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ABSTRACT In recent years, there has been a significant growth in demand response (DR) as a cost-effective
technique of providing flexibility and, as a result, improving the dependability of energy systems. Although
the tasks associated with demand side management (DSM) are extremely complex, the use of large-scale
data and the frequent requirement for near-real-time decisions mean that Artificial Intelligence (AI) has
recently emerged as a key technology for enabling DSM. Optimization algorithm methods can be used to
address a variety of problems, including selecting the optimal set of consumers to respond to, learning their
attributes and preferences, dynamic pricing, device scheduling, and control, as well as determining the most
effective way to incentive and reward participants in DR schemes fairly and effectively. The implementation
optimization algorithm needs proper selection to mitigate the cost of energy consumption. Due to that reason,
this paper outlines various challenges and opportunities in developing, utilizing, controlling, and scheduling
the DR scheme’s optimization algorithm. In addition, several issues in applications and advantages of
optimization techniques in artificial intelligence approaches are discussed. The importance of implementing
demand response mechanisms in developing countries is also presented. In addition, the status of demand
response optimization in demand-side management solutions is also illustrated congruently.

INDEX TERMS Artificial intelligence (AI), demand response (DR), demand side management (DSM),
optimization algorithms.

I. INTRODUCTION

It is becoming increasingly challenging to meet the grow-
ing demand for electricity due to the widespread use of
electricity-powered appliances in homes, offices, hospitals,
commercial plazas, and manufacturing facilities. Distribution
companies compete for electricity prices in modern, dereg-
ulated power systems to maximize profits [1]. The power
price fluctuates based on the electricity used at any given
moment. To put it another way, power prices grow as demand
increases [2]. Because the electricity demand is increasing,

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Prabaharan

VOLUME 11, 2023

it is necessary to control the electricity demand. DSM is a
comparatively recent approach to managing energy demand
in the context of constrained electrical capacity, rising fuel
costs, and environmental pollution concerns [3]. Dynamic
pricing, improved metering, and supporting technology are
only some of the programmes and initiatives that are part of
DSM [4]. Several benefits to reducing the total load on an
energy network include reducing electrical system issues and
minimizing blackouts. Under this definition, DSM becomes
increasingly advantageous as energy demand persists in ris-
ing significantly, outperforming the level of growth in power
systems [5]. Other authors have indeed researched the advan-
tages of DSM in terms of economic benefits of DSM [6],
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the consequences of DSM on the industrial and residential
sectors [7], [8], the interaction between DSM and other smart
grid technologies [9], the important concepts of DSM [10],
the influence of DSM on power systems [11], the optimal
power flow procedures of DSM [12], [13], and the fore-
casts [14]. Furthermore, DSM has been implemented in sev-
eral countries, including the United Kingdom [15], India [16],
China [17], Italy [18], North America [19], India [20],
Kuwait [21], Korea [22], Turkey [23] and Denmark [24] with
promising results. With such a rapid growth rate, DSM activ-
ities perform a significant function in the electricity-powered
energy system to manage power demand, which eventually
influences the reliability and economical operation. Demand
response and energy efficiency are the two components of
DSM.

Demand Response — Using this method, they can reduce
or stabilize their energy consumption by using any proac-
tive or reactive strategy. There are many ways to respond
to demand, including peak clipping, valley filling, or load
shifting [4]. Demand response is also known as ““flexible load
shape” because of its ability to respond to change [20]. In this
scheme, utility companies encourage consumers to change
their power consumption based on supply by giving them
financial considerations [25], using schemes such as futures
price, real time price and time of use rate [26]. Furthermore,
this earns money for participants and helps the broader com-
munity by ensuring that energy remains reliable and afford-
able in the region. To date, DR programmes are classified
into two parts: (1) incentive-based programme (IBP) and
(2) price-based programme (PBP). The IBP mainly applies
to utility programmes, which involve direct load control. The
utilities and consumers control the loads used in the total
electricity market design. The energy market design also
involves capacity market, demand bidding, and emergency
demand response. In addition, the interruptible programme
exists as an incentive for the energy provider to provide a
better electricity supply, where the stakeholder’s commitment
involves providing government tax incentives.

Accordingly, this study aims to provide a comprehensive
overview of the optimization in demand response schemes
that have been applied and the main specific application/tasks
in energy DR to which these techniques have been adopted.
The goal of this paper is two-fold: 1) providing a compre-
hensive overview of the area’s evolution and future research
directions, as well as giving some insights into the start-
ups and more established sectors applying these techniques.
As this is a very active field and offers a broad perspec-
tive of the field’s evolution and potential future research
path; 2) serves as a valuable reference for academics and
experts in the area, outlining the benefits and downsides of
implementing optimization techniques in various contexts.
More specifically, this means informing them, for example,
which optimization technique has been found to work best for
their specific DR problem or application area, including the
advantages and drawbacks of using optimization technique in
each application domain. Therefore, as a result, the paper is
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divided into several parts: section II includes overview Al in
demand response; section III discusses advantages of applica-
tion; section IV outlines issues in application; section V illus-
trates the status of optimization, and section VI summarizes
the challenges and opportunities in demand response.

Il. OVERVIEW Al IN DEMAND RESPONSE

On a broad scale, demand response in the energy sector is
regarded as one of the strategies of demand side manage-
ment [27]. In an effort to encourage more people partici-
pating in the energy market, several demand response (DR)
systems have been put into place, with the support of power
system operators [28], [29], [30]. Meanwhile, the authors [31]
state that in order to determine the economic potential of
residential demand response, it is necessary to estimate the
reductions in short-term demand predictions using machine
learning algorithms [32] during demand response hours [33].
In [6], [34], and [35] involved in Artificial Intelligence (AI)
focused on theory and background, optimization, algorithm,
and various techniques such as control theory, statistics, and
psychology [36]. Keywords for artificial intelligence refer to
the study and design of intelligent entities or agents [37].
Thus, an Al-capable agent can consist of the ability of a
machine that is truly capable of reasoning in discovering the
algorithm used [38].

Optimization problems are classified according to their
nature and determined by the optimization objective [39].
A variety of Al technologies are being used. Still, some
techniques are more suitable for use. For example, ANNSs,
typically using multi variable functional approaches and
regressions, are used rapidly for short-term load and price
forecasting and supervised learning to achieve accurate fore-
casts [37]. In contrast, to the algorithms often used by
RL to capture human feedback, which integrate the DR
solution [40] in making it suitable for controlling HEMS.
Unsupervised learning is used for grouping when there is
no prior knowledge related to the category, which is often
the case for DR clients who group tasks in an aggrega-
tor [41]. Aggregators schedule the activation of DR par-
ticipants [30], [42], [43], and design their incentives and
punishments by classifying DR consumers and forecasting
their use [44]. There are several strategies for completing
these tasks, such as those the authors in [27] and [45]
discussed by employing nature-inspired optimization tech-
niques [46], swarm intelligence. Multi-agent systems [47]
may be used in the game theory context to determine the
accuracy of schedule and pricing strategy [48]. An example
of a nature-inspired optimization technique such as PSO has
been used in various engineering fields. It can undoubtedly
search for the best load curve with fast convergence.

In [49], provides an overview of demand response’s
benefits and challenges, while authors in [50] and [51]
have been involved in highlighting and analyzing the chal-
lenges of home demand response systems, load-scheduling
methodologies, and the most up-to-date information and
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FIGURE 1. Classification of Al in demand response [27].

communications technology (ICT) that enables residential
demand response applications. Aside from that, authors
in [52] and [53] concentrated on a customer’s intrinsic active-
ness, which reduces the impact of practical value on Al prod-
uct demand while increasing the effect of symbolic value on
Al product demand. Sustainable industries will be revolution-
ized by payload intelligence (Al) by empowering product Al
in terms of user and state technical variances in how demand
for user products is established [54]. For example, the sustain-
able phrase industries are related to sustainable developing
industrial processes. The phrase refers to the green energy-
intensive sectors such as the textiles, steel, cement, and paper
industries. A variety of classification of Al strategies, as seen
in Figure 1.

Ill. ADVANTAGES

Each frame of the DR issue has distinct inputs and out-
puts in order to attain the same goals. Appliances and other
assets provide a variety of input signals to the optimization
issue. The user may get the price signal from the utility.
The DR optimization issue considers various user-specific
inputs, including existing scheduling slots, device condi-
tions, comfort preferences for electricity usage, time of day,
power control signals, and data from motion sensors [55].
Energy generation is one of the asset’s input parameters [56],
along with temperature and humidity [57]. The nature of
the optimization problem, for example, and the influence
of demand volatility on the issue’s solution [58], classifica-
tion [59] and methods needed to make use of the approaches’
applicability are scrutinized. Figure 2 depicts the demand
response abstract picture, are employed in demand response
(AI approach used for energy demand response). Only the
power grid’s distribution side implements a demand response
system [60]. Energy generation at various scales, such as that
from renewable sources [61], conventional and distributed
generators, is available on the supply side [62]. In contrast,
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FIGURE 2. Demand response abstract picture [13].

TABLE 1. Summary advantage of machine learning algorithm.

Advantages

Allows to collect data or produce a
data output from the previous experi-
ence

Solves the problem by learning the
data and classifying it without any
labels

Maximizes performance and sustain
change for a long period of time

Machine learning algortihm
Supervised ML

Unsupervised ML

Reinforcement Learning

various household equipment functions are included on the
demand side [63] such as battery storage systems and electric
vehicles [64]. Since the 1950s, many methodologies and
approaches have been used to develop thinking machines in
artificial intelligence. In addition, symbolic and logic-based
reasoning, statistical learning, and even soft computing are in
this category.

A. MACHINE LEARNING

Machine learning has recently been a prominent issue in
academia. A demand response firm may better understand
how customers behave by using machine learning to get
insight into consumer behavior and generate better projec-
tions [65]. With the recent advances in machine learning, it is
now possible to create models that are both well-suited to
nonlinear data and highly accurate. In machine learning, the
subject of how to design machines that can learn from their
own experiences is addressed. According to [66], artificial
intelligence and data science rely on machine learning, which
is a nexus of statistics and computer science. Machine learn-
ing algorithms fall into four categories: supervised, unsuper-
vised, and reinforcement learning.

1) SUPERVISED MACHINE LEARNING
Data in supervised machine learning are labeled, including
comprehensive input features and outputs that correlate to
those features [65]. For example, k-Nearest Neighbors, Nave
Bayes, Decision Trees, Support Vector Machines, Logistic
Regression, Multiplayer Perceptron, and Random Forest are
examples of supervised machine learning algorithms that
are extensively employed in the field. In machine learning,
“supervised learning”’ refers to gathering or developing data
output based on prior experience — the ability to draw on
prior experience to enhance performance standards. Machine
learning under supervision helps users deal with a wide range
of practical computing difficulties.

In simpler terms, the goal is to find a mapping that works
well with new data. In DR, forecasting the demand for
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energy and the price of electricity has mostly been accom-
plished through the use of supervised learning techniques.
These techniques include Kernel-based, tree-based, and lin-
ear regression models. Support vector machines (SVM) and
Gaussian processes (GPs) are two common kernel-based
algorithms that encode the input data into a new feature space
and then discover a suitable hypothesis in this feature space.
In references [67] and [68] have utilized Support Vector
Regression (SVR) for the purpose of price forecasting. On the
other hand, in [69] utilized SVR for STLF, even for non-
aggregated loads.

In addition, there are a couple of articles that have made
use of Gaussian Copulas in DR, primarily for the purpose
of load forecasting. This method was used by [70] to predict
the charging demand of electric vehicles for day ahead DR
strategies and in [71] used to estimate the aggregate power
demand of particular household appliances for the day ahead,
while in [72] used it to forecast non-controllable loads for
day-ahead DR.

2) UNSUPERVISED MACHINE LEARNING

Unsupervised machine learning tries to discover new patterns
that may be utilized to enhance the decision-making pro-
cess by evaluating data structure [65]. Unsupervised machine
learning methods such as clustering and rule-based learning
are often employed [66]. An unsupervised machine learning
algorithm has the advantage that it doesn’t need to know
anything about the image area, there is less human error,
unique spectrum classifications are made, and the process is
quick and easy to do.

The most common application of unsupervised algorithms
in DR has been for the purpose of clustering, which is when
users create groups of objects (for example, load pro files) in
such a way that objects within the same cluster are similar to
one another, while objects in other clusters are different from
one another. Users have been divided into groups, and typical
load profile shapes have been identified, all through the use
of various clustering methods. In turn, this categorization can
be used to select consumers for DR schemes, pay consumers
for participation in DR programmes, and identify households
who might benefit from DR schemes. In addition to the
segmentation of customers, unsupervised methods have been
used to find out whether or not there are heating appliances
in a home [73].

3) REINFORCEMENT LEARNING

As it moves through its issue area, reinforcement machine
learning learns by its interactions with a dynamic
environment. Through a process of trial-and-error, rein-
forcement machine learning enables machines and software
programmes, generally known as agents, to independently
select the best behaviors to achieve a goal. Reinforcement
learning can increase performance and sustain change over
time [66].
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The RL framework has been utilized in a variety of fields,
with robotics [74], resource management in computer clus-
ters [75], playing video games via pixel input [76], and
automated ML frameworks [77] being among the most sig-
nificant. Tasks involving scheduling and controlling different
units (such home appliances and electric vehicles) in DR
have seen extensive use of RL due to its ability to factor
in user preferences (via interaction with them). At the level
of the consumer (as part of an EMS) and at the level of
the service provider, RL has been provided as a data-driven
alternative to model-based controllers for DR. This has been
done on both levels. In further research [78], [79], and [80]
the RL framework has been used to learn the DR pricing
mechanism for service providers, and [81] it has been utilized
to construct a demand elasticity model for an aggregate of
consumers.

B. MULTI-AGENT SYSTEMS

A multi-agent system (MAS) is a system that is created
around an indivisible feature called an agent [82]. Essen-
tially, according to Wooldridge, an agent is “‘a software (or
hardware) entity that is situated in a particular environment
and is capable of autonomously reacting to changes in that
environment; an intelligent agent possesses three fundamen-
tal characteristics, which are reactivity, pro activeness, and
social ability” [83]. Because of the decentralized nature of the
demand-side in power systems, there is a need for approaches
that can learn, plan, and make decisions in a complex environ-
ment involving a large number of interconnected intelligent
agents [84]. One of the most promising areas of research right
now is multi-agent systems (MAS), a sub-area of distributed
artificial intelligence that provides the capability to examine
these challenges. The three sub fields of MAS that were
looked at in this review are automatic negotiations, cooper-
ative/coalitional game theory, and mechanism design [85].
These three sub fields are:

1) COOPERATIVE GAME THEORY

In recent years, it has been revealed that game theory
may be used in the analysis of energy management and
price-based demand response strategies [86]. According to
the authors [87], a demand response model built on a
game-theoretic framework was introduced. Coalitional game
theory, often known as cooperative game theory, is a foun-
dational concept in game theory. Rather than focusing on
individual player strategies, cooperative game theory instead
considers the coalitions that players might form with one
another. The goal is to predict which coalitions will develop in
the future based on the assumption that each alliance has the
ability to acquire certain advantages (and hence the payoffs
the agents will obtain). Instead of focusing on the actions
taken by individuals to get rewards, the cooperative game
theory focuses on how benefits are distributed among those
who participate [88].
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As aresult, cooperative game theory has seen extensive use
in the field of demand response, particularly in cases where
parties have achieved binding agreements (i.e., incentive-
based DR). In demand response, cooperative game theory is
used to pick the best set of energy consumers to participate
in DR schemes and distribute the coalition’s dividend among
DR participants (known as the solution concept). The DR
flexibility members’ money is distributed among themselves
as the aggregator strives to meet specified requirements. Fol-
lowing this distribution is a notion for a solution Banzhaf
Index (core), Nucleus (depending on deficiency), Kernel and
Stable Set are often used in most solutions. The Shapley
Value (SV) is the most often used solution strategy in DR
to assure a fair distribution of payoffs [89]. For the time
being, the SV’s allocation of effort, reward, and punishment
in a DR programme is a unique and fair approach to do so.
It is suggested that each participant get a prize based on their
performance in the programme [90], [91].

2) AUTOMATED NEGOTIATIONS

When assigning resources that may be utilized to dis-
tribute goods, negotiation is the procedure to use [92],
or tasks [93], among of agents [94]. Automated negotia-
tion research focuses on creating software systems that can
negotiate on behalf of users or owners in a wide range of
settings [95]. These programmes are called software agents,
or just agents, for short. In the broadest sense, automated
negotiation is primarily concerned with developing high-
level procedures for the interaction of agents. A purchaser
representative (customer or aggregator) will interact with a
seller agent (provider or retailer) on a variety of topics during
the day in automated discussions connected to energy demand
response. The issues that are the subject of the negotiation are,
for example, the price or the amount of energy.

TABLE 2. Advantages of multi-agent systems algorithm [83].

Multi-agent algorithm
Cooperative Game Theory

Advantages

Used to ensure team cooperation by
considering a combination of individual
costs as a team cost function

Can be employed for many tasks human
negotiators regularly engage in, such as
bargaining and joint decision making

Automated Negotiations

C. NATURE INSPIRED INTELLIGENCE

When developing novel computer-based analysis and com-
puting methods, scientists have long-drawn inspiration from
natural and biological systems. Researchers in the field of
artificial intelligence have established the sequence of activi-
ties that an agent must do in order to achieve its goals by using
nature-inspired algorithms for searching and planning [96].
Meta-heuristics are based on evolution, biological swarming,
or physical events rather than pure algorithms are widely
seen in the literature on DR. To define an array of work-
flows that employ intelligent learning strategies for exploring
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and exploiting the search space, the term meta- heuristics”
refers to a category of stochastic algorithms that are both
randomized and methodologically random. Additionally, the
term “iterative processes that optimize heuristic techniques”
has been used in the literature [97]. A nature-inspired algo-
rithm implemented in a home energy management system
(HEMS) might be used to plan con-sumer loads and appli-
ances, or aggregators and retailers could utilize the algorithm
to optimize the prices of their customers who participate in
demand response schemes. Because meta-heuristics can help
find an answer in a certain amount of time, it has been used
frequently in the DR situation when the design process might
be too expensive.

1) EVOLUTIONARY ALGORITHM

Computational methods that mimic the evolution of life’s
most fundamental processes, including reproduction, muta-
tion, and the recombination of DNA, are known as Evolu-
tionary Computation (EC) or Evolutionary Algorithms (EA).
The architecture of an EC algorithm consists of three basic
steps. At this point, a few suitable solutions are selected from
a pool of potential options. After that comes evolutionary
iterations, including fitness evaluation and selection as well
as population reproduction and variation as operational com-
ponents (also known as population reproduction and interpre-
tation). When determining a new population, it is necessary
to evaluate the initial population’s objective functions for
fitness evaluation purposes. At the same time, selection cri-
teria are used to select those individuals who perform best to
determine a new population through reproduction crossover,
replacement, and variation or mutation methods. In this step,
a fresh population is analyzed to deter-mine whether the
individual’s judgment of the optimization function meets
a termination criterion. Learning classifier systems (LCS),
differential evolution (DE), and estimation of distribution
algorithms (EDA) are some of the examples of evolutionary
learning algorithm [98].

Evolutionary algorithms have several benefits, such as
not requiring gradient information, being able to run in
parallel, and the capacity to be exceedingly exploratory.
This strategy, unlike conventional ones like optimizing an
unknown function that specifies a user’s utility for energy
consumption or anticipating future prices on the power mar-
ket, is useful when structures can’t be accurately character-
ized in advance. Evolutionary techniques have inherent limits
regarding convergence, interpretation ability, and selecting
the best solution [99]. Many sectors have embraced EC algo-
rithms because of their advantages [100].

2) SWARM ARTIFICIAL INTELLIGENCE

As a sub field of Al, ”swarm intelligence” explores how
biological hordes act in concert and how it might be used
to solve various issues in other domains by mimicking this
behaviour [101]. Particle Swarm Optimization (PSO) [102],
Ant Colony Optimization (ACO) [103], Artificial Bee Colony
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TABLE 3. Advantages of nature-inspired intelligence algorithm [98], [102].

Nature-Inspired Al-  Advantages

gorithm

EA The flexibility of the procedures, as well as
solves problems through processes that emulate
the behaviors of living organisms

PSO Simple concept, easy implentation, robustness
to control parameter, and computational effi-
ciency

ACO Inherent parallelism, positive feedback ac-
counts for rapid discovery of good solutions,
efficient for TSP and similar problem and can
be used in dynamic applications

ABC Self-organizing and collective intelligent data,
simplicity and proper exploration ability

GWO Easy to implement due to its simple structure,

less storage and computational requirements,
faster convergence due to continuous reduction
of search space

(ABC) [104], and Grey Wolf Optimizer (GWO) [105] are
the most widely cited swarm intelligence algorithms in the
literature. These algorithms are discussed in further depth in
the author’s reviews [106], [107], [108]. Like evolutionary
techniques, swarm Al can get stuck in local optima when used
in conjunction with swarm intelligence. Rather than rejecting
”poor” particles in GA, swarm Al systems use all histories
to search [109]. Because there are fewer variables to modify
when using technologies like swarm artificial intelligence,
it requires less calibration and customization. Aggers and
retailers deploy swarm artificial intelligence algorithms for
energy demand response to discover the most cost-effective
scheduling and pricing schemes. Many variables, quadratic
functions, and limitations derived from AC power flow cal-
culations are frequent features of the non-convex issue in
DR. In this circumstance, heuristic optimization may be able
to quickly find a solution close to the optimum while using
fewer resources than other mathematical techniques. This one
is one of the most extensively used, but also the most complex
to execute, heuristic optimization strategies. To put it another
way, each person in the group (referred to as a particle) seeks
an objective (for example, food) while considering other
people in the group’s findings. This is an example of “’swarm
dynamics” (also referred to as particles) [103]. Advantages
of swarm intelligence shown in Table 3 such as PSO, ACO,
ABC, and GWO.

D. ANNS

On the right is a representation of an artificial neural network
(ANN) that is based on biological nerve systems, especially
the human brain. For an ANN, the input (independent vari-
ables), the hidden layer, and the output layer (dependent vari-
ables) are all three layers that make up a network. The input
layer receives data that will be processed by the hidden layer,
while the output layer provides the result [110]. An ANNs is
a computer model of the brain. A natural brain can earn and
adapt to a dynamic environment. ANNSs is a branch of the Al
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family, including Fuzzy Logic, Expert Systems, and Support
Vector Machines.

Multiple fields have made use of ANNs for tasks like
classification, clustering, pattern recognition, and predic-
tion [111]. In DR, ANNSs of varying architectures and depth
(number of layers) have mostly been employed for forecast-
ing purposes. ANNs are used in the majority of DR applica-
tions to predict the future consumption of an asset (building,
appliance, consumer group), the flexibility of a load, or the
short-term pricing of power (from several minutes to one day
ahead). As it turns out, ANNs can do the job of nonlinear
regression tools quite fine.

1) SINGLE HIDDEN LAYER ANN

The feed-forward ANN, which has only one hidden layer,
is the most widely employed model in the NDR domain.
In addition, auto regressive feed-forward models are used in a
variety of contexts [112]. A convolutional neural network and
an Elman neural network were the only two RNNs that could
discover, both in works by [113] and [114] (non-linear auto
regressive with external inputs, RNN). There has been a lot of
research in DR using single-hidden-layer ANNs. As well as
using ANNSs to classify customers based on their propensity
to participate in a demand response programme [115], con-
sumers’ thermal discomfort or their capacity to utilize their
utilization [116] has been modeled using single-hidden-layer
ANNSs, which are highly dependent on factors such as temper-
ature, time of day and week, and price. The global approx-
imation theorem states that all a fully connected FF-ANN
needs are one hidden layer to learn a specific operation.
Evidence suggests that utilizing concepts with more hidden
layers (deep ANNS) can result in smaller architectures with
fewer generalization errors [117].

2) DEEP LEARNING

Deep learning is a branch of machine learning algorithms that
is capable of digesting raw data as well as developing the
structures required for analysis to detect patterns in an auto-
mated way [118]. However, despite the fact that the phrase
”deep learning” may be applied to ML frameworks that are
not necessarily neutrally inspired is most commonly used to
describe an ANN with two or more hidden layers. In some
instances, deep learning algorithms have approached human
or even superhuman levels of performance [119]. Deep neural
networks come in a wide variety of architectural forms. Peo-
ple use feed-forward neural networks [120] and convolutional
neural networks [118] in supervised learning, as well as
RNNs [121] and auto encoders [122]. Deep reinforcement
learning may also be achieved by combining deep learning
with RL. DR’s major application of deep architectures, like in
the case of single hidden layer ANNS, has been for load and
pricing forecasting jobs. The deep architectures are used by
merchants to predict how people will react to DR events [34],
manage home appliances based on DR events [123], find
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TABLE 4. Advantages of ANNs algorithm [123].

ANNs Algorithm
Single hidden layer

Advantages
Discovering various relationships between

ANN different inputs and perform multiple tasks
in parallel without affecting the system per-
formance

Deep Learning Offer better and more effective processing

models and ability to learn unsupervised
drives continuous improvement in accuracy
and outcomes

socio-demographic information about customers, and cluster
customers using deep auto encoders.

IV. ISSUES

Numerous issues must be considered for DR programmes to
be implemented successfully; these range from forecasting
load and power rates to selecting appropriate customers to
engage in DR initiatives and developing algorithmic tools
to perform demand-side opportunities. DR has seen the use
of artificial intelligence methodologies throughout the range
of DR, providing forecasting capabilities, effective real-time
operation of distributed systems, and selection while also
responding to a changing environment and learning through
human nature [124]. The highlighted issues such as fore-
casting, scheduling and controlling, incentive mechanism and
pricing design, and segmentation customer and load.

In demand response scheme, Al approaches have been
used to estimate power costs and various load forms.
Real-time power scheduling and long-term system and ser-
vice provider planning can be aided by forecasting tech-
niques [125]. Accurate long-term projections can helps
service providers and operators understand flexibility, which
users should be targeted for DR, and how to establish DR sig-
nals in compensation/pricing. DR forecasting includes load
and price predictions. Besides in controlling and scheduling,
a fundamental difficulty for services providers and end-users
is the wide selection of devices employed in DR. Without
automated scheduling and control processes, it is impossible
for a provider to efficiently manage a portfolio of demand
response units. It is also critical to automate the scheduling
and control of demand-side appliances to increase the number
of consumers participating in DR schemes; otherwise, cus-
tomers may suffer from response fatigue and eventually drop
out of the DR programme [126]. Both the service provider
(aggregator) and customer levels are available for scheduling
and controlling the different DR units. The primary dis-
tinctions between the two levels are the size and scope of
units. The algorithms used by the aggregator to schedule and
control devices must be more adaptable and scalable than the
algorithms used by consumers.

In incentive mechanism and pricing design might affect
demand response program profitability and performance. Fair
and attractive remuneration helps DR programs recruit and
retain participants. Hierarchical energy market papers often
employ optimization algorithms to find the optimal dynamic
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scheme for the day ahead to maximize service provider profit.
However, they must consider market constraints and con-
sumer dissatisfaction when markets shift [127], [128], [129].
The novel DR mechanism proposed by Meir et al. [130]
also uses Vickrey-Clarke-Groves pricing to give a flexible
set of contracts for DR to reduce consumption, reliable cus-
tomer subsets are chosen. Ma et al. [131] add unknown
preparation costs and multiple effort levels to their previ-
ous work [88]. This study recommends reward-bidding over
penalty-bidding. DR prioritizes incentive-based. contract
design. Lopes and co-authors [132] study store-commercial
customer bilateral contracts. Like Haring and colleagues
[133], they create incentive contracts for auxiliary services
that involve service providers in the wholesale ancillary ser-
vice market and retail consumer interest [69].

In addition, for segmentation of customer and load, group-
ing electricity users into distinct categories is a major use case
for DR. Service providers may use it to help build disaster
recovery programmes, aggregate resources, and analyze the
potential burden of participating in multiple DR programmes.
Based on their load profiles, customers are categorized into
demand response schemes [134], [135], [136], [137]. Peak
loads of [96], the average load of five consecutive week-
days [69], and specified factors such the mean relative stan-
dard deviation and seasonal score. Customers can be grouped
without load statistics. Customers can be categorized by a
variety of variables, including bid-offer data in an incentive-
based demand response scheme [138] and the behaviour of
EVs participating in demand response [139]. In addition, new
research uses clustering algorithms to create DR applica-
tion flexibility envelopes. Iria and Soares employed cluster-
ing techniques to determine energy market aggregator asset
flexibility [140].

V. STATUS OF OPTIMIZATION

Artificial intelligence helps demand response methods over-
come many of its problems, but it also comes with its own
set of drawbacks and limitations. There are numerous ways
for consumers to participate in the power market on the
demand side. In addition, customers can take a more active
role in reducing their energy consumption. As a demand-
side management option, the author [27] investigated demand
response in conjunction with energy efficiency as a smart
grid solution that also included advanced systems, control,
monitoring, and communication networks. Al and energy
efficient ventilation systems ave also been a significant focus
for the author [141]. As the Al method’s DR application field,
many issues need to be addressed, as well as the successful
implementation of DR programmes. A focus on demand side
management and a deeper exploration of Al is the focus
of this investigation, which aims to ensure the Sustainable
Development Goals can be adequately achieved. Based on
different load classes, such as residential, commercial, and
industrial, Table 5 compares other goal functions in the con-
text of demand response and energy efficiency approaches
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TABLE 5. The comparative analysis of techniques used in demand side management.

Ref. Technique used in DSM Objective Concerned
Field/Area

[142] DR based building algorithm To improve grid capacity Industrial

[143] DR programs To examine how DR affects the distribution of network reliability benefits Residential, Industrial

[144] Binary PSO To schedule Demand side resources Commercial,
Industrial

[145] Home energy management (HEM) To minimize household appliances from consuming excessive amounts of Residential

electricity

[146]  Game energy theory In order to decrease energy use and consumption shifting Residential,
Commercial

[147]  Optimal power scheduling To arrange power for DR Residential

[148] Demand response (DR) programmes In order to examine the impact of DR on electricity market Residential,
Commercial

[149] Game theory based & proximal To study distributed DSM Residential, Industrial

algorithm

[150]  Appliance commitment algorithm To schedule household load Residential

[151] DR based smart grid techniques To investigate DR as a potentially profitable resource Residential,
Commercial

[152] Transactive market mechanism To investigate the use of DR in the regulation of commercial buildings. Commercial

[153]  Score based intelligent HEM To determine how the HEM’s operation involves balancing the interests Residential

[154] Dynamic DSM techniques To control the amount of electricity used in a home Residential

[155] Load management technologies In order to examine the DSM idea for electricity providers Residential, Industrial

[156]  Stochastic pricing Analysis To examine the stochastic pricing capacity-controlled DSM and its Residential

implications
[157] Mathematical model & approaches To research DR in smart grids Residential,

Co-ordinated scheduling
DSM &Multipronged approach

In order to improve the efficiency of smart home energy services
To investigate the application of DSM for electricity distribution.

Commercial
Residential
Commercial,

Industrial

utilized for the DSM under different load classifications. The
objective function is similar in all these techniques; however,
each is defined for other purposes with various constraints
and operating conditions.

This analysis revealed that numerous artificial intelligence
approaches are employed and that certain strategies are more
appropriate for specific tasks than others. As a result, it is
demonstrated that ANNs, which are regularly utilized for
multi-variable function optimization and structural equation
modeling, have become widely employed for short-term load
forecasting and price forecasting, including supervised learn-
ing, to accomplish precise forecasts. Algorithms based on
RL are frequently utilized to gather user feedback, making
them particularly well suited for implementations of HEMS
that incorporate a DR approach. On the other hand, clus-
tering problems at the aggregator stage are often handled
using unsupervised learning, given there is no background
knowledge of classifications. When clients are categorized
and actual demand is forecast, the aggregator schedules the
formation of DR members and sets rewards and penalties
for consumers. Alternatively, pricing and scheduling strate-
gies can be optimized by utilizing multi-agent systems in
game theoretic environments. Nature-inspired approaches
such as PSO and ACO have been emphasized for these
challenges, which can demand the employment of these
techniques. Because of its widespread application in fields
like technology and science, this optimization technique has
earned high praise in the field. Furthermore, computer and Al
advancements have greatly improved demand response and
energy efficiency implementations in the DSM configuration.
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A wide range of Al approaches are now being implemented to
implement these demand-response and energy-saving strate-
gies. For Al-driven energy efficiency applications, Table 6
gives a detailed look at and evaluation of the current state of
the art in the field.

VI. CHALLENGES AND OPPORTUNITIES

This section focuses on the fundamental Al methodologies
used in energy consumption response, the main development
fields of focus, and the ongoing industry involvement and
investment in this field. A summary of the challenges and
opportunities of each method will be shown in Table 7.

A. FORECASTING TASKS

One of the most frequently used approaches is artificial neural
networks, primarily used for forecasting. The researchers
employed ANNs for load and price prediction, employ-
ing single-hidden-layer and multi-layer structures. Demand
response forecasting jobs, where prophecies might be linked
to several inputs in a relatively non-linear form, have found
favor with ANNs because of their flexibility in learning
arbitrary, non-linear, complicated functions. Nonetheless, the
effectiveness of the proposed variables is not guaranteed by
any one method; rather, it can vary widely depending on the
meta-model used as sources, the training process, and the
configuration of multiple sets of parameters. Furthermore,
ANNs may be prohibitively costly and generally involve a
large amount of data in order to challenge other, less flex-
ible techniques, which must be recognized. Because of the
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TABLE 6. Comparison of the Al in DSM.

Ref.
[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[46]

[38]

[33]

Al Techniques used
ANN

ANN, PSO

Deep learning

Fuzzy c-mean clustering,
GA

Machine learning; k-mean

clustering, support vector

machine
Classical ~ combinatorial
optimization,  Factorial-

HMM, Latent Bayesian
melding, Super-state
HMM

GA

Meta-heuristic optimiza-
tion, i.e., Harmony search
algorithm, Bacterial for-

aging optimization, and

enhanced deferential evo-
lution

Hidden Markov model
(HMM),  Log-Gaussian
Cox process

Conventional
multivariable grey theory
model, PDO

ACO

SVM

GA

Purpose

A method for mod-
elling and predicting
solar energy has been

presented

The use of non-
intrusive load
monitoring (NILM)

to model and identify
equipment for DMS
in a home energy
management  (HEM)
system is becoming
increasingly popular
Air conditioning power
consumption decompo-
sition using NILM

Designed a smart grid
approach to link re-
newable energy output
(solar and wind) with

HVAC load
Disseminated data-
driven burden
disaggregation
Evaluated NILM
assisted appliances’
anomaly detection
approach

A approach for siz-
ing wind-solar (hybrid)
systems was presented
in order to optimize the
configurations of the
systems

A domestic load con-
trol method was de-
signed with the goal of
lowering total costs, en-
ergy demand, and the
peak-to-average ratio in
homes

An innovative NILM-
assisted  strategy to
monitoring the health
of older persons was
provided

Predictions for solar
power generation in the
short term

To reduce electricity
cost and mitigate the
MD, improved LF

to predict annual en-
ergy consumption of
dairy farms

cost reduction of elec-
tricity and PAR reduc-
tion

Finding
the ANNs can process noisy and

missing data and that means they
have a high fault tolerance

reductions in the size of drive units
used to track the heliostat, and the
foundations required to support these
structures

as a more general learning and deci-
sion making paradigm, will deeply in-
deep fluence learning, machine learn-
ing, and artificial intelligence in gen-
eral

Fuzzy clustering is a powerful unsu-
pervised method for the analysis of
data and construction of models. In
some cases Fuzzy Clustering is more
natural than K Means clustering
Method can deal with imbalanced
data sets effectively by alleviating the
influence of dominant class

real-world energy disaggregation data
set, show that the use of SACs
dramatically improves the original
AFHMM, and significantly improves
over a recent state-of-the-art approach
The performance of GA is bet-
ter compared to PSO and ACO to
archieve the objectives under TOU
and IBR

The comparison is based on the qual-
ity of the results obtained, the compu-
tational demands and the sensitivity
on the algorithmic parameter

approaches effectively captured the
nonlinear and multimodal relation-
ship in process variables and showed
superior process monitoring perfor-
mance compared to those conven-
tional process monitoring approaches
forecast results at various resolution
levels yield the overall forecast and
reveal that this procedure is suitable
for modeling the rainfall-runoff pro-
cess

cost electrcity reduction up to 5.8%
when applied load shifting method

improved the relative prediction error
of electricity consumption

performance of GA is better com-
pared to ACO and PSO to achieve the
objectives under TOU and IBR

Devices/Appliances

Photovoltaic Panels

Electric rice cooker, Electric
water boiler, Steamer, Televi-
sion e.g., smart home

Air conditioning (AC) unit
(e.g., load disaggregation)

Load of heating, ventilation,
and air conditioning (e.g.,
Energy management)

Washing machine,
electric oven, dishwasher,
clothes drier (e.g., load
disaggregation)

AC and refrigerator (e.g., ap-
pliance anomaly detection)

PV modules, Wind turbines
(e.g., optimal sizing)

Cleaner, water management
heater, water pump; dish-
washer; refrigerator; air con-
ditioner; oven; washing ma-
chine; and fabric dryer are all
examples of household appli-
ances (e.g., HEMS)

Kettle (e.g., NILM assisted
health)

PV panels (e.g., prediction)

Scheduling Smart Home Ap-
pliances

microwaves, dishwashers or
washing machines

Financial markets
Manufacturing system

generally low acceptance rates of DR programmes, it is vital

to consider this while employing DR programmes.
Supervised machine learning techniques are another

class of technologies that have been employed mainly for
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forecasting purposes in the past. Suppose users compare these
techniques to artificial neural networks. In such situation,
users will find that the latter are typically less flexible, deploy
more skewed approaches, and tend to depend on feature
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TABLE 7. Summary of the challenges and opportunities of each method.

Load Forecasting Price Segmentation Schedulling & Control Schedulling & Pricing/Incentive
Forecasting Tasks (consumer) Control Design
(aggregator)
Supervised 14 2 2 2 1
Unsupervised 1 24 1 1
Reinforcment 1 11 4 5
Learning
Swarm Al 1 3 9 2
Evolutionary Al- 11 2 3
gorithm
Deep Learning 6 5 2 2
ANN (single hid- 23 6 1 3 1 3
den layer)
Coooperative 6
Game Theory
Automated nego- 2

tiotion

architecture to attain effective outcomes. Supervisory tech-
niques like regression trees [170], [171] and gradient boost-
ing [67], on the other hand, perform better when dealing with
missing data than unsupervised approaches such as ANNs
and require fewer samples to train. That has advantages
from the standpoint of demand response. Using a forecasting
model that produces a distribution rather than a point estimate
makes it possible to make better decisions in DR while also
paying participants more fairly because of more accurate
baseline estimates. A further reason for this growth is that
intelligence forecasting systems have the ability to develop
forecasts that encompass several spatial and temporal bound-
aries and the capability to include ambiguity in the estimates,
resulting in better-informed future predictions, artificial intel-
ligence systems use a high-computational method. The sys-
tems’ reliability may be affected by the excitable tuning and
feature design used to make the system more accurate.

B. MULTI-AGENT METHODS AND PRICING MECHANISM

There are many more devices in the existing DR systems than
in the traditional ones, which means that the interests of the
various parties involved are not always aligned with the needs
of the demand response system operator. Examples include
HVAC systems in buildings, electric vehicles, and water
tanks. Traditional DR approaches assume that the devices
being managed are under direct control. Increasingly relevant
in these systems are multi-agent systems techniques, such
as those based on game-theoretic mechanism design [172].
Few exceptions can be found in the research that has stud-
ied the use of multi-agent systems in developing pricing
and incentive mechanisms. A technique called mechanism
design has been utilized to develop demand response systems
with certain favorable qualities while also meeting require-
ments [173]. Even though these approaches can provide valu-
able insights into the performance of decentralized demand
response structures, which natural individuals form, users
are frequently primarily dependent on assumptions made
throughout the modeling process. If these assumptions are
not met in practice, the resultant schemes will not necessarily
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possess the desired characteristics. Coalitional game theory
has been used to design incentive-based DR systems and
distribute participants’ expected payoffs. Since it is based
on contractual agreements between providers and consumers
in a demand response scheme, it is frequently utilized in
incentive-based demand response schemes. On the other
hand, challenges like computing complexity and intractabil-
ity must be solved before these approaches may be made
more broadly applicable. Combining function approximation
techniques like those developed in [90] and [174] with fast
search techniques might be a promising approach to tackling
these issues.

C. DYNAMIC CONTROL AND SCHEDULING

As part of the machine learning methodology, reinforce-
ment learning techniques have been mainly used to con-
trol problems. HEMS are necessary due to the need for
automated consumer scheduling duties and control of the
various demand response structures, especially in the resi-
dential sector. In addition, at the provider scale, particularly
in specific load control demand response schemes, where
a certain majority and variety of devices and equipment
throughout the aggregator’s offering render the operation of
control and scheduling impractical without mechanizing a
substantial amount, if not the entire process, control systems
for DR are required to learn from customer contact and oper-
ate following their preferences. As previously mentioned,
Q-learning is the most extensively used reinforcement learn-
ing algorithm in DR. When the set of possible actions and
environmental conditions get huge; it might be challenging
using tabular approaches such as Q-learning, even though
it is an online method with convergence guarantees. The
use of an ANN [175] or a FQI [77] to approximate the
action-value function has been attempted to alleviate this
problem in certain studies. When dealing with vast state
paces, the literature has also used multi-agent real-time
approaches. When dealing with large state fields, multi-agent
real-time techniques have also been used successfully in the
literature.
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D. SCHEDULING TASKS

Algorithms derived from natural phenomena are far more
frequently used to plan work schedules. In reality, it becomes
more challenging to find a workable solution to a scheduling
problem as the problem’s complexity, non-linearity, and non-
convexity rise. Because of its exploration and exploitation
abilities, this collection of algorithms can identify promising
solutions in a fair amount of time. Other important features
are their resilience and flexibility to changing situations and
environments, the fact it is parallelism, the ability to com-
bine anti-local-optimization strategies, and speed make these
algorithms particularly appealing. This class of algorithms
often has “anytime” properties, meaning it can re-generate
interesting responses if the computation is halted. Regarding
actual applications, this is a crucial characteristic while there
are usually physical limitations in terms of the equipment
and computing capacity that can be utilized. Alternatively,
nature-inspired techniques may not always result in finding
the optimum route, and various methods may have their
own limitations that must be considered while developing a
solution. Participants may have to deal with premature con-
vergence and unpredictable results if GAs are not correctly
tuned. In contrast, PSOs can get locked into early conver-
gence and slow convergence speed if they are not adequately
tuned [97].

Artificial intelligence derived from nature-inspired is often
used in developing pricing schemes, in which the supplier
aims to predict the rates for demand response that will
maximize their return while still considering the user inter-
ests and system constraints, among other things. Concerning
DR, the NSGA method as well as its variants have already
been employed in multi-objective to optimum scheduling
of demands, as well as other applications [176], [177].
Over the years, a few traditional techniques for tackling DR
scheduling issues have been created. These methods include
nonlinear and linear programming, mixed-integer nonlin-
ear, and mixed-integer linear programming, depending on
how the scheduling problem is exposed. Linear program-
ming is the most used approach [178]. Compared to typical
DR scheduling techniques that are deterministic, population-
based, stochastic, and nature-inspired Al systems can man-
age challenges with more decision factors and adapt to
changes in scheduling much more quickly and effectively.
These capabilities are significant because it allow adaptive
DR systems to respond rapidly to shifts in the schedules
of appliances and other pieces of equipment. Mathemati-
cal optimization/scheduling approaches frequently rely on
implicit assumptions like linearity or convexity. A nonlin-
ear control problem is frequently encountered in real-world
demand response systems due to the increasing presence
of heterogeneous equipment such as battery packs, HVAC
units, production equipment, and electric vehicles (EVs).
Regarding non-linear optimization issues, GAs, NSGAs,
and PSOs routinely beat conventional techniques in most
cases.
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E. LOAD CLUSTERING AND CUSTOMER SEGMENTATION
In the existing demand response system, there is only a
small amount of labelled data to use as a foundation for user
classifications, which makes it difficult to properly assess
customers. In order to address the problem of segmenting
electricity consumers, clustering (unsupervised) models are
the only practical option currently available. Research that
supports the study’s findings and is consistent with them indi-
cates that clustering methodologies to build customer groups
are consistently used across publications evaluated. Even
though clustering algorithms are effective in this application,
it also presents several challenges. These algorithms have a
number of drawbacks, one of which is that their methods are
affected by the high dimensional. It is tough to analyze their
results because of a scarcity of labeled data, to name a few of
the issues.

VIl. CONCLUSION
The increased usage of electric vehicles (EVs), heat pumps,
and distributed energy resources (DERs) are straining the
electricity infrastructure. DR solutions are gaining popularity
because they allow grid operators to maintain grid balance
while avoiding or postponing costly network enhancements
or backup production. Initially targeted at a few significant
industrial and secondary clients, demand reduction (DR)
programmes are increasingly expanding to include residen-
tial and secondary loads. The user must not only select
the responsible end-users but also plan their usage, put up
DR controls, and decide on incentive and penalty schemes.
Researchers have used optimization algorithm solutions to
achieve these goals. Because traditional methods were ineffi-
cient and unreliable, they turned to these new methods.
Artificial intelligence (AI) has recently been a hot topic
in research to business, with numerous start-ups spring-
ing up in response. Even though these patterns are well-
established, further study is required to uncover the optimal
AI-DR solutions. Many proposed remedies have not been
subjected to large-scale experimentation and trials. More
research, industry ventures, and large-scale experiments are
needed to produce more accurate models and Al solutions.
This technology will make optimization strategies routine in
the energy demand response market.
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