA). To learn deeper
fusions of the feature hierarchy, the HFA module blends the
features iteratively and hierarchically, and the MFA module
gradually accumulates features and enriches feature represen-
tation. Having a 0.97 average accuracy score on the UFBA-
UESC, PH2, and ISIC-2018 datasets [56], [57], [58], it is

noted that the suggested model outperforms conventional
methods for skin-lesion segmentation in terms of segmenta-
tion performance.

Li et al. [59] proposed a hierarchical feature aggregation
network for deep image compression. Two approaches—inter
and intra-stage feature aggregation—are put forth. Incorpo-
rating multiscale data into the inter-stage feature aggrega-
tion results in the production of more contextual features.
To enhance representations of a single resolution, intra-stage
aggregation joins features from the same stage. According
to extensive experiments, the proposed method outperformed
SOA methods, showing its effectiveness.

For robust cross-resolution face recognition, a representa-
tion learning method using a hierarchical deep CNN feature
set is proposed by Gao et al. [60]. The proposed approach
adaptively fuses the contextual features from different layers
to learn more reliable and discriminative features. A feature
set-based representation learning technique was developed to
collectively describe the hierarchical features for improved
recognition to exploit contextual information effectively. The
hierarchical recognition outputs from several phases are com-
bined to enhance recognition performance. Experimental
results on several face datasets have proved the efficiency of
the proposed approach.
In light of the studies above, hierarchical feature fusion and

multimodal feature fusion effectively enhance model perfor-
mance. Recent research on hierarchical CNN feature fusion
has also demonstrated the superiority of fusion features over
individual features. However, most hierarchical CNN feature
fusion-based experiments are conducted only on image-based
tasks, and other modalities have received less attention.
This inspired us to propose a multimodal hierarchical CNN
feature fusion using physiological signals. We aim to take
advantage of both hierarchical feature fusion and multimodal
feature fusion. We intend to benefit from the complementarity
between high-level and low-level features through hierarchi-
cal feature fusion. By implementing multimodal fusion at the
intermediate level, we intend to enhance the efficiency of
the stress detection model. Hence, we propose a hierarchical
CNN feature fusion for stress detection using EDA and ECG
signals.

III. METHODOLOGY
Figure 1 depicts the novelty of this study on hierarchical
feature fusion. Figure 1-(a) shows the traditional end-to-end
deep learning approach. Features from the very last layer
are only used as the identification feature in end-to-end net-
works. These features are frequently more general features
without using hierarchical features. For this reason, we built a
hierarchical feature learning model for stress detection using
physiological signals. As shown in Figure 1-(b), we combined
deep and shallow features to suit a hierarchical feature set.
Later, these hierarchical features are used for multimodal
fusion. We first describe the datasets used for this study in the
following subsections. In the following subsections, we first
give details about the datasets used for this study. Then we
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FIGURE 1. Traditional and proposed deep learning techniques are depicted in (a) and (b), respectively.

go into detail about multimodal hierarchical CNN feature
fusion’s architecture and feature extraction.

A. DATASET DETAILS
This research makes use of the following four bench-
mark datasets-ASCERTAIN [45], CLAS [44], MAUS [46],
WAUC [47], which contain multimodal physiological signals
such as ECG and EDA. A detailed explanation of each dataset
is given below.

1) ASCERTAIN
The dataset contains 58 subjects physiological signals and
face activity recordings. The physiological signals of the
subjects were captured while they watched emotional video
clips. Emotional video clips of 36 from [61] were used in the
study. Based on the previous studies of stress detection using
the ASCERTAIN dataset [62], we also used subjective ratings
of valence and arousal for stress labelling. In the 2-D valence
arousal plane, high arousal values along with low valence
values are considered stressed and others as unstressed [63].
The average of the valence and arousal scores are used to
decide whether it’s high or low [45].

2) CLAS
The dataset contains 62 subjects’ physiological data. Emo-
tional video clips were used to evoke the subject’s physio-
logical signals. Emotional video clips of 16 from [64] were
used in the study. After removing those subjects that didn’t
have all the data, we were left with 59 subjects. Stress labels
have been fixed using the stimulus annotations described in
the dataset [44].

3) MAUS
The dataset has recorded physiological data under differ-
ent cognitive circumstances. The N-back task was used on
22 participants to generate a cognitive load. At the start of
the trial, there was a five-minute rest interval. The N-back
task required the participant to recall the last N single number
from rapidly displayed digits. Whenever a signal matched the

N-th number before the stimulation number, the subject was
asked to reply by touching the space bar on the computer
keypad. After a short rest period, the N-back task with six
testing cases was completed. The complexity of the task
serves as the ground truth [46].

4) WAUC
The study included 48 subjects who did activities at three
different levels of exercise. The speed of a non-rotating cycle
or rowing machine was changed to manipulate physiological
tasks. During the exercise, sensory signals were captured. The
subject’s responses to the NASA Task Load Index question-
naire were encoded into binary values. They are classified
as high or low cognitive load using the mean score as a
cutoff provided in the dataset. After removing those sub-
jects that didn’t have all the information, we were left with
45 subjects [47].

To increase the sample count, each signal (EDA/ECG) is
split into five-second segments. Subject IDs were established
for training and testing to ensure subject independence. The
first 36,18, 43 and 42 subject samples from WAUC, MAUS,
CLAS and ASCERTAIN datasets are used for training. The
remaining 9 WAUC, 4 MAUS and 16 CLAS and ASCER-
TAIN subject samples are employed for the testing.

The class imbalance affects the CLAS, ASCERTAIN,
WAUC, and MAUS datasets. Real-world datasets frequently
have a class imbalance when one class has fewer samples
than the other class [65]. For more than two decades, this
has been a topic of interest. To solve this problem, con-
tinuous enhancement is carried out at the data level, algo-
rithmic level, and through hybrid methods [66]. Sampling
techniques have received more attention in the data-level
approach to enhance classification performance. Undersam-
pling and oversampling are two categories of sampling meth-
ods [67]. Since oversampling creates additional samples from
the minority class to compensate for the lack of samples,
it is the most effective technique among these [68]. One
of the most popular techniques in the literature to generate
these new samples is the Synthetic Minority over-sampling
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Technique (SMOTE) [69], [70], [71]. It’s based on the simple
generation of data points on the line segment joining a ran-
domly chosen data point, and one of its K-nearest neighbours
was used to sample data from the minority class [72]. This
strategy is widely used since it is pretty simple and works
incredibly well in reality [73], [74]. We also used SMOTE
to train data in line with the literature to address the class
imbalance.

B. FEATURE EXTRACTION
The following subsections explain the frequency domain fea-
tures of EDA and ECG on raw data and in the frequency
bands.

1) RAW DATA
The Discrete Cosine Transform (DCT) converts the raw EDA
and ECG dataset to the frequency domain. Using the DCT
method, a signal can be broken down into essential fre-
quency components [75]. The input signal is more specifi-
cally encoded in the DCT as a linear sequence of weighted
basis functions connected to its frequency elements. TheDCT
is given as input to the model.

2) FREQUENCY BAND FEATURES
Based on previous research [76], [77], we have identi-
fied three main bands in the frequency spectrum for ECG,
as follows:

1) 0.0–0.04 Hz Very-low-frequency band
2) 0.04–0.15 Hz Low-frequency band
3) 0.15–0.40 Hz High-frequency band
According to the literature [78], [79], we also noticed five

main bands in the frequency spectrum of EDA
1) 0.05–0.15 Hz–band a
2) 0.15–0.25 Hz–band b
3) 0.25–0.35 Hz–band c
4) 0.35–0.45 Hz–band d
5) 0.45-0.50 Hz–band e
The low-frequency and high-frequency bands are impacted

by ANS activities. Therefore, these bands’ features will be
useful for stress detection [80]. The power spectral density
of the Heart Rate Variability (HRV) derived from each band
of the ECG is calculated (using Welch’s technique). The
frequency module pyHRV [81] from the Python library is
used for this purpose. We collected 51 frequency-domain
measures from these PSDs, including a relative, absolute,
peak, and so on. The full list of measures is presented in [81].
Each EDA’s power spectral density band is calculated (using
Welch’s technique). We retrieved 40 statistical characteristics
from these PSDs (5 bands with eight features each), including
max, min, standard deviation, variance, skewness, kurtosis,
median and min.

C. ARCHITECTURE DETAILS
The proposed architecture for stress detection is shown in
Figure 2. Phases 1, 2 and 3 are the different levels of

features (low, mid and high-level) from the convolutional
layers. In each modality, hierarchical features from different
levels of convolutional layers are concatenated and given as
input to MMTM [43] for multimodal fusion. Multimodal
feature information is combined, and the features are recal-
ibrated using MMTM. MMTMmakes advantage of the com-
putationally efficient and light-weight squeeze and excitation
block [33]. A joint representation is generated in the MMTM
module by combining ECG and EDA hierarchical features.
The joint representation is used to predict the excitation sig-
nals, as explained in [43]. For the excitation, two independent,
fully connected layers are used for each modality. One fully
connected layer uses ReLU activation, while the other uses
sigmoid activation. The excitation output is multiplied by the
original features of each modality, which we gave as input to
the module.

Four convolution layers consist of filters 32, 64, 128, and
256 with 3×3 as kernel size and ReLu as activation function.
Batch Normalisation (BN) and Max Pool (MP) layers are
applied after the convolutional layers. The architecture is
completed by fully connected FC1 and FC2 and a sigmoid
output layer. The Adam optimizer is used for the model
training, with the default learning rate and a batch size of 64.
As the loss function, Binary Cross-Entropy is used. An early-
stopping strategy is used to shorten the training period if
after 30 epochs in a sequence the loss does not decrease.
The maximum classification probabilities from each model
are used to perform the late fusion.

Based on our previous study [82], we perform a multi-
modal hierarchical feature fusion on the highest performed
feature band of ECG ((0.15–0.40 Hz–High-frequency band))
and EDA ((0.15–0.25 Hz–band b). For the experiments, the
architecture follows the same as shown in Figure 2 excluding
the max-pooling and the kernel size as 2 × 2.

IV. RESULTS AND DISCUSSION
The experimental findings are presented and discussed in
this section. We ran our studies on raw data and fre-
quency band features, since we considered their effects.
The proposed model’s performance is evaluated using accu-
racy and F1-score, as shown in equations 1 and 2. In our
first set of experiments, we compared the performance of
raw data against frequency band features. Results obtained
from different concatenation combinations on ASCERTAIN,
CLAS, MAUS, and WAUC datasets are shown in Table 2.
In our second set of experiments, the performance of the
highest-performing band features of the ECG and EDA on
the proposed models using the WAUC dataset is shown
in Table 3.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100 (1)

F1score =
TP

TP+ 1/2(FP+ FN )
× 100 (2)

TP, FP, TN, and FN are True Positive, False Positive, True
Negative and False Negative.
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FIGURE 2. Architecture details of the proposed multimodal hierarchical CNN feature fusion framework. A hierarchical feature set made up of low,
mid, and high-level features is created and used as input to the MMTM for multimodal fusion. Late fusion is used to categorise subjects as stressed or
unstressed after features are recalibrated using MMTM.

A. MULTIMODAL HIERARCHICAL CNN FEATURE FUSION
Hierarchical feature fusion and multimodal fusion are the
two fundamental processes that compose the proposed multi-
modal hierarchical CNN feature fusion model. Convolutional
layers encode information at various levels using different
layers; for hierarchical feature fusion, we use this concept.
As shown in Table 2 and Table 3, the result shows the
effectiveness of the proposed methodology because the com-
plementarity between low-level information and high-level
information is completely utilized by our efficient hierarchi-
cal feature fusion method. It also proves that, besides the
hierarchical feature fusion, the multimodal fusion on gradual
level and decision level helped to enhance the model’s perfor-
mance by learning across modalities. The promising results
suggest that clinical practitioners can use the proposed model
for stress detection.

B. DIFFERENT COMBINATIONS OF HIERARCHICAL
FEATURES
We performed the proposed multimodal CNN feature fusion
on all hierarchical CNN feature fusion combinations. This
experimentation phase is essential to show that the proposed

model is stable and to identify the best hierarchical CNN
feature combination. The features of each convolutional layer
are utilized in the proposed architecture to extract the shallow,
intermediate, and deep features. As shown in Table 2 and
Table 3, first, when comparing the performance from phase1
to phase 1,2 and 3 (concatenation combinations), we observe
a consistent increase in performance as the features extracted
from phase 1 to phase 3 are added in sequence to the
model. Concatenating all level features (phases 1, 2, and 3)
enhanced the model’s overall performance more than other
combinations (phases 1, 2, and 3 alone and its combinations)
by 12-15% on raw data, 9-15% on band features and 12.15%
on highest band features of ECG and EDA onWAUC dataset.
This proves that shallow features are also important to end-
to-end networks, along with deep features, and the features
extracted from all stages make contributions to enhance the
model’s performance.

C. RAW DATA AND FREQUENCY BAND FEATURES
We compared the performance of raw data and frequency
band features on the proposed model. In the overall study, it is
observed that the frequency domain features retrieved from
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TABLE 2. Classification results.

TABLE 3. Classification results WAUC dataset on highest performed band
of ECG and EDA.

the EDA and ECG frequency bands influenced more for the
performance enhancement of the model more than raw data.
As shown in Table 2, in all the datasets, we have observed the
same shift in the performance of raw data and frequency band
features by 2-4%, respectively. We also made a performance
comparison on the highest performed band features of EDA
and ECGwith the latest dataset-WAUC. As shown in Table 3,
the results were not encouraging compared to the whole
frequency band features. This suggests that features across
the entire frequency band influence performance enhance-
ment more than the highest-performing EDA and ECG band
features.

D. GENERALIZATION ABILITY
Applying DL techniques in the healthcare industry has
several benefits, especially when it comes to predictive

modelling. The validity and generalizability of a model
are being given more consideration as the development of
DL-based models continues to advance. In the healthcare
industry, this is particularly important because algorithmic
results directly impact patient treatment and clinical judge-
ment. We proposed a subject-independent multimodal hier-
archical CNN feature fusion stress detection model. Four
benchmark datasets gathered from four separate scenarios
are used to validate and examine the generalizability of the
proposed methodology. As shown in Table 2, the results
prove that the presented framework does not overfit a dataset
obtained in a specific setting. In all four datasets, we observed
a similar performance shift.

E. T-SNE VISUALIZATION
In DL, we keep seeking data insights; to achieve that, we visu-
alize the data. To visualize the impact of the proposedmodels,
we qualitatively evaluate the proposed hierarchical fusion
strategy with the network’s feature visualization. This part
uses t-distributed stochastic neighbor embedding (tSNE) to
assess the network’s visual cognition. Features from the
FC-16 layers of the frequency band of ECG modality are
taken and used for visualization. It is evident from figure 3
that the hierarchical features of the ECG following multi-
modal fusion are discriminatory enough to classify stressed
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FIGURE 3. tSNE visualization of ECG features from the frequency band of all the datasets. Here, red dots indicate the stress class, and green dots
indicate the unstressed class. A clear separation between the two classes is visible in all the datasets.

and unstressed. We can see similar clusters in all the datasets.
The plot demonstrates the groups created based on simi-
larity, illustrating the potential capability of the proposed
approach for stress detection. The critical t-SNE visualization
map’s highlighted a distinct separation between stressed and
unstressed conditions. We have also noticed similar clusters
for EDA frequency band features.

F. COMPARISON STUDY
Nowadays, a critical healthcare challenge is the quick and
precise diagnosis of stress. Accurate stress detection is a
challenge that has been addressed using various techniques.
The traditional DL and ML approaches have shown to be
the most successful. This work mainly focused on detect-
ing stress using physiological signals–ECG and EDA using
DL. We proposed an efficient multimodal hierarchical CNN
feature fusion model for stress detection and compared its
performance with several classical ML and DL techniques.

This section analyzes the proposed method’s findings with
those of existing stress detection research using the four
datasets. Table 4 shows a summary of the performance
measures. Only a few studies have used the most recent
datasets,WAUC andMAUS, in their analyses. Existingworks
show that the majority of the works are carried on time-
frequency domain [44], [62], [83], [84], [85], [86], [87],
[88], subject dependent [44], [62], [77], [83], [84], [89],
and using machine learning models [44], [62], [83], [84],
[89], [90]. Few researchers used traditional deep learning
techniques [82], [85], [86], [87], [88]. Compared with the
existing works, our work focused on utilizing the full fea-
tures of an end-to-end network, not only on the last layer

TABLE 4. Comparison to state-of-art findings.

features. The proposed approach performs better than all
the reported state-of-the-art subject-independent and subject-
dependent studies, except for the CLAS dataset. The results
of our predictions confirm that our multimodal hierarchical
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feature fusion model is highly effective for detecting stress in
a subject-independent way.

V. CONCLUSION
This paper presents a multimodal hierarchical CNN feature
fusion for stress detection. EDA and ECG signals raw data
and frequency domain features are used utilized in this study.
For identification tasks, the convolutional layer’s shallow
feature as well as deep feature are useful. We integrate the
features on each phase of the end-to-end network to increase
efficiency and better utilise the retrieved features in each
phase. Low, mid, and high-level features of convolutional
layers are concatenated to obtain different combinations, and
multimodal fusion is conducted on each hierarchical fea-
ture set. Additionally, the combination of features can more
effectively convey the characteristics of the physiological
signals. The proposed approach is tested on four bench-
mark datasets - ASCERTAIN, CLAS, MAUS and WAUC.
Experimental results show that the proposed approach out-
performs previous studies in terms of stress detection in a
subject independent manner. Among the different combina-
tions, concatenating all the phases (low, mid and high-level
features) yields optimal performance. The proposed approach
to feature fusion is a general one that works well in end-to-
end networks. To enhance the ability of feature extraction in
neural networks, we can use the end-to-end networks deep,
medium and shallow features of end-to-end networks and
perform feature integration. Thus, in the future, we intend
to: (i) expand the studies on hierarchical feature fusion
and iidifferent multi-modal fusion techniques on hierarchical
features.
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