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ABSTRACT Brain magnetic resonance images (MRI) convey vital information for making diagnostic
decisions and are widely used to detect brain tumors. This research proposes a self-supervised pre-training
method based on feature representation learning through contrastive loss applied to unlabeled data. Self-
supervised learning aims to understand vital features using the raw input, which is helpful since labeled data is
scarce and expensive. For the contrastive loss-based pre-training, data augmentation is applied to the dataset,
and positive and negative instance pairs are fed into a deep learning model for feature learning. Subsequently,
the features are passed through a neural network model to maximize similarity and contrastive learning of
the instances. This pre-trained model serves as an encoder for supervised training and then the classification
of MRI images. Our results show that self-supervised pre-training with contrastive loss performs better than
random or ImageNet initialization. We also show that contrastive learning performs better when the diversity
of images in the pre-training dataset is more. We have taken three differently sized ResNet models as the
base models. Further, experiments were also conducted to study the effect of changing the augmentation
types for generating positive and negative samples for self-supervised training.

INDEX TERMS Contrastive learning, convolutional neural networks, pre-training, ResNet, self-supervised.

I. INTRODUCTION
The Brain is a complex part of the human body, and any
abnormality can affect an individual’s health [1]. A brain
tumor is an abnormal and uncontrolled growth of the human
brain cell. The brain tumor is classified as benign or malig-
nant; or as pituitary, meningioma, or glioma [2], [3]. Inva-
sive approaches such as biopsy or noninvasive methods such
as magnetic resonance imaging (MRI), positron emission
tomography, and computed tomography are used for detect-
ing brain tumors. Among these, MRI is the most preferred
technique due to its capturing detailed information about the
tumor’s location, progression, shape, and size. To assist a doc-
tor’s diagnostic decisions, several researchers have proposed
computer-aided systems using machine learning and deep
learning methods [4], [5], [6]. Further, several researchers
have applied deep learning methods to solve complex prob-
lems such as authors in [7] use interpretable deep neural net-
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work architecture on sequence-based encoding features for
discriminating the Adaptor Protein complexes. Kha et al. [8]
proposed a novel model constructed using convolutional
neural network (CNN) and position-specific scoring matrix
(PSSM) profiles for identification of SNARE proteins.

Deep learning methods such as convolutional neural net-
works (CNN) do not need manually handcrafted features.
They have shown exemplary performance in computer vision
on large, labeled datasets such as ImageNet [9]. Such deep
models may not be suitable for the medical imaging field,
where the sample size of the dataset is usually small.
Several researchers have used pre-trained CNN models to
overcome this issue and adopted transfer learning and fine-
tuning approaches [10], [11], [12], [13]. However, all these
approaches apply supervised classification and require a
labeled dataset, in the absence of which several researchers
have used unsupervised or self-supervised learning. Repre-
sentation learning through contrastive learning is one such
approach; the main idea behind the approach is to learn the
representation function by creating augmentations for each
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data point. Then contrastive loss is applied to maximize the
similarity between the data point and its augmentation. At the
same time, the similarity between the data point and other
samples is minimized. For example, it has been shown [14]
that distributions of augmentations of different dog images
tend to be similar. Still, their union has little overlap with
distributions of augmentations of cat images.

In this work, we apply self-supervised learning based on
contrastive loss for brain MRI classification using unlabeled
data for pre-training the model. The base architecture used
in our experiments is ResNet [15]. Deep networks naturally
capture low- and high-level features [16] and classifiers in
an end-to-end multilayer fashion, which is further enhanced
by increasing the number of layers. However, deep networks
come with the problem of vanishing/ exploding gradients,
and several researchers have addressed these problems by
normalized initialization or intermediate normalization lay-
ers [17], [18], [19]. But the degradation problem comes up
when the deep networks start converging, and accuracy gets
saturated and degrades rapidly [20]. He et al. [15] present
a residual learning framework to ease the training of deep
networks and address the degradation problem. These ResNet
architectures form the base models for our work.

We propose SSCLNet: A Self SupervisedContrastiveLoss
based pre-trained Network for Brain MRI classification. The
augmented data points are input as positive and negative
instances to a deep neural network for label feature learning.
The learned features are further passed through a neural
network for contrastive learning of instances. Supervised
training is applied with a small percentage of labeled data.
Finally, the classification is performed using the learned fea-
tures. We performed numerous experiments with different
ResNet architectures and varied the ratio of labeled data
used for supervised training. The proposed technique was
applied to brain MRI datasets. The major contributions of
this paper are as follows: (i) Pre-training a model by self-
supervised contrastive learning for Brain MRI classification,
and (ii) Performance analysis by varying the percentage of
labeled data used for supervised training and changing the
augmentation types. The privilege of our work over existing
approaches is that the network can learn better features for
downstream classification tasks by pre-training. And thus, the
SSCLNet proposed by us shows comparable performance to
other methods.

The rest of the paper is organized as follows: Section II
presents the related work, and Section III presents the meth-
ods. Section IV explains the datasets, the implementation
details, and the evaluation metrics. Section V presents the
results, and Section VI concludes the paper. Our results show
that self-supervised pre-training with unlabeled Brain MRI
scans improves task performance.

II. RELATED WORK
Computer-aided diagnostic systems have long sought unsu-
pervised learning since labeled data is scarce and expensive,
especially in medical image analysis. Over the last decade,

deep unsupervised feature learning has been explored to learn
the informative representations of images. Most deep unsu-
pervised learning methods aim to learn the feature represen-
tations that can reconstruct the inputs themselves, such as the
auto-encoder (AE), the sparse auto-encoder (SAE) [21], the
denoising auto-encoder (DAE) [22], and the deconvolutional
network (DeCNN) [23]. Mishra et al. [24] have applied a
semi-supervised approach for generating pseudo labels for
classification. Further, deep generative models, including
the auto-encoding variational Bayes (AEVB) [25] and the
generative adversarial network (GAN) [26], have been pro-
vided to encode visual information. Generative adversarial
networks have also been utilized for tissue and cell-level cat-
egorization, while sparse and variational autoencoders have
been employed for unsupervised nuclei detection and transfer
learning [27], [28], [29], [30].

Nevertheless, generative models primarily work in the
pixel space, which is not scalable. On the other hand, con-
trastive discriminative methods operate on augmentations of
the data point and hence are less expensive computation-
ally. Modern successes in computer vision challenges have
lately been attained by contrastive methods based on learn-
ing latent-space features by differentiating between unla-
beled training data. Such contrastive learning techniques pre-
suppose that two views of the same picture should have
comparable feature representations when subjected to minor
modifications [31], [32]. The consistency assumption has
been exploited by Dosovitskiy et al. to obtain a parametric
feature representation for each training instance [33]. Later,
Wu et al. [34] extended this work into a non-parametric
feature representation using a dynamic memory bank to store
latent features of data samples. Any image that is not an
augmentation of the original training instance is deemed
negative, and the memory bank is utilized to choose neg-
ative instances for each training instance. Then, without
having to recompute feature vectors, negative samples are
obtained using the memory bank. By optimizing the recip-
rocal information between latent representations of positives,
simple picture augmentations (such as resizing images, hor-
izontal flips, color jittering, etc.) and memory banks have
successfully learned representations [35], [36]. Ciga et al.
[37] have applied self-supervised contrastive loss for dig-
ital histopathology datasets. Bootstrap Your Own Latent
(BYOL), a novel method for self-supervised image represen-
tation learning, is proposed by Grill et al. [38]. It is based
on two neural networks, the online and target networks, that
communicate with and learn from one another. Contrastive
learning’s fundamental premise is to transform the original
data into a feature space where positive pair similarities are
maximized and those of negative pairs are decreased, respec-
tively [39]. The positive and negative pairings are referred to
as previous in early writings. Large numbers of data pairs are
essential to the effectiveness of contrastivemodels, as demon-
strated by numerous studies [40]. For contrastive learning,
several loss functions have been put forward. The distance
between an anchor and a positive is minimized while the
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distance between an anchor and a negative is increased, for
instance, in the case of triplet loss [41]. Nonlinear logistic
regression is used in Noise Contrastive Estimation [42] to
distinguish between the observed data and some produced
noise. SimCLR, a contrastive learning strategy proposed by
Chen et al. [43], [44], depends on a large number of mini-
batch instances to obtain negative samples for each training
instance rather than a custom network or memory bank. Con-
sequently, by supplying more negative samples per training
instance over training epochs, the quality of learnt represen-
tations was improved.

III. METHODS
The proposed work is based upon the SimCLR approach of
Chen et al. [43] and applies contrastive learning of instances
for pre-training of the network. Data augmentation operators
are applied to data points, then a base encoder learns represen-
tations, which are fed into a neural network that maps these
representations to a feature space by maximizing agreement
between positive examples, as illustrated in Figure 1. The
SSCLNet architecture is split into three blocks – the Label
Feature Generation (LFG) Block, the Instance Level Con-
trastive Learning (ILCL) Block, and finally, the Supervised
Classification (SC) Block.

A. LABEL FEATURE GENERATION (LFG) BLOCK
The proposed framework uses data augmentation to construct
data pairs. Given a data instance di, two transformations
0a and 0b are applied, resulting in dai = 0a(di) and dbi =

0b(di). In our work, the data augmentations used are as fol-
lows: random cropping, random brightness, random contrast,
and random noise. One shared deep neural network σ (.) is
used to extract label features from the augmented samples as
follows: lai = σ (dai ) and l

b
i = σ (dbi ). In our work, three

Resnet architectures have been used; however, the method
does not depend on any specific network.

B. INSTANCE LEVEL CONTRASTIVE LEARNING (ILCL)
BLOCK
Contrastive learning aims to maximize the similarities of pos-
itive pairs while minimizing them for negative pairs. Positive
pairs in ourwork are defined as those generated from the same
instance, and negative pairs otherwise. Thus for a mini-batch
of size M , two types of augmentations are performed on
each instance di, and 2M data samples are generated as,{
da1 , da2 , . . . , daM , db1 , db2 , . . . , dbM

}
. For a specific sample dai ,

there is one positive pair
{
dai , d

b
i

}
, and the remaining 2M −

2 are negative pairs.
In this block, for contrastive instance level learning,

we take a four-layer nonlinear multilayer perceptron α (.)

to map the features li learnt from the LFG Block to a sub-
space zai = α(lai ) and zbi = α(lbi ) where the instance
level contrastive loss is applied. The pairwise similarity is
measured as s

(
zk1i , zk2j

)
= zkii .zk2j where r .s denotes the

dot product of r and s; k1, k2 ∈ {a, b}; and i, j ∈ [1,M ].

The loss eai for a given sample dai is given as,

eai = −log

[
exp

(
s(zai , z

b
i )/τ1

)]
∑M

j=1

[
exp

(
s(zai , z

a
j )/τ1

)
+ exp((zai , z

b
j )/τ1)

]
(1)

where τ1 is the temperature parameter .
Additionally, we put a constraint on the derived fea-

tures, such that, the L2 − norm of the vector is 1. That is,
∀i, ∥li∥2 =1, and liz ≥ 0, z = 1, . . . , y, where, ∥.∥2 represents
the L2 − norm of a vector and liz is the zth element of label
feature li.
The instance level contrastive loss Li is calculated for every

augmented sample as,

Li =
1
2M

∑M

i=1
(eai + ebi ). (2)

C. CLASSIFICATION (CL) BLOCK
The features learned from the LFG and the ILCL blocks are
applied for classification in the Classification Block, which
comprises a neural network ∅. The loss function used is the
categorical cross-entropy loss.

D. DESCRIPTION OF SSCLNet
The essential feature of the proposed approach is the learning
of representations by means of positive and negative samples.
Given an image x, augmentations are applied to it to generate
samples x ′ and x ′′. Now, the image pairs

(
x, x ′

)
,
(
x ′, x ′′

)
and(

x, x ′′
)
are treated as positive samples. For all other images

y ̸= x, the pairs (x, y) are treated as negative samples. This
has also been presented in Figure 2. The contrastive loss
function maximizes the agreement between positive samples
while minimizing the agreement between negative samples.
This concept has been implemented by the SSCLNet archi-
tecture proposed in this work. In the Label FeatureGeneration
(LFG) Block, embeddings are generated for the augmented
data pairs by the shared network σ (.) which comprises of the
ResNet architecture. In the Instance Level Contrastive Learn-
ing (ILCL) Block, a four layer multilayer perceptron α (.) is
used and contrastive loss is applied. The pairwise similarity
of positive samples is increased while that of negative pairs
is reduced. These learnt features are then input to the final
classification layer ∅ (.) with categorical cross entropy loss,
for obtaining the output.

IV. EXPERIMENTS
A. DATASETS
Two datasets from the Kaggle repository [45], [46] have been
used in this study. However, we created our own datasets
by applying augmentation to the Brain MRI 2-Class and
4-Class datasets from the Kaggle repository. The dataset of
Brain MRI Tumor 2-Class used in this study has 2580 normal
samples and 2561 tumor samples in the training dataset and
651 normal samples and 634 tumor samples in the test set.
In this study, the images were made grayscale, and the border
of the skull was located by erasing the background color from
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FIGURE 1. The block diagram of the proposed framework. The images are subject to two data augmentations, and features are learned by shared
networks in the Label Feature Generation Block. A neural network in the Instance Level Contrastive Learning Block projects the features for maximizing
agreement by contrastive loss. The features from this embedding network are fed into the Classification Block for classification.

FIGURE 2. Positive and negative samples.

the image. As a result, it offered the original image’s con-
tour. Histogram equalization and median filters were used.
The original dataset contains 512 × 512 images in various
dimensions. All of these were downsized to 224 × 224 for
processing and normalized between 0 and 1. The dataset
of Brain MRI Tumor 4-Class used in this study contains
826 samples of glioma tumor, 822 samples of meningioma
tumor, 395 samples of no tumor, and 827 samples of pituitary
tumor class in the training set, and 100 samples of glioma
tumors, 115 samples of meningioma tumors, 105 samples of
no tumors, and 74 samples of pituitary tumors for testing
purposes. Median filters and histogram equalization were
applied. The original size of the dataset was 512×512, which
we resized into 224 × 224.
The visualization of 2-class and 4-class datasets are given

in Figures 3 and 4, while Figures 5 and 6 present the aug-

FIGURE 3. Brain MRI 2-class dataset visualization.

mented images. The augmentations have been chosen ran-
domly from the following: random cropping, random bright-
ness, random contrast, and random noise.

B. IMPLEMENTATION DETAILS
We adopted several ResNet architectures (18, 34, and 50) as
our backbone architecture. For each architecture, three sets
of experiments were conducted. The first one with random
initialization of the ResNet, the second one with ImageNet
initialization, and the third one was the SSCLNet. For this, for
initial adapting, we fine-tuned our ResNet architectures for
100 epochs by adding a few layers after convolutional layers.
The hyperparameter tuning was done by running several
experiments. Our next step was the contrastive pre-training
step. For the contrastive learning framework, we used four
dense layers with 512, 512, 256, and 256 neurons, with a
dropout of 0.4 in the last dense layer. The network compris-
ing ResNet architecture and the dense layers is named the
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FIGURE 4. Brain MRI 4-class dataset visualization.

FIGURE 5. Augmented images of Brain MRI 2-class dataset.

FIGURE 6. Augmented images of Brain MRI 4-class dataset.

Embedding network. The output dimension of the embedding
layers was fixed at 32. The entire embedding network is
then trained end to end in a self-supervised fashion. Adam
optimizer with an initial learning rate of 0.0003 was adopted.
Owing to memory limitations, we fixed the batch size at 64.
The next phase is the supervised training phase. Here we ini-
tialize our supervised architecture consisting of dense layers
with SoftMax as the output layers. Seven dense layers with
dimensions 256, 256, 128, 128, 64, 32, and 16 were applied
before the final classification SoftMax layer. The representa-
tions generated from the previous embedding network act as
input to the supervised architecture. The SoftMax prediction
of the vector representation acts as the output. With the labels
of the embeddings, the supervised architecture is then trained
end to end as supervised training. The amount of labeled data
available was varied to check the model’s performance for
different percentages of labeled data. We compare the pre-
trained proposed network SSCLNet with randomly initialized
and ImageNet pre-trained ResNet 18, 34, and 50. We have
adopted fine-tuning for supervised training. The widely used
metrics accuracy, F1-score, precision, and recall are used to
evaluate our method. Higher values of these metrics indicate
better performance.

For the pre-training dataset, we randomly sample images
from the 2-Class and 4-Class datasets. The implementation
code can be found at [49].

V. RESULTS AND ANALYSIS
We compare self-supervised pre-trained networks with ran-
dom and ImageNet initialization for ResNet 18, ResNet 34,
and ResNet 50.

A. OVERALL PERFORMANCE ANALYSIS
It is seen from the graph plots of Figure 7 that the self-
supervised pre-trained network, SSCLNet is superior to Ima-
geNet initialization for the 4-Class dataset. SSCLNet gives
the highest accuracy of 63.45%, 53.3%, and 69.04% for the
ResNet 18, ResNet 34, and ResNet 50 architectures. The
F1-Scores for SSCLNet are 68%, 56%, and 75% for the
three architectures, achieving the highest value in all three
cases. The results of SSCLNet applied to the 2-Class dataset
(presented in Figure 8) show the highest values of accuracy
and F1-Scores for the ResNet 50 architecture and not-so-
promising values for the others. The ROC curves presented
in Figure 9 also show that the SSCLNet architecture gives the
best AUC value for the Brain MRI 2-class data for ResNet 50
model.

B. PERCENTAGE LABELED DATA FOR SUPERVISED
TRAINING
We conducted experiments with ResNet 50 architecture to
study the variation in accuracy and F1-score performance
when the ratio of labeled data used for supervised training is
changed. For the 4-Class dataset, we find that at 30% labeled
data, the accuracy values are 43% for Random, 45% for Ima-
geNet initialization, and 48% for SSCLNet. At 50% labeled
data, the values for Random initialization and SSCLNet show
an increase, 52% and 51%, respectively, but that for ImageNet
initialization shows a fall from 45% to 44%. Though the
accuracy curve for the Random and ImageNet initialization
shows a zig-zag pattern indicating a fall in accuracy for an
increased percentage of labeled data, the curve for SSCLNet
shows a constant upward movement, as shown in Figure 10.
Similar behavior is observed in the F1-Score curve. Thus,
we can say that there is an increase in the performance of
SSCLNet with the increase in the percentage of labeled data
used for supervised training, and the increase is from 48%
accuracy at 30% labeled data to 69% accuracy for 100%
labeled data. However, for the 2-Class dataset, as shown in
Figure 11, the SSCLNet does not have a very smooth upward
curve, even though there is an overall increase in accuracy
from 63% at 30% data to 71% at 100% labeled data. A similar
increase from 63% at 30% data to 71% at 100% labeled data
is seen for the F1-Score as well.

C. EFFECT OF AUGMENTATION TECHNIQUES
We experimented by applying different augmentation tech-
niques with the ResNet 50 backbone for SSCLNet, and the
4-Class dataset.
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FIGURE 7. Overall performance analysis for Brain MRI 4-class dataset.

FIGURE 8. Overall performance analysis for Brain MRI 2-class dataset.

FIGURE 9. ROC curves for Random, Imagenet and SSCLNet initialization for Brain MRI 2-class dataset, ResNet 50 architecture.

TABLE 1. Effect of augmentation techniques.

The results of experiments with different augmentation
techniques are presented in Table 1, and it is seen that by
selecting randomly from different augmentation techniques,

the accuracy and F1-Score values vary from 64.97% to
69.04% and from 69% to 75%, respectively. This shows that
the choice of augmentation techniques has an influence on
the performance of the model and may be done based on
a validation subset. In the present study, random cropping,
random brightness, random contrast, and random noise have
been applied, and the results are shown in the last row of
Table 1. The F1-Score is the highest among all the experi-
ments; however, accuracy is marginally low (by 0.5%) from
the random brightness and random noise techniques.

D. STATISTICAL EVALUATION
An interval statistic called a confidence interval (CI) is used
to express how uncertain an estimate is. It offers both, a like-
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FIGURE 10. Accuracy and F1 score plots when {30, 50, 60, 80, 90, 100} % of the labeled Brain MRI – 4 class data is used
for supervised training.

FIGURE 11. Accuracy and F1 score plots when {30, 50, 60, 80, 90, 100} % of the labeled Brain MRI – 2 class data is used for
supervised training.

TABLE 2. 95% CI for ResNet 18 architecture, 4-class.

TABLE 3. 95% CI for ResNet 34 architecture, 4-class.

lihood, a lower and upper bound. According to Cumming
& Calin-Jageman [47], a short CI typically denotes a tiny
margin of error. This range can be used to calculate a model’s
capability estimate. In addition to statistical significance
tests, CI is a branch of statistics that can be used to report and
evaluate experimental results [48]. The typical calculations
put them at 95%, 98%, and 99%. According to a 95%CI, 95%
of the studies conductedwill fall inside the range, whereas 5%
will not. We now give the calculated results of the numerous
experiments presented earlier, with the Brain MRI 4-class
dataset, with a 95% confidence interval in Table 2 – Table 4.

TABLE 4. 95% CI for ResNet 50 architecture, 4-class.

It is seen from Table 2 that for the ResNet 18 architec-
ture and 4-class dataset, the accuracy values for SSCLNet
architecture vary from 63.314% to 63.586% that is, (63.45±

0.136)%. This implies that it is expected that with 95% confi-
dence the efficiency of the proposed model is likely between
63.314% and 63.586%.

From Table 3, it is seen that for ResNet 34 architecture and
the 4-class dataset, the accuracy values for SSCLNet architec-
ture vary from 53.252% to 53.348% that is, (53.3±0.0482)%.
This implies that it is expected that with 95% confidence the
efficiency of the proposed model is likely between 53.252%
and 53.348%.

From Table 3, it is seen that for ResNet 50 architecture and
the 4-class dataset, the accuracy values for SSCLNet architec-
ture vary from 68.867% to 69.213% that is, (69.04±0.173)%.
This implies that it is expected that with 95% confidence the
efficiency of the proposed model is likely between 68.867%
and 69.213%.
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E. DISCUSSION
From the accuracy and F1-Score values of 2-Class and
4-Class data presented in Figures 7 and 8, we see that con-
trastive learning shows remarkable improvement when the
pre-training dataset contains more diverse images, which is
the case with the 4-Class dataset (Figure 4). The increase
in the percentage of labeled data used for supervised train-
ing also enhances the performance of SSCLNet. Similarly,
changing the augmentations applied to data samples impacts
the accuracy and F1-Scores, as seen in Table 1. The ROC
curves presented in Figure 9 also show the better performance
of SSCLNet architecture. It is further noted from the results
in Figures 10 and 11, that the improvement in accuracy is
approximately 10% for the SSCLNet, as compared to the
other two initialization methods. In addition, the results of the
experiments with the Brain MRI 4-class dataset, with a 95%
confidence interval as presented in Table 2 – Table 4 show
that our results are very stable, varying between 63.314% and
63.586% for the ResNet 18, between 53.252% and 53.348%
for ResNet 34 and between 68.867% and 69.213% for the
ResNet 50 architecture. These findings force one to ponder
upon the following questions:

• Can one expect to find improvements if the pre-training
dataset is made by sampling from both 2-Class and
4-Class data samples?

• Can we use the learned representations for clustering
tasks, and will there be an improvement in perfor-
mance?

• What would be the effect of increasing the size of the
pre-training dataset?

These we would like to investigate in our future works.

VI. CONCLUSION
It is important that good features are learned to achieve
good performance in complex tasks like computer vision or
pattern recognition. In our work, contrastive learning has
been applied for learning the instances by which the model
is pretrained with unlabeled data, and this is used for the
classification of BrainMRI images. To our knowledge, devel-
oping a classification model using unlabeled data and self-
supervised learning for MRI classification has not been done
prior to this work. Our proposed SSCLNet applies the Sim-
CLR approach, which learns representations by maximiz-
ing agreement between differently augmented views of the
same data example via a contrastive loss in the latent space.
A stochastic data augmentation module transforms any given
data example randomly, resulting in two correlated views
of the same example, which are treated as the positive pair.
Then neural network encoders are applied to extract repre-
sentations from augmented examples. Supervised training is
done using labeled data, and then the model is used for the
classification of BrainMRI images. In this work, our aim was
to show that by pre-training, better features can be learned
for downstream classification tasks. The SSCLNet proposed
by us shows comparable performance to ImageNet training.

It is also found that contrastive learning may not show much
improvement when representations fail to encode domain-
specific information due to a smaller number of negative
samples or when there is lesser variation in the pre-training
dataset.

ACKNOWLEDGMENT
The authors are indebted to, and thank the anonymous review-
ers for providing valuable suggestions, which helped them
prepare the article in its present form.

REFERENCES
[1] R. Hoshide and R. Jandial, ‘‘2016 world health organization clas-

sification of central nervous system tumors: An era of molecular
biology,’’ World Neurosurg., vol. 94, pp. 561–562, Oct. 2016, doi:
10.1016/j.wneu.2016.07.082.

[2] American Cancer Society. Accessed: Jul. 21, 2022. [Online]. Available:
https://www.cancer.org/cancer.html

[3] Brain Tumor: Diagnosis. Accessed: Jul. 21, 2022. [Online]. Available:
https://www.cancer.net/cancer-types/brain-tumor/diagnosis

[4] G. S. Tandel, M. Biswas, O. G. Kakde, A. Tiwari, H. S. Suri, M. Turk,
J. R. Laird, C. K. Asare, A. A. Ankrah, N. N. Khanna, B. K. Madhusudhan,
L. Saba, and J. S. Suri, ‘‘A review on a deep learning perspective in
brain cancer classification,’’ Cancers, vol. 11, no. 1, p. 111, 2019, doi:
10.3390/cancers11010111.

[5] M.M.Badža andM.Č. Barjaktarović, ‘‘Classification of brain tumors from
MRI images using a convolutional neural network,’’ Appl. Sci., vol. 10,
no. 6, p. 1999, Mar. 2020, doi: 10.3390/app10061999.

[6] W. Anjali, B. Anuj, and V. S. Verma, ‘‘A review on brain tumor seg-
mentation of MRI images,’’ Magn. Reson. Imag., vol. 61, pp. 247–259,
Sep. 2019, doi: 10.1016/j.mri.2019.05.043.

[7] Q.-H. Kha, T.-O. Tran, T.-T.-D. Nguyen, V.-N. Nguyen, K. Than, and
N. Q. K. Le, ‘‘An interpretable deep learning model for classifying adap-
tor protein complexes from sequence information,’’ Methods, vol. 207,
pp. 90–96, Nov. 2022, doi: 10.1016/j.ymeth.2022.09.007.

[8] Q.-H. Kha, Q.-T. Ho, and N. Q. K. Le, ‘‘Identifying SNARE proteins
using an alignment-free method based on multiscan convolutional neu-
ral network and PSSM profiles,’’ J. Chem. Inf. Model., vol. 62, no. 19,
pp. 4820–4826, Sep. 2022, doi: 10.1021/acs.jcim.2c01034.

[9] O. Russakovsky, J. Deng, H. Su, and J. Krause, ‘‘ImageNet large scale
visual recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3,
pp. 211–252, Apr. 2015, doi: 10.1007/s11263-015-0816-y.

[10] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, and Z. Xu, ‘‘Deep convolutional
neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning,’’ IEEE Trans. Med. Imag., vol. 35,
no. 5, pp. 1285–1298, May 2016, doi: 10.1109/TMI.2016.2528162.

[11] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, ‘‘CNN features
off-the-shelf: An astounding baseline for recognition,’’ inProc. IEEEConf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 512–519, doi:
10.1109/CVPRW.2014.131.

[12] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson,
‘‘From generic to specific deep representations for visual recognition,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2015, pp. 36–45, doi: 10.1109/CVPRW.2015.7301270.

[13] O. A. B. Penatti, K. Nogueira, and J. A. dos Santos, ‘‘Do deep features
generalize from everyday objects to remote sensing and aerial scenes
domains?’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2015, pp. 44–51, doi: 10.1109/CVPRW.2015.7301382.

[14] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi,
‘‘A theoretical analysis of contrastive unsupervised representation learn-
ing,’’ in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 1–19.

[15] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[16] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. ECCV, 2014, pp. 818–833.

[17] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

6680 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.wneu.2016.07.082
http://dx.doi.org/10.3390/cancers11010111
http://dx.doi.org/10.3390/app10061999
http://dx.doi.org/10.1016/j.mri.2019.05.043
http://dx.doi.org/10.1016/j.ymeth.2022.09.007
http://dx.doi.org/10.1021/acs.jcim.2c01034
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TMI.2016.2528162
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.1109/CVPRW.2015.7301270
http://dx.doi.org/10.1109/CVPRW.2015.7301382
http://dx.doi.org/10.1109/CVPR.2016.90


A. Mishra et al.: SSCLNet: A Self-Supervised Contrastive Loss-Based Pre-Trained Network for Brain MRI Classification

[18] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. AISTATS, 2010, pp. 249–256.

[19] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[20] K. He and J. Sun, ‘‘Convolutional neural networks at constrained time
cost,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5353–5360.

[21] A. Ng, ‘‘Sparse autoencoder,’’ CS294A Lect. Notes, vol. 72, pp. 1–19,
Jan. 2011.

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[23] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, ‘‘Deconvolutional
networks,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2010, pp. 2528–2535.

[24] A. Mishra and V. Bhattacharjee, ‘‘Applying semi-supervised
learning on human activity recognition data,’’ in Proc. Int.
Conf. IoT Blockchain Technol. (ICIBT), May 2022, pp. 1–6, doi:
10.1109/ICIBT52874.2022.9807808.

[25] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[26] A. Radford, L. Metz, and S. Chintala, ‘‘Unsupervised representation
learning with deep convolutional generative adversarial networks,’’ 2015,
arXiv:1511.06434.

[27] J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, and
A. Madabhushi, ‘‘Stacked sparse autoencoder (SSAE) for nuclei detection
on breast cancer histopathology images,’’ IEEE Trans. Med. Imag., vol. 35,
no. 1, pp. 119–130, Jan. 2016, doi: 10.1109/TMI.2015.2458702.

[28] H. Chang, J. Han, C. Zhong, A.M. Snijders, and J.-H.Mao, ‘‘Unsupervised
transfer learning via multi-scale convolutional sparse coding for biomedi-
cal applications,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 5,
pp. 1182–1194, May 2018, doi: 10.1109/TPAMI.2017.2656884.

[29] L. Hou, V. Nguyen, A.B. Kanevsky, D. Samaras, T. M. Kurc,
T. Zhao, R. R. Gupta, Y. Gao, W. Chen, and D. Foran, ‘‘Sparse autoen-
coder for unsupervised nucleus detection and representation in histopathol-
ogy images,’’ Pattern Recognit., vol. 86, pp. 188–200, Feb. 2019, doi:
10.1016/j.patcog.2018.09.007.

[30] B. Hu, Y. Tang, E. I.-C. Chang, Y. Fan, M. Lai, and Y. Xu, ‘‘Unsu-
pervised learning for cell-level visual representation in histopathol-
ogy images with generative adversarial networks,’’ IEEE J. Biomed.
Health Informat., vol. 23, no. 3, pp. 1316–1328, May 2019, doi:
10.1109/JBHI.2018.2852639.

[31] X. Wang and A. Gupta, ‘‘Unsupervised learning of visual representations
using videos,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 2794–2802, doi: 10.1109/ICCV.2015.320.

[32] S. Becker and G. E. Hinton, ‘‘Self-organizing neural network that dis-
covers surfaces in random-dot stereograms,’’ Nature, vol. 355, no. 6356,
pp. 161–163, Jan. 1992, doi: 10.1038/355161a0.

[33] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox,
‘‘Discriminative unsupervised feature learning with exemplar convolu-
tional neural networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 9, pp. 1734–1747, Sep. 2016, doi: 10.1109/TPAMI.2015.2496141.

[34] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, ‘‘Unsupervised feature learn-
ing via non-parametric instance discrimination,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3733–3742, doi:
10.1109/CVPR.2018.00393.

[35] P. Bachman, R. D. Hjelm, and W. Buchwalter, ‘‘Learning representations
bymaximizing mutual information across views,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 15509–15519.

[36] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. M. Ali
Eslami, and A. van den Oord, ‘‘Data-efficient image recognition with
contrastive predictive coding,’’ 2019, arXiv:1905.09272.

[37] O. Ciga, T. Xu, and A. L. Martel, ‘‘Self supervised contrastive learning for
digital histopathology,’’ 2020, arXiv:2011.13971.

[38] J. B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya,
C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu,
R. Munos, and M. Valko, ‘‘Bootstrap your own latent: A new approach to
self-supervised learning,’’ 2020, arXiv:2006.07733.

[39] R. Hadsell, S. Chopra, and Y. LeCun, ‘‘Dimensionality reduction by learn-
ing an invariant mapping,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2, Jun. 2006, pp. 1735–1742.

[40] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, ‘‘Momentum contrast for
unsupervised visual representation learning,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9729–9738.

[41] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[42] M. Gutmann and A. Hyvarinen, ‘‘Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,’’ in Proc. 13th
Int. Conf. Artif. Intell. Statist., 2010, pp. 297–304.

[43] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ‘‘A simple
framework for contrastive learning of visual representations,’’ 2020,
arXiv:2002.05709.

[44] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton,
‘‘Big self-supervised models are strong semi-supervised learners,’’ 2020,
arXiv:2006.10029.

[45] MRI 2 Class Dataset. Accessed: Apr. 10, 2022. [Online]. Available:
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-
tumor-detection

[46] MRI 4 Class Dataset. Accessed: Apr. 10, 2022. [Online].
Available: https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-
classification-mri

[47] G. Cumming and R. Jageman, Introduction to the New Statistics: Estima-
tion, Open Science, and Beyond. Evanston, IL, USA: Routledge, 2016.

[48] A. Claridge-Chang and P. N. Assam, ‘‘Estimation statistics should replace
significance testing,’’ Nature Methods, vol. 13, no. 2, pp. 108–109,
Jan. 2016, doi: 10.1038/nmeth.3729.

[49] A. Mishra. SSCLNet. Accessed: Dec. 29, 2022. [Online]. Available:
https://github.com/cheersanimesh/SSCLNet

ANIMESH MISHRA is currently pursuing the
undergraduate degree with the Department of
Computer Science and Engineering, Birla Insti-
tute of Technology, Mesra, Ranchi. He has a pas-
sion for coding. He is highly interested in vari-
ous research areas of computer science and would
like to pursue higher studies. His current interest
includes explore the emerging areas in machine
learning.

RITESH JHA received the M.Sc. degree in com-
puter science from G. B. Pant University and
the Ph.D. degree in computer science from BIT,
Mesra, Ranchi, India. Currently, he is an Assistant
Professor with the Department of Computer Sci-
ence and Engineering, BIT. His current research
interest includes machine learning applied to
healthcare data.

VANDANA BHATTACHARJEE received the B.E.
degree in CSE from the Birla Institute of Tech-
nology (BIT), Mesra, Ranchi, in 1989, and the
M.Tech. and Ph.D. degrees in computer science
from Jawaharlal Nehru University, New Delhi, in
1991 and 1995, respectively. She is a Professor
with the Department of Computer Science and
Engineering, BIT. She has several national and
international publications in journal and confer-
ence proceedings. She has coauthored a book on

data analysis. Currently, she is working on deep learning techniques applied
to the domains of software fault prediction, classification of images, dis-
ease prediction, and learning without labels. Her research interests include
machine learning and its applications. She is a Life Member of Computer
Society of India.

VOLUME 11, 2023 6681

http://dx.doi.org/10.1109/ICIBT52874.2022.9807808
http://dx.doi.org/10.1109/TMI.2015.2458702
http://dx.doi.org/10.1109/TPAMI.2017.2656884
http://dx.doi.org/10.1016/j.patcog.2018.09.007
http://dx.doi.org/10.1109/JBHI.2018.2852639
http://dx.doi.org/10.1109/ICCV.2015.320
http://dx.doi.org/10.1038/355161a0
http://dx.doi.org/10.1109/TPAMI.2015.2496141
http://dx.doi.org/10.1109/CVPR.2018.00393
http://dx.doi.org/10.1038/nmeth.3729

