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ABSTRACT Deep Neural Networks (DNNs) have become an enabling technology for building accurate
image classifiers, and are increasingly being applied in many ICT systems such as autonomous vehicles.
Unfortunately, classifiers can be deceived by images that are altered due to failures of the visual camera,
preventing the proper execution of the classification process. Therefore, it is of utmost importance to build
image classifiers that can guarantee accurate classification even in the presence of such camera failures.
This study crafts classifiers that are robust to failures of the visual camera by augmenting the training set
with artificially altered images that simulate the effects of such failures. Such a data augmentation approach
improves classification accuracy with respect to the most common data augmentation approaches, even in
the absence of camera failures. To provide experimental evidence for our claims, we exercise three DNN
image classifiers on three image datasets, in which we inject the effects of many failures into the visual
camera. Finally, we applied eXplainable Al to debate why classifiers trained with the data augmentation
approach proposed in this study can tolerate failures of the visual camera.

INDEX TERMS Visual camera failures, deep learning, data augmentation, robustness, traffic sign

recognition.

I. INTRODUCTION
The popularity of Deep Neural Networks (DNNs) for image
classification has grown enormously in the last decade, and
they have been successfully applied in multiple domains
such as computer vision [21], autonomous driving [12],
bioinformatics [25], medical image analysis [1], and climate
science [24]. The excellent performance of image classifiers
depends heavily on i) the training phase, where the classifier
learns how to classify images [27], and ii) the validity of the
assumption that the data to be classified at test time comes
from the same distribution as that of the training set [36].
When deployed in a real system, DNNs may face unex-
pected operational conditions that lead to out-of-distribution
data due to unexpected or unknown behaviors. The images
captured by the visual camera may be altered due to a
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multitude of reasons [32]: this paper accounts for possible
failures of the visual camera, which may be due to internal
(e.g., failures of the electrical parts), external (e.g., dirt
or scratched lenses), or environmental (e.g., rain or icing
on lenses) factors. We consider a complete set of visual
camera failures resulting from a Failure Mode and Effect
Analysis [22] to embrace a complete set of visual camera
failures known to date, according to the literature.

Visual camera failures may occur frequently when a visual
camera is placed in its operational setup, particularly when it
is placed outside. Therefore, this study shows how to build
image classifiers that are robust to visual camera failures,
so that altered images delivered to the DNN will hardly
compromise the image classification task. To achieve these
goals, we developed a methodology based on data augmen-
tation [2] that builds image classifiers whose classification
performance suffers only from minimal degradation when
processing altered images. We trained DNNs using a clean
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FIGURE 1. Main components of a Visual Camera: the Lens, and the
camera body composed of Bayer Filter, Image Sensor, and Image Signal
Processor.

training set that contains only images from the original
datasets (we refer to them as regular classifiers, which are
built using the usual scaling and translation approaches
for data augmentation) and an augmented training set that
includes images from the original datasets plus altered
images in which we injected the effects of visual camera
failures (we refer to the resulting classifiers as augmented
classifiers).

We assessed this methodology by considering the deploy-
ment of image classifiers in autonomous vehicles for Traffic
Sign Recognition (TSR), which may be significantly affected
by visual camera failures [22], [28], [33]. We gathered three
well-known TSR datasets, namely the German Traffic Sign
Recognition Benchmark (GTSRB, [10]), the Belgium Traffic
Sign (BelgiumTSC, [11]), and the Dataset of Italian Traffic
Signs (DITS, [12]), applied AlexNet [7], MobileNetV2 [9],
and Inceptionv3 [8] DNNs, which have wide application in
the TSR domain [3], [4], [5], and injected a total of 13 visual
camera failures under different configurations.

Our experimental campaign revealed that augmented
classifiers have far better classification accuracy than regular
classifiers when processing altered images and also on clean
images; for example, the accuracy of the clean images
increased in the three datasets from 0.994 to 1 (from 82 to no
misclassifications out of 12570 images), from 0.96 to 0.992
(from 46 to 9 misclassifications out of 1159 images), and
from 0.997 to 0.999 (from 7 to 3 misclassifications out of
2505 images). Furthermore, we explain our results using the
LIME [30] framework, which explains why our augmented
classifiers output fewer misclassifications than the regular
classifiers. Briefly, augmented classifiers select a few strong
features compared to regular classifiers, which instead select
many weak features that individually do not contribute much
to classification.

The remainder of this paper is organized as follows.
Section II provides background information on visual camera
failures, letting Section III review related works on DNN
robustness. Section IV describes the experimental method-
ology. Section V presents and discusses the results of the
experimental campaign and elaborates on the robustness of
regular and augmented image classifiers. Section VII details
the limitations of this study, and Section VII concludes the
paper and presents future work.
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Il. BACKGROUND ON VISUAL CAMERA FAILURES
Misbehavior(s) of the visual camera may generate altered
images that are delivered to the image classifier. Fig. 1
depicts the main components of a visual camera [23], where
camera failures may occur. The lens senses a scene from
the environment in the form of light. This light is processed
by an Image Sensor, whose photodiodes transform the light
in its electrical encoding to produce a raw file [29]. The
Bayer Filter, which acts on top of the Image Sensor, colors
the photodiodes into a red-green-blue (RGB) pattern. The
Image Signal Processor (ISP) processes the raw file to
produce a digital image; it has multiple functions, including
demosaicing, noise reduction, image sharpness correction,
lens distortion correction, chromatic aberration correction,
image compression, and JPEG encoding [23].

While many works, such as [35] elaborate on the effect
of modified images on the classification process, only a few
studies in the literature focus on the effects that failures of
the visual camera may have on the produced image and
consequently on the image classification. Even if the risk of
accidental alterations of the output image of the camera is
acknowledged as realistic [37], this consideration is usually
ancillary to the main contribution of this study. Examples
are [6], where the authors focus on environmental conditions
and build a DNN that implements an attention mechanism
for performance improvement, and [38], which explores how
sensors respond when used in real circumstances, as well as to
confirm the impacts of environmental conditions on driving
scenarios.

The most comprehensive work on visual camera failures
is [22], where the authors systematically identified the failure
modes and effects of a visual camera through the application
of a Failure Mode and Effects Analysis (FMEA). The effects
of camera failures on the output images are summarized in
Fig. 2. Failures are caused by malfunctions of the lens, Image
Sensor, Bayer Filter, or ISP, and belong to the following
categories.

e Banding (Fig. 2b). A banded image contains many
vertical and/or horizontal lines that are visible in the
background.

e Black Pixels (Fig. 2c). The frame delivered to the
camera body may contain dark spots due to the
anomalous behavior of the Image Sensor. The effect is
the visualization of black or black spots on the image.

e Blurring (Fig. 2d). If the focus of the lens is incorrect,
the image may have visible blur.

e Brightness (Fig. 2e). The brightness of the image
can be altered, ranging from a fully black frame
(no brightness) to a fully white frame (maximum
brightness).

e Broken Lens (Fig. 2f). Scratches, lines, or black areas
may appear in the image when one or more lenses of
the camera break.

e Condensation (COND, Fig. 2g). Halos may appear in
images affected by the condensation failure.
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FIGURE 2. Visual effects of camera failures on a sample traffic sign image (best viewed in color).

e Dirt (Fig. 2h). Dirt on the external or internal lens of
the camera may create a wide variety of alterations in
the images; most likely, the image will have scattered
black spots or areas in which the colors differ from the
clean image.

e [ce (Fig. 2i). Ice crystals may be visible in images when
the temperature drops to the freezing point.

e No Bayer Filter (NOBF, Fig. 2j). When the Bayer filter
does not work properly, the image will likely end up
having altered colors or even being colorless at all.

e No Chromatic Aberration Correction(NCAC, Fig. 2k).
Halos appear at the corners and edges of the image, and
blur the outer edges.

e No Demosaicing (NDEMOS, Fig. 21). If the demosaic-
ing process fails, the image becomes pixelated: in this
case, each pixel is painted as a mosaic of RGB colors.

e No Noise Reduction (NNR, Fig. 2m). If the noise-
removal component is malfunctioning, the image may
include excessive noise.

e Rain (Fig. 2n). Drops of water on external or internal
lenses can produce images with small circles at random
positions.

Ill. RELATED WORKS ON ROBUST IMAGE CLASSIFIERS

The robustness of a DNN image classifier aims at sustaining
the performance of the model under various image corrup-
tions or alterations [40]. In our study, image corruption
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and alterations were due to visual camera failures, leading
to the effects discussed in Section II. We now review the
robustness approaches organized in architectural solutions
for building robust DNNs, out-of-distribution detection, and
data augmentation strategies for robustness and adversarial
defense, explaining how this paper differs from each category.

A. ARCHITECTURAL SOLUTIONS FOR ROBUST DNNs
Several recent proposals have been made for robust image
classifiers. In [14], the authors analyzed the classification
performance of several DNNs for images degraded by Gaus-
sian noise, blurring, and compression. They proposed a two-
step (master-slave) process, in which the master classifies the
quality of the degraded input image, which is then used to
select the most suitable slave DNN for classification. In [18],
the authors provided a review of methods that combine two
or more images and pre-process them to delete specific
regions of the images, which may cause the DNN to lean
towards misclassifications. Experimental results show that
this method builds image classifiers that are more robust and
have better classification performance, even when dealing
with altered images. In [33], the authors estimated the
confidence of a DNN in response to unexpected execution
contexts.

With respect to the surveyed works, we do not add any
additional component in the architecture for the purpose of
detecting outliers in the images.
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FIGURE 3. Visual explanation of a DNN image classifier, and data
augmentation strategy to improve robustness.

B. OUT-OF-DISTRIBUTION DETECTION
Many studies, such as [34] and [36] have aimed to detect
out-of-distribution samples without knowledge of the type
of image alteration in the training data. In particular, [34]
trained four different DNNs with three different supervisors
at various stages of training to detect the point at which
supervisors’ performance began to decline during training.
This study assumes knowledge of the failure effects at the
training time, as discussed in Section II.

C. DATA AUGMENTATION FOR ROBUSTNESS

Another group of studies aimed to achieve DNN robustness
through data augmentation strategies [13]. The authors
of [15] used data augmentation to improve the generalization
capability of DNNs using smoothness regularization against
perturbations to improve the classification performance.
In another study [16], the authors employed a Pixel Mask to
diminish the sensitivity of DNNs to image corruption. More-
over, a previous study [17] proposed a data augmentation
pipeline to accelerate MRI reconstruction.

Instead, our study focuses on ICT systems that employ
one or more visual cameras. To the best of our knowledge,
no study has applied data augmentation to tolerate many
failures of the visual camera. To address this gap in the
literature, we consider a complete set of failures that may
occur due to malfunctions in the visual camera.

D. DATA AUGMENTATION FOR ADVERSARIAL DEFENSE

Many recent studies on data augmentation have set the goal
of adversarial defenses, that is, defending the encompassing
system from images explicitly designed by an attacker to fool
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a classifier, and output a wrong class. Briefly, these studies
increased the robustness of the target classifier, which was
trained using genuine and adversarial images [39].

Even if the approach is conceptually similar to ours, our
study does not consider adversarial activity as a potential
source of altered images; therefore, these are only marginally
related works and are interesting to this study only in terms
of the approach they follow.

IV. METHODOLOGY FOR A CLASSIFIER ROBUST TO
CAMERA FAILURES

We describe our data augmentation approach with the aid of
Fig. 3. Traditionally, an image classifier outputs a set Po of o
probabilities, where each Pi represents the probability of the
input image belonging to class i, 0 < i < «. The graphical
example in Fig. 3a sketches a 4-class classification problem
(¢ = 4), where the image classifier processes the input and
outputs an array P of 4 probabilities, the highest of which
points to the class the classifier will predict for the animal in
the image. Fig. 3b improves the training phase of the DNN,
aiming at a more robust model. The training set is augmented
with perturbations of the clean images from the training set,
providing a broader set of images to the DNN. Perturbations
are obtained by injecting the effects of visual camera failures
into clean images, thereby saving the corrupted image as a
separate item.

This approach was implemented as follows.
In Section IV-A, we gathered three datasets for classification,
which were images of the traffic signs. In Section IV-B
we describe how we created altered images from the clean
images of the three datasets. Section IV-D reports the three
DNNs used to perform image classification (TSR). The
training and testing processes are described in detail in
Section IV-C. All the code we developed is available at [44];
all the altered images we created are available at [45].

A. DATASETS FOR TRAFFIC SIGN RECOGNITION (TSR)

We select the GTSRB [10], BelgiumTSC [11], and DITS [12]
which are public datasets that contain sequences of images of
different categories of traffic signs from different countries.
The images in the GTSRB dataset have heterogeneous
lighting conditions and distance from the camera. The DITS
dataset is considered more difficult than others, because it
contains images captured under different lighting and envi-
ronmental conditions. Instead, images of the BelgiumTSC
dataset were captured by multiple visual cameras from
different viewpoints.

Each dataset has its own categorization of traffic signs
based on the color, shape, and content of the traffic sign,
which changes depending on the country from which the
images were sampled. Overall, we identified 9 overlapping
categories of traffic signs, as listed in Table 1. The GTSRB
dataset contains images belonging to 8 categories out of
the 9 in Table 1, missing the blue rectangular traffic sign
images (Class 8). The BelgiumTSC dataset has 8 categories
of traffic signs, as shown in Table 1, with missing white
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TABLE 1. Categorization of traffic signs in nine categories.

Category 1
///
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circular images (Class 9), whereas DITS contains traffic signs
for all categories.

B. INJECTION OF VISUAL CAMERA FAILURES

We injected 13 different visual camera failures into the
images contained in the three datasets. Each failure had
multiple configurations for a total of 103. We set up a Python
script to inject each failure, with the configurations planned

below.
e Banding. We created 3 different configurations by

overlapping the banding images using a blend function.

e Black Pixels. Different configurations, such as a single
black line, horizontal and vertical black lines, and sets
of [50, 200, 500, 1000] pixels, were randomly selected
and turned black in the traffic sign image.

e Blurring. We employed 12 different configurations to
produce blurred images with varying degrees of blur
using the OpenCV [41] blur function, with settings in
the range [25], [35].

e Brightness. We simulated 8 different levels of bright-
ness, from a very dark (brightness 0) to an almost white
image (brightness value 15). We used the brightness
values as [15, 0.1, 0.3, 0.6, 1.5, 6, 7.5, 10].

e Broken Lens. We simulated the broken-lens effect using
15 superimposed images from [19].

o Condensation (COND). We overlaid three different
condensation images to clean images and simulate the
condensation effect.

e Dirt. We used 36 dirt images from [19] that we overlaid
to clean images and simulate the dirt effect.

e Ice. We overlaid different ice images onto clean images
to create four different altered images for each clean
image.

e No Bayer Filter (NOBF). We simulated this failure by
converting each image into grayscale.

o No Chromatic Aberration Correction (NCAC). We cre-
ated chromatic aberration failures using the code
in [26].

e No Demosaicing (NDEMOS). The image was pro-
cessed using cv2 [43] and resized using the PIL [42]
module.
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e No Noise Reduction (NNR). We used 10 different
configurations of speckle noise with different levels of
noise.

e Rain. We simulated the rain effect by overlaying
5 different rain images with traffic sign images.

C. BUILDING TRAIN AND TEST SETS FOR CLASSIFIERS

We collected the GTSRB, DITS, and BelgiumTSC datasets
from their repositories, and processed each image to inject
103 failure configurations from Section IV-B. This created
103 variants in addition to the original dataset, for a total of
104 datasets. Each of these 104 datasets was split into training
and test sets; the split was identical for all datasets.

We refer to train_clean/test_clean as the sets con-
taining the train/test split of the original dataset; both
train_clean and test_clean contain only clean images. We call
train_altered/test_altered the train/test set, which contains
train_clean/test_clean and train/test splits of all 103 variants
of the original dataset. For the sake of our analysis, we have to
understand how each of the six classifiers deals with images
corrupted with different configurations of the same visual
camera failure. As such, we grouped the 103 variants based
on the 13 failures we used to generate them. This allowed the
creation of 13 groups of test splits of variants, as follows:

o Failures NOBF, NCAC, and NDEMOS were each used
to create a single variant because they had only a single
configuration of failure.

« Failures Banding and COND were used to create three
variants each.

o Ice, Rain, Black Pixels, Brightness, NNR, Blurring,
Broken Lens, and Dirt failures were responsible for
generating 4, 5, 6, 8, 9, 11, 15, and 36 variants,
respectively.

Each of the 13 groups above contains all the variants
generated using each of the 13 visual camera failures.
Different groups differ in the number of variants and images
they contain, which depends on the number of failure
configurations. Noticeably, testing a classifier for each group
provides a set of classification metric scores, one for each test
split of a variant in the group. For example, testing a classifier
with variants in the Ice group will output 4 metric scores,
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FIGURE 4. Box Plots showing the accuracy of the three regular classifiers (Fig. 4a) and the three augmented classifiers (Fig. 4b) on the three datasets, for

the test_clean and the 13 groups of variants related to single failures.

whereas testing a classifier with variants in the Banding
group will generate only 3 metric scores because our study
considers 3 configurations of the Banding failure.

D. DNNs FOR TRAFFIC SIGN RECOGNITION

The image classifiers in this study are three DNNs that were
pre-trained on the ImageNet dataset: AlexNet (AN, [7]),
InceptionV3 (IC3, [8]), and MobileNetV2 (MN2, [9]). These
three DNNs have different characteristics: AN is a rather
old DNN but is considered a milestone, as in 2012 it
achieved relevant results in the ImageNet Large Scale Visual
Recognition Challenge [31]. IC3 stems from GoogleNet
and outperforms AN on the ImageNet dataset used for
training [31], whereas MN2 is based on an inverted residual
structure [9] as opposed to traditional residual models that use
expanded input representations.

We adapted these pre-trained image classifiers to our TSR
case study using transfer learning with a batch size of 32 and
10 epochs, utilizing the stochastic gradient descent with
momentum (sgdm, [20]) optimizer and cross-entropy loss
at the softmax layer on each of the GTSRB, DITS, and
BelgiumTSC datasets. We retrained each DNN (AN, IC3, and
MN?2) twice on each of the three datasets as follows:

o regular classifier: We performed transfer learning using
the train_clean set of each of the three datasets.
We employed classical techniques such as image scaling
and translation to limit overfitting.

o augmented classifier: created using the train_altered set
as the data baseline for transfer learning, without image
scaling or translation, to compare the robustness of
camera failure data augmentation against traditional data
augmentation techniques such as scaling and translation.

This process creates a total of 18 classifiers, and for each of
the 3 datasets, we created a regular and augmented classifier
for AN, MN2, and IC3 DNNSs. We then used the test_clean
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and test_altered sets to test each classifier and quantify their
classification performance.

V. EXPERIMENTAL RESULTS

We analyzed the classification performance of regular and
augmented classifiers and measured the extent to which the
augmented image classifiers were more robust to visual cam-
era failures than regular classifiers. Experiments were per-
formed on an Intel(R) Core (TM) i5-8350U CPU@1.7 GHz
1.9 GHz, using an NVIDIA Quadro RTX 5000 GPU.

A. IMPROVED ROBUSTNESS TO CAMERA FAILURES

We compared the classification performance of regular
classifiers against augmented classifiers, as shown in Fig. 4.
The figure is composed of two series of box plots. On the left
(Fig. 4a), we show the average accuracy of regular classifiers
such as AN, MN2, and IC3 on all three datasets against each
failure. On the right (Fig. 4b), the accuracy of the augmented
classifiers is presented; each figure contains 14 box plots
(test_clean and 13 groups of variants from Section IV-C).
On the vertical axis, we have accuracy scores: the higher the
accuracy, the better is the classification performance.

The two plots in Fig. 4 appear very different from each
other: the boxes in Fig. 4a span across a wider range of
accuracy scores with respect to Fig. 4b. This means that
regular classifiers have more variability in their classification
performance than augmented classifiers. Most importantly,
augmented classifiers have almost maximum accuracy, which
is desirable for any classification task.

Two additional trends are evident in Fig. 4. First, the
accuracy improvement of the augmented against regular
classifiers is not constant across different test sets (and
visual camera failures). The accuracy is almost perfect
(~1) when using augmented classifiers for test_banding,
test_blackpixels, test NDEMOS, and test_rain, whereas
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TABLE 2. Accuracy achieved using regular classifiers on the three datasets. (Accuracy scores report ranges, when a failure is injected using multiple

configurations).

Test Set or GTSRB DITS BelgiumTSC
Group of Variants (# Config.) Accuracy Best DNN Accuracy Best DNN Accuracy Best DNN

Clean 0.994 MN2 0.96 1C3 0.997 AN
Banding (3) [0.947,0963] AN [0.902, 0.952] 1c3 [0.991, 0.996] AN
Black Pixels (6) [0.875,0993]  MN2 [0.849, 0.956] MN2 [0.940, 0.995] AN
Blurring (11) [0.946,0.983]  MN2 [0.780, 0.837] 1c3 [0.862, 0.970] AN
Brightness (8) [0.592,0959] AN [0.359, 0.941] AN [0.324, 0.996] AN
Broken Lens (15) [0.469,0.836] AN [0.607, 0.852] AN [0.465, 0.981] AN
COND (3) [0.974,0.993]  MN2 [0.932, 0.955] IC3 [0.988, 0.995] AN
Dirt (36) [0.970,0.994]  MN2 [0.845, 0.959] IC3 [0.978, 0.997] 1C3
Tce (4) [0.729,0.960] AN [0.362, 0.938] AN [0.603, 0.988] AN
NOBEF (1) 0.861 MN2 0.812 IC3 0.598 MN2
NCAC (1) 0.993 MN2 0.949 IC3 0.996 1C3
NDEMOS (1) 0.963 AN 0.774 1C3 0.97 1C3
NNR (9) [0.419, 0.959] AN [0.317,0.903] AN [0.228, 0.995] AN
Rain (5) [0.864,0.958] AN [0.790, 0.939] AN [0.864, 0.992] AN

TABLE 3. Accuracy achieved using augmented classifiers on the three datasets. (Accuracy scores report ranges, when a failure is injected using multiple

configurations).

Test Set or GTSRB DITS BelgiumTSC
Group of Variants (# Config.) Accuracy Best DNN Accuracy Best DNN Accuracy Best DNN

Clean 1.000 MN2 0.992 MN2 0.999 AN
Banding (3) [0.999, 0.999] IC3 [0.991, 0.993] MN2 [0.998, 0.999] 1C3
Black Pixels (6) 1.000 MN2 [0.987, 0.994] MN2 [0.997, 0.999] 1C3
Blurring (11) [0.996,0.999] IC3 [0.975, 0.983] MN2 [0.997, 0.999] 1C3
Brightness (8) [0.990, 1.000] MN2 [0.458, 0.992] MN2 [0.668, 0.999] 1C3
Broken Lens (15) [0.902, 0.997] IC3 [0.948, 0.991] MN2 [0.996, 0.998] 1C3
COND (3) 1.000 MN2 [0.988, 0.994] MN2 [0.998, 0.999] 1C3
Dirt (36) 1.000 MN2 [0.972, 0.995] MN2 [0.997, 0.999] 1C3
Ice (4) 1.000 MN2 [0.894, 0.993] MN2 [0.976, 0.999] 1C3
NOBF (1) 1.000 MN2 0.982 MN2 0.986 MN2
NCAC (1) 1.000 MN2 0.992 MN2 0.998 1C3
NDEMOS (1) 1.000 MN2 0.983 MN2 0.998 AN
NNR (9) [0.999, 1.000] MN2 [0.649, 0.993] MN2 [0.859, 0.998] AN
Rain (5) 1.000 MN2 [0.988, 0.993] MN2 [0.997, 0.998] 1C3

regular classifiers struggle. Overall, the boxes in Fig. 4b are
narrow and close to the top of the plot. For most of the other
test sets, there was still a clear improvement when using the
augmented classifiers, whose accuracy was close to 1.0.

Second, the accuracy improved when classifying the
test_clean set with no visual camera failures. The last box
in Fig. 4a (test_clean) was wider than the corresponding
box in Fig. 4b. All augmented classifiers are excellent when
processing clean images; instead, the accuracy scores of the
regular classifiers have more variance than the augmented
classifiers.

We further explored the accuracy scores in Table 2 and
Table 3. Both tables report a row for each test set and
three groups of columns: one for each dataset. For each
dataset, we reported the highest accuracy and the DNN
that achieved it. Accuracy scores in the table often report
ranges, which occur when a failure is injected using multiple
configurations, thus accounting for many dataset variants (see
Section IV-C). Instead, test_clean contains no failures, and
test_NCAC, test_NOBEF, and test NDEMOS contain a single
configuration for a failure; they have a single accuracy value
in both Table 2 and Table 3.
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The regular classifiers in Table 2 always have inferior
accuracy compared with the corresponding augmented clas-
sifiers in Table 3. Looking at the GTSRB column in Table 3,
we can see that in many cases, even in the presence of
visual camera failures, the classification accuracy is perfect
(1.0). However, this trend does not apply to the other two
datasets, which are harder to classify; neither regular nor
augmented classifiers reach 1.0 accuracy on test_clean (first
row of Table 3). As such, we cannot expect perfect accuracy
for altered images.

Some test sets resulted in low accuracy, regardless of the
training dataset and DNN. This is the case for test_brightness
test. NNR, test_ice, and to a lesser extent, test_brokenlens.
The range of accuracy of test_ice on the DITS and Bel-
giumTSC datasets is broad, even when adopting augmented
classifiers; for some configurations of the ice visual camera
failure, accuracy in DITS drops as low as 0.894 even when
using the augmented classifiers. This is because the ice image
overlays the image of the traffic sign image; in some cases,
it covers significant parts of the image, whereas sometimes
it does not. On BelgiumTSC, the Ice failure makes drop as
low as 0.976 for specific configurations, which is a decent
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DNNs on different datasets with different levels of noise (0 to 5).

accuracy in general terms, but still lower than that achieved
in the other test sets, except for test_brightness and test_NNR.

Furthermore, Table 2 and Table 3 show which DNN
results in the highest accuracy value for each test set using
regular and augmented classifiers, respectively (i.e., columns
Best DNN in the tables). There was no clear winner for
the regular classifiers listed in Table 2. Considering the
augmented classifiers in Table 3, the best performing DNN
is MN2, which is always the preferred DNN for the DITS
dataset and its variants, as well as for the clean (initial)
dataset and 10 out of 13 groups of variants of GTSRB
(see Table 3). For BelgiumTSC, it appears to be more
beneficial to adopt IC3. The regular AN often achieves
better classification performance than regular MN2 and IC3;
however, the augmented AN classifier shows only marginal
improvement in accuracy, whereas augmented MN2 and IC3
outperform regular MN2 and IC3, as well as augmented AN.

Overall, we conclude that the augmented classifiers
have significantly better classification performance than the
regular classifiers when processing clean and altered images.
Their accuracy remains high when dealing with images
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containing visual camera failures, making them robust to
altered images.

B. ON BRIGHTNESS AND NOISE FAILURES

We explore the impact of brightness and noise camera failures
that have a major effect on the classification performance of
both regular and augmented classifiers.

Brightness Analysis. Fig. 5 plots accuracy achieved by
regular (Fig. 5a) and augmented (Fig. 5b) classifiers when
varying brightness levels in the range [0.1; 15], where
0.1 is an image almost entirely black, 1 is the clean image,
and 15 is an image that is almost entirely white. Fig. 5a
shows how brightness levels in the range [0.3; 1.5] do not
have a major impact on the accuracy of regular classifiers,
whereas brightness levels lower than 0.3 and greater than
1.5, dramatically reduce accuracy. As shown in Fig. 5b,
augmented classifiers are more robust to brightness failures:
their accuracy does not decrease significantly with low
brightness, and it suffers serious degradation only with DITS
and BelgiumTSC, and brightness levels greater than 1.5. Even
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TABLE 4. Minimum accuracy of regular classifier MN2 on DITS, compared to classifiers trained on clean data plus one failure type. Improvement is shown
as difference from the accuracy of the regular MN2. Augmented MN2 is reported for completeness.

w»n
= = ] = n o .
5E [ty tF tE D 15 a0 4 e i +8 o, 4 | EE
%% | 5% 3= 3t 55 55 5% 55 52 55 350 53 3z 3Z|E%
Test Set 3 s 25 29 25 2w 2S5 2 2/ 2 = = = L7z S 5SS
&0 04 O=2 Uxg Tg TUe TL O o C# T#Z T2 © o Efs)
2 2 & z <
Accuracy Difference from accuracy of the regular classifier
Clean 0.96 0.019 0.02 0.027 0.024 0.032 0.022 0.03 0.016 0.018 0.019 0.024 0.002 0.023 | 0.033
Banding 0.719 0.254 0.145 0.064 0.13 0.018 0.018 0.222 0.139 | 0.273
Black Pixels 0.849 0.118 0.067 0.009 | 0.135
Blurring 0.747 0.211 0.014 0.228
Brightness 0.294 0.046 0.046 0.16 0.049 0.067 0.04 0.06 0.037 0.01 0.027 0.055 | 0.164
Broken Lens 0.569 0.356 0.019 0.38
COND 0.883 0.047 0.074 0.072 0.039 0.066 0.038  0.06 | 0.105
Dirt 0.74 0.009 0.055 0.104 0.07 0.121 0.037 022 0.021 0.05 0.06 | 0.232
Ice 0.304 0.028 0.027 0.082 0.027 0.541 0.107 0.124 | 0.59
NOBF 0.79 0.091 0.091 0.017 0.047 0.079 0.089 0.063 0.181 0.093 0.072 0.086 0.192
NCAC 0.947 0.015 0.009 0.022 0.016 0.018 0.027 0.009 0.011 0.028 0.02 0.009 0.016 | 0.046
NDEMOS 0.728 0.062 0.148 0.111 0.065 0.059 0.1 0.167 0.053 0.126 0.084 0.229 0.12 0.106 | 0.255
NNR 0.318 0.355 0.332
Rain 0.763 0.108 0.078 0.076  0.187 | 0.225

in these cases, the degradation of accuracy is much less
evident than that in regular classifiers.

Noise Analysis. Fig. 6 is analogous to Fig. 5 but refers
to an NNR failure. The clean image has a noise level of
0; the higher the noise level, the more degraded the image.
Fig. 6a shows that regular classifiers struggle to classify noisy
images. Specifically, with InceptionV3 (IC3) on GTSRB,
accuracy drops to random guessing when the noise level
reaches or exceeds 0.6 (in a balanced 8-class classification
problem, random guessing quantifies as 12.5% of accuracy).
This is visible in the figure by looking at the solid brown line
that immediately falls at the bottom of the plot.

Fig. 6b shows that augmented classifiers are, to some
extent, robust to NNR; when the noise level is below 1, the
accuracy still exceeds 0.90. In general, we observe only a very
slight performance degradation: we hypothesize that this is
due to a high number of images in the training data and the
high resolution of the images.

C. IMPACT OF INDIVIDUAL FAILURES ON TRAINING

We investigated which visual camera failure contributed
the most to the improved classification accuracy. For this
purpose, we trained a DNN on 13 train variants, each
composed of a train_clean set plus images altered with a
single visual camera failure. This creates 13 intermediate
classifiers which employ a minimal data augmentation
process.

We discuss the behavior of MN2 on DITS. We deem
it more interesting to explore the DITS dataset instead of
GTSRB and BelgiumTSC, because classification on DITS
has the lowest accuracy scores; thus, we believe it is the
most challenging. MN2 is the DNN that always achieves the
highest accuracy on DITS (see Table 2).

Table 4 contains a row for each test set. On the columns,
we have 15 classifiers: the regular, the 13 obtained using
the train variants above, and the augmented. The second
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column of the table shows the minimum accuracy achieved
by the regular MN2 classifier for any configuration of a
specific failure to be used as a reference. The quantities
shown in the rest of the table are the differences between
the minimum accuracy achieved with the 13 intermediate
classifiers and that achieved by the regular classifier. Only
positive differences are reported; these are cases in which
training with a specific train variant creates a better classifier
than the regular one. The highest accuracy gains for each test
set (each row in the table) are underlined; they show the train
variant that improves classification the most with respect to
training on train_clean. Finally, the last column of the table
reports the accuracy difference between augmented MN2 and
regular MN2.

For all test sets, except test_clean and test_ COND, the
greatest improvement in accuracy was obtained by adding
images altered with the corresponding failure in the training
set. Adopting a training set composed of clean images and
images with dirt failure increased the accuracy of MN2 from
0.74 t0 0.96 (thus a difference of 0.22, see 8 row, 8 column
in Table 4) when processing test_dirt. The data augmentation
process clearly provides the DNN with information about the
effects of a specific visual camera failure, allowing MN2 to
learn how to classify even in the presence of that specific
failure. Interestingly, the greatest improvement in accuracy
for test_clean and test_ COND was when adding images
altered with broken lens failure to the training set. This shows
that a failure may be used to augment the training set and build
a classifier that is robust to that specific failure and to others
that may be correlated.

Another interesting observation is the accuracy of the clean
images (first row of Table 4). The augmented classifier scored
0.993 accuracy with an increase of 0.033 with respect to the
regular classifier, which was 0.960. Augmenting the training
set with broken lens failure leads to a gain in accuracy of
0.032, whereas training with dirt failure provides an accuracy
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FIGURE 7. Explanation of predictions of regular (on the left) and
augmented (on the right) classifiers using LIME. (best viewed in colors).

improvement of 0.030 for fest_clean: this shows that specific
failures make MN2 learn a model that also has enhanced
classification performance with respect to clean images.

D. EXPLAINING PERFORMANCE OF REGULAR AND
AUGMENTED CLASSIFIERS ON CLEAN IMAGES

While it is intuitive that the augmented classifiers have better
classification accuracy than the regular classifiers on altered
images, it is worth exploring why the classification accuracy
on clean images improves as well. We rely on the LIME tool
for eXplainable AI (XAI) [30] which allows us to examine
how a classifier builds its prediction and explains the process
behind the outputs of the image classifiers. LIME provides
a graphical interface that shows the areas of the input image
that have the highest relevance when calculating the output
prediction.

Fig. 7 shows four images from DITS that were misclas-
sified by the regular MN2 classifier (on the left) but were
correctly classified by the augmented MN?2 classifier (on the
right). Each image in Fig. 7 was processed using LIME,
which visualizes a heatmap of the most relevant features
used for prediction. Red areas correspond to features that
contribute the most to classification, whereas blue areas have
negligible to no impact.
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The regular MN2 classifier on the left side of Fig. 7
selects relevant features from many areas of the image, while
the augmented MN2 classifier selects only a few stronger
features. The color scales on the right of each image show
the contribution of each feature in the order of 107 to
1077 for regular classifiers, whereas the features for the
augmented classifier have a larger absolute weight, with a
magnitude of 107>, These two observations pair well: the
augmented classifier selects a few strong features, whereas
the regular classifier selects many weak features from
different parts of the image. This difference in the models
learned from regular and augmented classifiers improves
the image classification accuracy; relying on fewer features
provides a clear advantage in our experiments.

VI. LIMITATIONS TO VALIDITY

Here, we report possible limitations to the validity and
applicability of our study. These are not to be intended as
showstoppers when considering the conclusions of this study.
Instead, they should be interpreted as boundaries or possible
future implications that may affect the validity of this study.

A. USAGE OF PUBLIC DATA AND LIBRARIES

The use of public image datasets and tools to inject visual
camera failure algorithms enables the reproducibility of our
analysis (see also scripts and corrupted data in [44] and [45]).
However, the heterogeneity of data sources and potential
lack of documentation may limit the understandability of the
data. In addition, public datasets are not under our control;
therefore, possible actions, such as changing the way the data
are generated, are out of consideration. For example, it is not
possible to create longer sequences of traffic signs for DITS
nor creating a time-sequenced version of the BelgiumTSC.

B. PARAMETERS OF DEEP IMAGE CLASSIFIERS

Each deep classifier relies on parameters that are applicable
to any deep neural network or specific to a DNN model.
Finding the optimal values of the parameters is a substantial
process that requires sensitive analyses and is directly linked
to the scenario in which the classifier is to be exercised.
We tried our best to precisely tune these parameters through
grid searches, which ran a classifier with different parameter
values and chose the parameter that maximized the accuracy.
This does not guarantee to find the absolute optimum value
of a parameter for a given classifier on a given dataset but
constitutes a good approximation [46].

C. GENERALIZATION BEYOND TRAFFIC SIGN
RECOGNITION

External validity is usually concerned with the extent to
which the results of a study can be generalized. The idea of
injecting the effects of camera failures into images to perform
data augmentation goes beyond Traffic Sign Recognition,
which is the domain from which our experimental data
comes. Therefore, the methodology we used and assessed in
this study can be used to build robust image classifiers for
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other domains in which the data to be provided to the DNNs
are captured by visual cameras, such as security cameras,
camera trap images, and OCR for car plate recognition.

VIi. CONCLUSION AND FUTURE WORKS

This study investigated methods for improving the robustness
of image classifiers against visual camera failures, either
due to internal faults or adverse environmental conditions.
The image classifiers built using our data augmentation
technique tolerated most failures of the visual camera. Such
data augmentation approach is not only improving robustness
but is also improving classification accuracy. We showed that
images altered using specific failures contribute more than
others to improving the accuracy and robustness of classifiers.
However, to ensure robustness with respect to the entire
failure set, it was necessary to perform data augmentation by
enriching the training set with altered images due to multiple
visual camera failures.

Our future plan is to train a failure detector to exclude
images that are corrupted beyond the extent to which our
augmented classifier can properly classify them. In other
words, we are aiming for an architectural approach in which
the images are either discarded by the failure detector
or deemed of adequate quality for processing using a
robust classifier. Furthermore, we will explore whether our
composite approach, which merges a failure detector and
data augmentation, is sufficiently general to build safer image
classifiers in safety-critical domains other than Traffic Sign
Recognition.
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