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ABSTRACT Simultaneous localization and mapping (SLAM) algorithm has enabled the automation of
mobile robots in unknown environments. It enables the robot to navigate through an unknown trajectory by
employing sensors that provide measurements to infer the surrounding environment and use this information
to localize the robot. Sensor technology plays a key role in defining the quality of measurements as it affects
the overall performance of SLAM. While visual sensors, like cameras, can capture rich features of the
environment, they, however, fail to work in low-light conditions. On the other hand, radio frequency sensors
are invariant to light conditions, however, high-frequency signals such as millimeter wave (mm-wave) are
prone to severe channel attenuation, therefore, they are suitable for short-range indoor applications. Despite
the high localization accuracy that the mm-wave frequency band has to offer, its shortcomings have limited
the amount of research work carried out to enhance the performance of SLAM. Therefore, this paper aims to
provide an overview of the recent developments in radio SLAM, with a specific focus on mm-wave enabled
localization and SLAM methods. However, some notable research work based on other radio frequency
sensors has also been discussed. In addition, we highlight the role of deep learning-based methods for
localization and identify some of the key challenges in data-driven implementation.

INDEX TERMS Angle-of-arrival (AoA), deep learning, direction-of-arrival (DoA), localization, mm wave,
radio SLAM, SLAM, ultra-wideband (UWB).

I. INTRODUCTION
The key idea of simultaneous localization and map-
ping (SLAM) is to automate the sensing and navigation sys-
tem of a robot in an unknown environment. With the help of
the SLAM algorithm, a robot can reconstruct its surrounding
map and localize itself within that map. SLAMfinds its appli-
cations in almost every field where automation is required
including automated robots for industry and transports, self
driving cars, indoor positioning systems, space exploration,
and unmanned aerial vehicles (UAVs). Owing to the rising
demand for SLAM systems, its market value is expected to
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increase to around $3 billion in a decade [1], thus, increas-
ing the need to develop efficient technology for the optimal
performance of SLAM.

The approach to implementing SLAM relies on the tech-
nology of sensors employed for acquiring measurements and
the type of data generated by those sensors. For instance,
visual SLAM exploits a camera as the primary sensor for
collecting information about the environment in the form
of images. Visual SLAM has gained much popularity over
the last decade due to its ability to capture and create high
dimensional feature-based maps. The resolution of visual
SLAM has been enhanced using various vision sensors such
as monocular, depth, and stereo cameras [2]. With the recent
advancements in data-drivenmethods, the potentials of neural

9260 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-3957-5341
https://orcid.org/0000-0001-5091-2567
https://orcid.org/0000-0002-7491-8776
https://orcid.org/0000-0002-4548-282X
https://orcid.org/0000-0003-2541-6283


B. Amjad et al.: Radio SLAM: A Review on Radio-Based Simultaneous Localization and Mapping

FIGURE 1. Comparison of sensors, methods, applications, and some pros and cons involved in radio and visual SLAM.

network (NN) based algorithms have further fuelled the
development and research in visual SLAM. However, one of
the frequent pitfalls of visual SLAM is its inability to operate
at night and in low-light conditions. Besides, visual SLAM is
not a suitable approach for privacy-sensitive applications.

In contrast to visual sensors, the other most prevalent sen-
sor technology operates on electromagnetic waves. As the
electromagnetic spectrum spans different frequency bands,
there are separate sensors available that operate in the corre-
sponding frequencies. Light detection and ranging (LiDAR)
and ultra-wideband (UWB) sensors are well-established tech-
nologies to implement SLAM. Other widely used sensor
technologies include ultrasonic, Bluetooth,

wireless fidelity (WiFi), and radio frequency identifica-
tion (RFID). Using radio signal-based sensors to implement
SLAM is generally referred to as radio SLAM. Not only
do radio signals remain unaffected by the light conditions
in an environment, but they are also deemed appropriate to
ensure privacy. Therefore, the potentials of radio signals seem
to be promising to overcome the aforementioned challenges
of visual SLAM. Fig. 1 highlights the differences between
radio and visual SLAM in terms of sensors and applications
and lists some of the pros and cons of each approach. It is
also worthwhile to note a key difference in the sensor setup
of visual and radio SLAM. Visual SLAM involves a clas-
sical sensor setup in which the sensor(s) i.e., the camera is
deployed only on the moving robot. On the other hand, since
a radio sensor comprises two operating modules i.e., a trans-
mitter and a receiver, there can be two configurations of the
sensor setup in radio SLAM depending on the requirement
of the application. In a classical setup, like visual SLAM,
both the transmitter and receiver are deployed on the agent,
whereas in a non-classical setup, the agent is equipped with
a receiver while the BS(s) in the environment acts as the

transmitter or vice versa. The positions of the BS(s) can be
known or unknown depending on the application.

In radio SLAM, the term ‘robot’ can be referred as an
agent, mobile user, user equipment (UE), or tag, depending
on the application, and it is depicted by a mobile in the
figures of this paper. On the other hand, the term ’landmark’
can be attributed to an object, obstacle, node, anchor node,
or physical anchor node (PAN) and it is represented by a base
station (BS) in the figures of this paper.Wewill be using these
terms interchangeably in the rest of the paper.

The mm-wave band offers a huge available bandwidth,
which is beneficial in positioning applications for its
increased resolution capability to distinguish closely spaced
objects. However, it is not suitable to be employed in long
range applications as it faces severe attenuation due to the
propagation environment [3], [4]. Therefore, mm-wave sig-
nals remain a suitable choice for indoor applications. A pio-
neering paper on the implementation ofmm-wave SLAMwas
presented in 2001 [5]. In this paper, the authors proved the
solution to the SLAM problem by showing that the estimated
map can converge to an accurate map given enough series of
observations. This has been demonstrated in an experiment
where the location of a moving vehicle and surrounding
landmarks were estimated using a real mm-wave radar. The
mm-wave radar operated at 77GHz frequency, and it was
mounted on the vehicle to capture measurements of the out-
door environment. The range and bearing of the landmarks
were determined using the FMCW radar technology and
acted as state inputs to the extended Kalman filter (EKF)
algorithm. The EKF is then used to track the locations of
both the vehicle and the landmarks. In addition, the authors
also provided a data association mechanism with which the
non-stationary detected landmarks were discarded by analyz-
ing the range and bearing of each landmark. The resulting
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position estimation error was about 0.2m for both the land-
marks and the vehicle. However, this study only considered
stationary landmarks in line-of-sight (LoS) environment. The
effect of multipath propagation and resulting errors in the
state estimates need to be accounted for in more practical
scenarios and applications. A study in [6] implemented mm-
wave based localization of clients in the presence of multiple
access points (APs). For this purpose, the authors exploited
two-range free methods, namely triangulate-validate (TV)
and angle difference of arrival (ADoA) methods, for estimat-
ing the position of the client. Both LoS and non-line-of-sight
(NLoS) signals have been incorporated in the experiments.
In the case of NLoS signals, the true location of an obstacle
has been computed by exploiting the use of virtual anchor
nodes (VANs). Their results reported less than 2m of error
in localization and ±15◦ of error in the AoA estimates.
This study has been validated on simulations as well as on
real data in an indoor environment. However, as a caveat,
this study assumes prior knowledge of the locations of APs,
floor plan, and the obstacles in the environment. A study in
[7] not only implemented localization but also proposed a
method for identifying the shape of the landmarks. In this
study, the AoA estimates were used to evaluate the posi-
tions of the receiver and landmarks in the case of a known
environment. For the unknown environment, the estimates
of the time difference of arrival (TDoA) and received signal
strength (RSS) were used to solve the localization problem.
Their results achieve a sub cm accuracy of around 0.075m
under the case of an unknown environment. While this study
also estimates the dimensions of the obstacles, however,
it only considers stationary obstacles in the environment.
The work in [8] leveraged the built-in structure of a mobile
network to render the implementation of SLAM. A device
localization accuracy within sub-cm was achieved using no
prior information about the environment and network APs,
also known as physical anchors (PAs). The ADoA method
was reformulated to enhance the performance of localization.
Their proposed approach also resulted in reduced computa-
tional complexity. For mapping, the estimate of the anchor’s
location was exploited to predict the static objects around the
device. Experiments have been validated on both simulations
and hardware. However, this study only considered static
obstacles in the environment and performed mapping of the
wall only even in the presence of other obstacles.

In recent developments, researchers have exploited the
mobile architecture to implement a personal radar for
enabling SLAM. For instance, the studies in [9] and [10]
presented the idea of amobile-basedmm-wave radar platform
that can map the surrounding environment without the need
for the additional hardware equipment. A study in [10] evalu-
ated the effects of different parameters, like signal bandwidth
and the number of antennas, on the mapping performance of
the personal radar.

UWB sensors have been widely accepted for indoor posi-
tioning applications due to their higher bandwidth and low

manufacturing cost. UWB has been employed in various
applications ranging from wireless node detection to pedes-
trians’ motion tracking and robot localization. In numerous
applications, localization of a tag is achieved with the help
of multiple anchors having known positions [140], [143].
However, a study in [11] proposed an automatic localization
methodology that not only localizes the tag but also com-
putes the positional estimates of anchors using an error-state
EKF. In addition, many UWB based positioning algorithms
use the range-only approach to solve the SLAM problem.
As the name suggests, the range-only method only exploits
the range information to implement localization. Different
research papers have employed the range-only method for
performing robot localization [12], [13] and for estimating
the positions of agent and anchor nodes [14].

A hybrid approach, known as ’sensor fusion’, combines
the potentials of multiple types of sensors to increase the
performance of SLAM. Combinations of radio and/or visual
sensors have been extensively used in sensor fusion based
SLAM. While UWB and LiDAR have been extensively used
in sensor fusion based SLAM, they both suffer from the geo-
metrical irregularities of the environment which reduces the
accuracy of localization and mapping. In [15], an optimiza-
tion algorithm was proposed to mitigate the geometric degen-
eracy issue for UWB and LiDAR based SLAM. The study in
[16] proposed an optimization method for multi robot-based
SLAM. UWB and LiDAR sensors were deployed on multi-
ple robots for fast navigation and mapping of the environ-
ment Apart from LiDAR, cameras are also widely employed
alongside UWB sensors. The study given in [17] presented a
comparative analysis of the performance of SLAM between
UWB sensors and sensor fusion with the time of flight (ToF)
camera. ToF camera helped in identifying the anchors for
accelerating the navigation process of the robot.

Several surveys over the past decade have highlighted the
advancements in SLAM technology. The surveys have been
categorized according to the techniques and applications.
A comprehensive review in [19] focused on the evolution of
SLAM methods for robotics and discussed various compo-
nents of SLAM and their associated challenges. A recent sur-
vey [20] explored machine learning (ML) based techniques
for the development of visual SLAM and provided a detailed
explanation of the relationships between several input-output
components of SLAM. The term ‘spatial machine intelli-
gence system’ introduced in that paper refers to the same idea
as that of SLAM i.e., to enable robotic automation, wherein,
with the help of precise measurements, a robot can success-
fully maintain its localization while gradually updating its
surrounding map. In addition, the work in [21] focused not
only on the recent data-driven developments but also covered
the mathematical modelling and characterization of the the-
oretical bounds for achieving robust performance in SLAM.
Apart from visual SLAM, several reviews have been devel-
oped covering different sensor technologies including RFID
[22], [23], LiDAR [24], [25], and more recently on using
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terahertz (THz) band [141], [142]. In contrast to previous
surveys, this survey attempts to highlight the developments
and challenges in the field of radio SLAM, with a specific
focus on mm-wave and UWB sensor technology.

FIGURE 2. Illustration of SLAM problem: simultaneous estimation of the
location of agent (x) and landmarks (m) in the environment at each
timestep [18].

The rest of the paper is organized as follows. Section II
provides a brief introduction to the basic concept of SLAM.
Section III describes the basic structure for implementing
radio SLAM along with its applications. Section IV high-
lights the techniques for parameter estimation and provides
an overview of the existing literature, whereas the methods
for predicting parameters are further discussed in Section V.
Section VI describes suitable mapping techniques for radio
SLAM. Section VII identifies the available datasets and hard-
ware resources that can be used to perform experiments on
the implementation of radio SLAM. Finally, Section VIII
highlights the current challenges and future directions in
radio SLAM.

II. SLAM: FUNDAMENTALS
The SLAM objective is designed for a robot to make infer-
ences about its surroundings and identify its location within
that environment. The robot is thus capable of exploring
unknown territory on its own. In 1986 [28], probabilistic
methods were first employed to solve the positioning and
mapping of robots. However, the word ‘SLAM’ was first
coined by Durrant-Whyte at the Seventh International Sym-
posium of Robotics Research in 1995 [28]. After that, SLAM
was implemented in various applications including indoor,
outdoor, and undersea environments [24], [29], [30], [31].

There are several resources available to understand the fun-
damentals of SLAM. Tutorials by Durrant Whyte [18], [32]
and Sebastian Thrun [33] present a comprehensive overview
of the basic concepts of SLAM. In addition, a book on proba-
bilistic robotics [34] serves as a critical and valuable resource

for grasping the underlying mathematics behind different
operating blocks in SLAM.

A. MATHEMATICAL FORMULATION
It is crucial to formulate the problem mathematically to
understand SLAM. The main goal is to infer the surroundings
around a robot and determine its location on a map. Since
both the map and location of the robot are unknown, the
robot requires onboard sensors to collect and process mea-
surements from its surroundings and estimate the navigation
parameters. An illustration of the navigation process is shown
in Fig. 2. Let us denote the sensormeasurement taken at time t
as zt , then the objective of SLAM is to compute the following
joint conditional probability:

P (xt ,mt | zt) , (1)

where, xt and mt represents the estimated locations of the
robot and landmarks, respectively. So, given the measure-
ments zt , SLAM tends to find the probability of a robot being
at location xt and surrounded by landmarks at positions mt .
In addition to the measurements, the robot also has motion
information, known as odometry. Odometry describes the
motion of a robot between the previous and the current loca-
tion point. This helps the robot decide where to move next
given the information from its previous location [33]. Let us
now denote the odometry information obtained at time t as ut .
Then, (1) can be modified as:

P (xt ,mt | zt , ut) . (2)

There are different methods by which the implementation of
SLAMcan be categorized, and it mainly depends on the target
application and its specific requirements. Some important
categories of SLAM are described below.

1) ONLINE AND OFFLINE SLAM
The concept of two approaches for processing the measure-
ments in SLAM, namely, online and offline, were introduced
in [33]. In online SLAM, the locations of the robot and the
map are updated based on the current acquiredmeasurements.
Expression (2) is the mathematical representation of the
online SLAM problem. Alternatively, in an offline SLAM,
the robot first gathers the measurements along the path it
traverses, then processes all the acquired data to reconstruct
the map and the followed path. For offline SLAM, the vectors
z and u comprise of sensor and odometry measurements,
respectively, which have been recorded at all time intervals
during the robot’s motion. These measurements are used to
estimate the locations of the robot and landmarks for the
entire trajectory of the robot’s motion. This can be mathe-
matically expressed as follows:

P (x,m | z,u) , (3)

where x and m represent the estimated locations and map of
the path traversed by the robot.
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FIGURE 3. Outline of the methods required for the implementation of radio SLAM along with some of the challenges associated with each method.

2) ACTIVE AND PASSIVE SLAM
In most applications, either a passive or an active approach is
followed to solve the SLAM problem. In the passive method,
the robot requires information from other active agents to
explore unknown surroundings. On the other hand, an active
SLAM based robot aims to monitor the environment itself
with the help of sensors embedded in the robot and it accom-
plishes its task without the need for other active agents in that
environment [33].

III. STRUCTURE OF RADIO SLAM
Implementing radio SLAM involves two main steps:
1) obtaining measurements from the received signal, also
known as the multipath propagation components (MPCs),
to estimate the states of the robot and the surrounding land-
marks. 2) computing the posterior probability density func-
tion (PDF) of the state variables for tracking the location
of the robot and landmarks. For the first step, the MPC
parameters typically include AoA, angle-of-departure (AoD),
TDoA, amplitude, delays, radar cross section (RCS), and
received signal strength indicator (RSSI) of the received sig-
nal. Either one or a combination of these parameters can be
used to compute position estimates of the robot and land-
marks. In addition, the signal received may not always be in
LoS. In other words, as the wireless signal propagates through

the channel, it encounters reflections from various objects
in the environment, also known as the NLoS environment.
Therefore, the resulting received signal contains the sum of
the delayed multipath signals, and it affects the accuracy of
estimated MPC parameters. Thus, it is important to rectify
errors in the MPCs to have a better estimate of the state of
the robot and the environment’s features. There are various
statistical techniques for estimating the MPC parameters.
Multiple signal classification (MUSIC) [35] is the most pop-
ular and widely used method for AoA estimation. Other pop-
ular conventional techniques include ESPIRIT and maximum
likelihood estimation (MLE). Moreover, there exist many
super-resolution radio-channel parameter estimationmethods
that provide MPC parameters with high quality for example
[36], [37], [38], [39], [40], [41]. Some of thewidely usedAoA
estimation techniques are discussed in detail in Section IV.

While computing theMPC parameters may seem sufficient
to get an understanding of the environment and robot’s loca-
tion, the future states of the robot and environment’s features
still need to be predicted as they are required as inputs to
the odometery unit to decide on the next appropriate motion
step of the robot (depending on the application). Furthermore,
since the received signal may contain noise due to the channel
impairments, the MPC parameters are not entirely accurate.
To mitigate these issues, several filters have been devised
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that can predict the state estimates from noisy MPC mea-
surements. For instance, EKF [42] and particle filters (PFs)
[43] are the most commonly used filters for inferring the
posterior PDF of the state variables. These are discussed in
detail in Section V. Fig. 3 shows the main steps, algorithms,
and associated challenges involved in implementing radio
SLAM.

FIGURE 4. Illustration of VAN. A VAN is formed at the mirror position of
the PAN across the obstacle surface.

A. VIRTUAL ANCHOR NODE
VANs play a decisive role in the localization of the UE as well
as the PAN, also referred to as the access node. There exists
a LoS communication when there is no obstacle between
the UE and PAN. In such scenarios, computing the range of
PAN is straightforward as there is no multipath propagation
delay in the received signal. On the other hand, in the NLoS
scenario, the signal is scattered and reflected through many
obstacles before reaching the destination node.Moreover, this
received signal is composed of propagation and multipath
delays. The multipath delays arise from various reflective
surfaces and result in multiple copies of the same transmitted
signal at the receiver end. Therefore, computing the range
of such nodes becomes challenging. To overcome this chal-
lenge, VANs can be employed. As the name suggests, VAN
is a virtual node that neither exists physically and nor serves
any wireless function between any nodes. However, it is
considered to be virtually present at a mirror position of the
PAN and behind the LoS obstacle [44]. The reflected signal
is considered as a virtual LoS (VLoS) signal coming from the
VAN. A simple illustration of VAN is shown in Fig. 4, where
sLoS , sNLoS , and sVLoS are LoS, NLoS, and VLoS signals,
respectively, between a UE and a PAN. In addition, each
VAN is associated with each reflection coming off from an
obstacle. So, if the surface of an obstacle gives rise to multiple
reflections, then there will be as many VANs associated with
each reflection. The true location of PAN can be computed

by mirroring the position of the VAN with respect to the
obstacle [6].

In radio SLAM, the problem of NLoS signals is mitigated
using VANs. For instance, in the implementation of node
localization using multiple APs in [6], the locations of VANs
were computed using mirror plane estimation whereas the
TV algorithm was employed for node position estimation.
Similarly, in [7], VANswere employed to localize the receiver
with high accuracy. The locations of the receiver and detected
surrounding objects were computed by estimating the loca-
tions of VANs using trilateration, TDoA, and RSS.

B. APPLICATIONS OF RADIO SLAM
The applications of SLAM in general span from autonomous
vehicles, such as self-driving cars and robots, to exploring
and navigating places where human reach is challenging and
many indoor applications. However, it is pertinent to mention
that most applications of radio SLAM are targeted towards
achieving localization in wireless networks. For instance,
the SLAM technique has been widely used for localizing
a mobile user in the presence of multiple BSs. A similar
approach is used for the positioning and navigation of robots
using multiple anchor nodes. More recently, the concept of
personal mobile radar is emerging. This concept aims at
exploiting the built-in architecture and antenna array of a
mobile for performing localization and mapping. Table 1
lists some of the relevant papers implemented for different
applications in radio SLAM.

TABLE 1. Solutions to applications in radio SLAM.

IV. ANGLE OF ARRIVAL ESTIMATION METHODS
As described in Section III, the first step is to compute the
MPCs such as range, AoA, and TDoA. AoA is the widely
used MPC parameter for localization as it is robust against
noise. The effect of several MPCs such as RSS, ToA, and
AoA, on the performance of localization has been studied
for mm-wave signals [48]. In this study, the use of the AoA
approach has been shown to significantly improve localiza-
tion performance. As the name suggests, AoA refers to the
direction of the incident signal with respect to some reference
orientation, such as the receiver’s boresight direction [49].
Together with the knowledge of range or ToF, the infor-
mation about AoA not only helps to infer the positions of
the surrounding target objects but also provides informa-
tion about the geometry of the environment. Hence, both
MPCs i.e., range and AoA, tend to play a key role in the
implementation of radio SLAM. Some of the commonly used
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methods for estimating AoA are briefly discussed in the next
section.

FIGURE 5. Geometrical illustration of AoA (θ) estimation using two ULA
of antennas.

A. CLASSICAL ESTIMATION TECHNIQUES
MUSIC, a pioneering algorithm in the field of signal pro-
cessing, was first presented by Smith in 1983 [35]. MUSIC
estimates signal parameters by eigenvalue decomposition on
the covariancematrix of the receiving signals onmultiple sen-
sor arrays. Another popular subspace-based method for the
estimation of signal parameters is via the rotational invariance
technique, commonly known as ESPRIT [50]. A simplistic
approach for AoA estimation is by computing the TDoA
[51]. An illustration of TDoA computation on a uniform
linear array (ULA) of antennas is shown in Fig. 5. This
technique is beneficial in that it does not require any syn-
chronization between transmitter and receiver nodes. A study
in [52] exploited TDoA together with the information about
the geometry of the receiver antennas to compute the AoA.
Other widely used AoA estimation techniques include Capon
method [53], [54] and MLE [55], [56], [57].

Performance comparisons for MUSIC and ESPRIT have
been thoroughly analyzed in the last few decades [58], [59],
[60]. Despite their straightforward approach, the performance
of classical statistical techniques suffers from various fac-
tors. For instance, high-resolution techniques such asMUSIC
and Capon, are sensitive to noise and multipath-rich chan-
nels. In addition, the computational complexity of MLE
soars exponentially when scanning in 3D, that is, in both
azimuth and elevation directions [61]. Moreover, the number
of received signals must also be known in advance for both
MUSIC and MLE [62], [63]. ESPRIT, on the other hand,
requires the utilization of a higher number of sensors for
fast computation [64], and its utility is limited to a specific
geometry of antenna array i.e., ULA [65]. To overcome the
aforementioned limitations imposed by the classical tech-
niques, many variants have been devised for MUSIC [66],
[67], [68], [69], [70] and ESPRIT [65], [71], [72].

A plethora of research work has been carried out to esti-
mate AoA using the MUSIC algorithm. The work in [73]
used MUSIC and root-MUSIC algorithms to estimate AoA
for mobile localization and the experiments were validated
using software-defined radio (SDR) i.e., USRP X310 with
daughterboards UBX−160 and TwinRX. A proof-of-concept
(PoC) for direction finding using MUSIC and ESPRIT was
developed using the NI-PXIe platform. The work in [74]
presented a TDoA-based method to estimate the AoA using
all the available anchor nodes in the network. Computing
AoA from each node resulted in a more confident estimate
of the AoA. Synchronization issues, between any two nodes,
were resolved using the TDoAmethod. Apart from RF-based
direction finding applications, the aforementioned classical
algorithms have also been widely used for the application
of sound source separation and localization [75], [76], [77].
The next section describes popular conventional and DL tech-
niques that have been used for AoA estimation.

B. DEEP LEARNING TECHNIQUES
With the recent advancements in technology over the past
decade, an enormous amount of data is being generated
through various devices and digital platforms. This outburst
of data has given rise to a completely new era of artificial
intelligence (AI), which comprises data-driven algorithms
whose performance seems to supersede that of conventional
signal processing algorithms. NN based DL algorithms [78]
have become significantly popular in the field of computer
vision [79], natural language processing [80], and more
recently, in the applications of wireless communications [81].
In fact, many researchers are now trying to leverage the
potential of DL for estimating the AoA for the applications
of indoor positioning. There are two approaches to design
DLmodels for AoA estimation: regression and classification.
Table 2 lists some of the regression and classification-based
DL models designed for optimizing AoA estimation. How-
ever, it is important to note that each of the listed experiment
in Table 2 has considered a different set of experimental
parameters such as the number of source reflectors, the
field of view (FoV), signal-to-noise ratio (SNR), and the
receiver’s antenna array configuration such as ULA, non-
uniform linear array (NULA), uniform circular array (UCA),
and symmetric nested array (SNA). Therefore, the perfor-
mance of AoA estimation varies according to the set of
parameters employed in the experiments. Regression and
classification-based approaches are further discussed in the
subsections below.

1) REGRESSION MODEL
In ML, regression refers to a method that predicts a continu-
ous value of a quantity [82]. To put it differently, the output
of the regression model is a numerical value of a random
variable. For the application of AoA estimation, the output
of a regression model will be the predicted value of AoA.
An illustration of a regression model based on a single-layer

9266 VOLUME 11, 2023



B. Amjad et al.: Radio SLAM: A Review on Radio-Based Simultaneous Localization and Mapping

TABLE 2. Experimental parameters and performance comparison of deep learning models developed for estimating AoA.

neural network is shown in Fig. 6. The input layer contains N
features represented by pn, whereas wn and b are the weights
and biases of a single-layer neural network, respectively. The
output is a scalar value representing the predicted AoA.

In the last couple of years, regression models have been
widely used for predicting the AoAs. The work in [83] pre-
sented a regression-based DL model to estimate the number
of point sources and their associated AoA. They made use
of a dense neural network (DNN) and compared its results
with other NN architectures such as convolutional NN (CNN)
and fully connected network (FCN). Moreover, they also
compared their results with conventional estimators, such as
MUSIC andMLE, and demonstrated how the proposed DNN
outperforms them. Furthermore, others proposed a hybrid
approach in which they diffused the features from conven-
tional methods together with the data-driven models. For
instance, the work done in [61] used the output of the MUSIC
algorithm as input to the ML models to reduce the input
data dimensionality and model complexity. They exploited
different ML frameworks including NNs, the Gaussian pro-
cess, and the regression tree to improve the estimation accu-
racy of AoA. Their hybrid approach resulted in considerable
improvement as compared to the conventional method such
as MUSIC.

The work in [84] followed a similar hybrid approach
to estimate the AoA, however, unlike simulations, they
employed a low-cost SDR to perform experiments and vali-
date their results on over-the-air data. In this work, DLmodels
such as FCN and CNN have been employed to estimate only
two AoAs. MUSIC algorithm was applied to the receiving
in phase (I) and quadrature-phase (Q) signals. The resulting
covariance matrix was used as input to train the DL models.
The dataset of IQ signals was collected using the low-cost

SDR, called KerberosSDR [85]. Their results showed signif-
icant performance overMUSIC and support vector regression
(SVR). The problem of classifying near-field and far-field
sources along with their associated range and AoA has been
explored in [86]. First, the received signals are converted
to the frequency domain, where each peak corresponds to a
reflective source. Using the locations of the peaks, the phase
difference matrix is computed for each source, which is then
used to train a CNN model to predict AoA of each source.
In addition, an autoencoder was also employed to perform
classification between near-field and far-field sources. The
autoencoder helps to learn only principal components in the
input data and discards redundant and irrelevant information,
thus, enhancing the capability of the DL model to gener-
alize well over the unseen data. After that, the range of
near field sources was predicted using another CNN. This
three-step chain comprising regression and classification led
to increased localization accuracy. A regression-based end-
to end model was proposed in [87], in which a CNN was
devised to estimate the AoA using phase features from the
spatial covariancematrix of the received signal. The proposed
method demonstrated increased accuracy over MUSIC and
radial basis function NN (RBFNN).

2) CLASSIFICATION MODEL
In classification mode, the model predicts the outcome prob-
ability of a given set of class labels. In other words, the output
of a classifier assigns a probability to each class and the class
with the highest probability is considered to be the predicted
class [82]. Unlike regression, the output of a classification
model is a vector containing the predicted probabilities of
each class, as illustrated in Fig. 6. For AoA estimation, the
number of classes can be assigned according to the expected
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number of reflection sources whereas the probability of each
class defines the likelihood of each angle to be the true source
of reflection.

FIGURE 6. Illustration of single layer NN used for regression and
classification.

A study in [88] considered multiple configurations of the
sensor array. They proposed multiple DL models that work
together to achieve robust performance for the AoA esti-
mation. Autoencoders have been used for spatial filtering
followed by multiple layers of DNN classifiers to estimate
the AoA. Another work in [89] solved the AoA problem for
a NULA of antennas. They designed a CNN network (named
as RFDOA-Net) to predict the AoA. In addition, the RFDOA-
NET contains multiple sub-modules that enhance the feature
extraction for better performance of the AoA estimator. They
created a simulated dataset to train the model to classify
181 classes of AoA. Results were compared with MUSIC
and other state-of-the-art DL models, such as ResNET, and
SqueezeNet. An unsupervised approach was presented [90]
to estimate the AoA using a CNN. The proposed approach
did not involve any annotations of the input data in advance
to train the network, instead, the authors devised an l1-norm-
based loss function to optimize the weights of the network.
The input to the network was a covariance matrix of the
received signals impinging on the ULA of antennas. The
CNN model classified AoAs based on the highest probabil-
ities. Experiments for this work have been performed and
verified on simulations using synthetic datasets.

Furthermore, in [91], feature-to-feature-based DL models
have been developed in order to learn complex function
mapping between distorted phases and clean phases of the
received signals. The clean phases, reconstructed from a mul-
tidimensional CNN, are used to create the covariance matrix,
which is then used to compute DoA from conventional meth-
ods such as directional beamforming and MUSIC. The main
objective of the feature-to-feature learning approach is to
mitigate the effects of phase distortions caused by multipath
components. Experiments were performed on real data col-
lected from a 21−antenna element-based VHF radar. In a

similar work [92], a DNN has been used as a classifier to
predict AoA from the correlation matrix obtained from the
input signal. It shows an increased estimation accuracy as
compared to the MUSIC algorithm.

V. STATE PREDICTION METHODS
There are three main paradigms of SLAM algorithms that
have been widely used for tracking the state variables of robot
and landmarks, depending on the complexity and requirement
of the application. These paradigms are briefly discussed
below:

A. KALMAN FILTERS
The KF was originally devised in 1960 and has widely been
used since then to track and estimate parameters from noisy
observations [93]. However, the KF tends to work only for
linear systems. To incorporate non-linear systems, the EKF
was introduced [42]. The basic idea of the EKF is to linearize
the non-linear system, then apply the fundamental KF to it.
For SLAM, the measurements and state transitions are almost
always non-linear in nature, therefore, the EKF is commonly
used as a conventional method to solve the SLAM prob-
lem. The EKF-SLAM aims to compute the joint conditional
probability as defined in (2). This technique comprises a
state vector that contains states that need to be estimated,
for example, the location of the robot and landmarks. The
EKF computes themean and the associated covariancematrix
of the estimated state vector, where the covariance matrix
represents the uncertainty in the estimated locations. Since
the EKF is a recursive algorithm, both the state vector and
covariance matrix get updated as the robot moves through
the environment. Therefore, the EKF is considered to be a
suitable algorithm to be used for implementing the online
SLAM.

In order to compute (2), one needs to have the probabil-
ity distribution model defined for both the robot’s observa-
tion and motion [18]. The observation model is generally
expressed as the probability of finding the measurement zt
given the map and robot’s location:

P (zt | xt ,m) (4)

On the other hand, the motion model describes the prob-
ability of the robot’s current location given the previous
location along with the odometry measurement. This can be
expressed as:

P (xt | xt−1, ut) (5)

Although the EKF is a promising algorithm in terms of
simplicity and robustness, the computational complexity of
calculating the measurement updates increases with increas-
ing the number of landmarks. To be specific, the computa-
tional complexity grows quadratically with the number of
landmarks, and this can affect the performance of SLAM
in real time. Apart from that, the EKF-SLAM uses linearity
to represent the distribution models of the robot’s observa-
tion and motion which are generally non-linear in nature.
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This caveat usually leads to poor performance in certain
environments [18].

The work presented in [5] usedmm-wave radar for measur-
ing the range and bearing of the vehicle and the surrounding
landmarks. The states were further predicted using the EKF.
A method for identifying the shape of the landmarks was
presented in [7], in which power measurements of reflec-
tions were obtained at different positions by moving the
mobile receiver and the state estimates were updated using
the EKF. Apart from range and bearing, the study in [9]
employed RCS parameter, which was estimated using the
EKF for reconstructing the map. Similar work was done
in [46] in which the state vector comprised of RCS col-
lected at each steering angle and it was estimated through
the EKF. However, the posterior belief for the EKF was
modified considering the inter-dependency between multiple
measurements due to the antenna’s beamwidth. To sense and
map the dynamic environments, a mm-wave based mobile
sensing system developed in [94] keeps track of the moving
scatterers in the environment using an interactive multiple
model-based EKF. The experiments have been validated on
both simulations and hardware.

TABLE 3. Filter characteristics.

B. PARTICLE FILTERS
PF [43] is a non-parametric optimization method that
employs a set of particles to represent a posterior distribu-
tion of a random variable. Each particle is considered an
estimate of the true state. For instance, if we wish to esti-
mate the location of a robot, then each particle represents
one of the possible locations in the environment where the
robot is likely to be found. Particles tend to survive when
they have the closest estimate to the true location of the
robot. Fig 7 illustrates the process of how particles converge
to the true location of the target over multiple timesteps.
The blue dot represents the aggregate of all the particles
and its location represents the estimate of the target’s loca-
tion. Consequently, more particles are required to represent
a map with high dimensional feature space. Therefore, the
computational complexity of the method increases with the
features in the map [33]. However, to reduce computational
complexity, the FAST SLAM [95] method emerged as one
of the most popular and widely used PF-based methods that
effectively mitigates the issue of expensive computations
in solving the SLAM problem. Moreover, unlike the EKF-
SLAM, a PF works with both nonlinear models and mul-
timodal distributions, hence allowing to reconstruct more

accurate representations of complex environments. Table 3
lists the characteristics of the KF and PF [96].

FIGURE 7. Illustration of a PF algorithm. Particles are initialized at
timestep = 0. At each time step, particles having state close to the true
state of the target are more likely to be resampled until they are
converged at some timestep = K.

A real mm-wave based indoor user positioning system
was implemented in [97] using commercial off-the-shelf
802.11ad, in which the performance degradation occurs due
to the irregular beam shapes transmitted by the users. A PF
along with the use of Fourier analysis has been employed
to overcome the limitations posed by the cost-efficient hard-
ware of the 802.11ad network. Another PF-based method
for mobile localization in a UWB-based sensor network has
been presented in [44]. They used Rao-Blackwellized PF
[98], [99] to estimate the MPC, i.e., range for the location
of the mobile user, surrounding VANs and their associated
PANs. Furthermore, a Rao-Blackwellized PF has been used
for the application of pedestrian tracking [47], in which the
pedestrian is modelled as a moving agent and fixed anchors
are placed in the surrounding environment with unknown
positions. Without a priori knowledge of the positions of
anchors, the distance between the pedestrian and anchors was
estimated and tracked using a Rao-Blackwellized PF. Other
works [100], [101] proposed amethod for mobile localization
called channel-SLAM. It employs EKF and PF to estimate the
MPC parameters of the received signal, including amplitude,
AoA, and delay. Apart from the user positioning application,
joint vehicle positioning and mapping using mm wave has
been implemented in [102] with the help of PF for the esti-
mation of vehicle’s states whereas the probability hypoth-
esis density (PHD) filter has been employed for the map
ping of the environment. Their proposed method is shown
to work with unknown number of landmarks. Recent works
have started to circumvent the issue of higher computational
complexity that comes with the complex variants of the PF.
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A novel 5G mm-wave SLAM has been proposed in [103]
which demonstrated reduced computational complexity as
that of the PHD-based Rao-Blackwellized PF. This work has
been extended with the design of a novel mm-wave radio
SLAM filter whose complexity has further been reduced
using Poisson multi-Bernoulli mixture filter [104].

FIGURE 8. Formation of a graph matrix for a given trajectory and
positions of mobile and nodes.

C. GRAPH SLAM
Graph-based techniques were developed [106], [107], [108]
to leverage non-linear sparse optimization for solving the
SLAM problem. In graph SLAM, nodes represent the loca-
tions of a moving robot and surrounding landmarks. Whereas
the arcs represent the relationship between two consecutive
locations xt1 and xt of the robot, and also between current
robot location xt and the landmark mi observed by the robot,
as shown in Fig. 8. Unlike the EKF SLAM, graph SLAM can
reconstruct high dimensional maps of the environment [33].
Initially, the formulation of graph SLAMwas limited to solv-
ing only the offline SLAM problem, however, online variants
have also been introduced that can process the measurements
for online SLAM [109].

In the context of radio SLAM, the work in [45] presented a
belief propagation (BP) based joint probabilistic data associ-
ation method for joint localization and mapping of the mobile
agent, PA, and VAs. Experiments involved real indoor UWB
dataset [110] for validating the proposed approach.Moreover,
there are other studies in multipath-based SLAM using FGs
that have exploitedMPCs other than just themultipath delays,
for example [111], [112], [113]. The study in [111] not only
exploited the delays but also the AoAs from the MPCs of the
radio signals to localize a mobile agent and the surrounding
PAs and VAs in terms of their position, velocity, and orienta-
tion. To enable the MPCs estimation, a BP-based algorithm
has been proposed which also exploits the complex ampli-
tudes of the MPCs to enable probabilistic data association.
A similar study carried out in [112] proposed a localization

FIGURE 9. Illustration of the concept of OGM. The environment is divided
into grid cells where each grid cell is assigned a value based on the
magnitude of the reflection received from that direction.

strategy of the UE in a mmWave MIMO communication
infrastructure. In this study, a BP-based algorithm has been
proposed to estimate the states of UE along with the map
of the reflecting surfaces in the environment. In addition,
a study in [113] addresses the problem of handling dynamic
changes in the states of agent and map features. This has been
accomplished by incorporating interacting multiple models
parameters into the FG and estimating the time-varying states
of the agent by using the proposed BP-based algorithm.
In more recent developments in radio SLAM using FGs,
multipath measurements associated with the same reflective
surfaces amongst base stations and higher-order reflections
are fused together and represented by a singlemaster VA [26],
[27]. This approach has led to faster convergence of mapping
while reducing mapping errors.

VI. MAPPING TECHNIQUES
Knowing the map of the environment is crucial for robots
and mobile users to find the appropriate trajectory path. The
process of reconstructing a map of the environment involves
the knowledge of the positions of the surrounding landmarks.
The process of inference can be carried out by estimating
the states that best represent the features of the environ-
ment. In the context of wireless applications, these states
can be a set of MPC parameters such as range, RCS, and
AoA. The commonly used filters for state tracking include
EKF and PF. Apart from using the conventional state esti-
mators, the study in [114] used convex optimization and
the Hough detector algorithm to assign distance estimates
to the correct reflectors with less combinatorial complexity.
The experiments for this work were validated for LOS and
single bounce reflection signals in a convex polygon-shaped
room.

Constructing map is one of the most challenging tasks
in SLAM. Since the environment, whether indoor or out-
door, is often rich in features, it is challenging to develop a

9270 VOLUME 11, 2023



B. Amjad et al.: Radio SLAM: A Review on Radio-Based Simultaneous Localization and Mapping

TABLE 4. Summary of studies involving radio-based localization and mapping. Each study is categorized by the state variables considered, methods
involved (such as methods for computing the posterior PDF of state variables or methods for statistical system model), the type of map representation,
and the experimental setup.

methodology that can process high-dimensional data and also
distinguishes between several features for identifying certain
landmarks of interest. However, there are two basic categories
for representing the environment, i.e., the feature based map
and the occupancy grid map (OGM). Each mapping tech-
nique is specifically designed to work best with the use of cer-
tain sensors and for particular environment scenarios [115].
Table 4 summarizes the methods and mapping representation
involved in the existing implementations of radio SLAM.

A. FEATURE-BASED MAP
Feature-based maps are mainly useful to represent the out-
door environment due to the presence of ample features in
the surrounding. To develop feature-based maps, the sensors
must also be capable of taking high-resolution measurements
that can be processed to distinguish different landmarks.
Therefore, camera-based sensors are appropriate for recon-
structing feature-based maps. The most successful approach
for processing image data involves computer vision meth-
ods that have completely revolutionized the field of image
processing. With the help of computer vision techniques,
landmarks can be identified, segmented, and distinguished for
rich-feature representation of the environment. However, it is
challenging to distinguish landmarks using the measurements
obtained from radio sensors. Therefore, it is challenging to
employ a feature-based mapping approach in wireless posi-
tioning applications. On the other hand, OGM is a suitable
approach for creating simplemaps, especially for indoor envi-
ronments, using radio sensors. The OGM method is further
discussed in the next subsection.

B. OCCUPANCY GRID MAP
As the name suggests, this approach divides the environment
into uniform grids, where the size of a grid cell depends on
the sensor’s resolution to distinguish between features. Each
grid cell holds a specific occupancy value, which represents
the presence or strength of a detected landmark, as illustrated
in Fig. 9. In a binary grid map, each grid cell is either
represented by 0, indicating air or absence of any landmark,
or 1, indicating the presence of landmark in that location.
This is a coarse mapping approach as it cannot differentiate
between different types of landmarks, which are present in
the environment. To overcome this problem, each grid cell
can be represented by a value according to the signal strength
received from that location.

In [44], the reconstructed map shows the positions of PAs
and VAs as point landmarks whose states are updated using
FG and PF. Similarly, other works [100], [101] employed
EKF and PF to track the MPC parameters, such as ampli-
tude, AoA, and delay and represented the map using point
obstacles.

VII. EXPERIMENTAL RESOURCES
While there are plenty of simulated implementations of
radio SLAM, there are only a handful of PoCs devel-
oped so far. For developing a PoC, one needs to have an
appropriate sensor device available to perform the exper-
iments. Moreover, with the rise in DL methods, a huge
number of datasets are required, either for simulated exper-
iments or for developing a PoC. The following sections
describe some of the available datasets and hardware devices
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suitable to experiment with the implementation of radio
SLAM.

A. DATASETS
With the advancements in technology over the past few
decades, the outburst of data has enabled researchers to devise
data-driven algorithms that can learn complex non-linear
functions from the data itself and tend to be more robust
than conventional analytical methods. Regarding SLAM, few
datasets have been collected and made open-source to enable
researchers to devise and validate new methodologies. Most
of the datasets contain sets of indoor and outdoor images
of the environment which can be used with 3D photo real-
istic simulators, such as AI Habitat [116], to simulate and
test the robot’s behavior in a particular environment. How-
ever, these image-based datasets are mainly aimed toward
the implementation of visual SLAM using computer vision
algorithms since cameras are the primary sensors in this case.
Nevertheless, a recent work [117] has integrated wireless
propagation information with the help of wireless channel
simulators, such as Remcom [118], within the Gibson dataset
[119]. They validated the simulations on AI Habitat [116]
and have released an augmented Gibson dataset [120] that
also contains wireless ray tracing data along with the camera
and LiDAR data. The Gibson dataset contains virtual images
of several indoor places. It contains images of 572 buildings
having 1447 levels and it covers a total area of 211km2. The
Gibson environment continuously generates these images in
a sequence that is akin to looking at the surrounding using
a real camera. Therefore, the idea is to emulate a simulated
environment that is close to the real one, so as to reduce the
complexity as well as the time of deploying and validating the
proposed methodologies in real-world scenarios.

Owing to the limited availability of low-cost radio
transceivers, fewer over-the-air radio-based datasets are cur-
rently available for positioning applications. For AoA estima-
tion, the study in [84] used KerberosSDR [85] as a VHF/UHF
receiver to generate a dataset [121] of complex IQ sig-
nals. This dataset contains both LoS and NLoS components,
impinging on a ULA of antennas. Some mm-wave based
datasets are also available for indoor [122] and outdoor envi-
ronments [123] for user localization. A mm-wave dataset
[124] based on the reflection measurements from different
metallic objects at 28 GHz has been recorded using the
National Instrument PXI signal transceiver. Its equivalent
simulated ray-tracing data is also provided, which is gener-
ated through the Wireless Insite software by Remcom. The
dataset is composed of the channel impulse response obtained
in both indoor and outdoor environments. Another dataset
[125] has been developed for DoA estimation. It comprises of
compressed signals obtained at different azimuth and eleva-
tion angles between 30◦ and−30◦. However, the source from
which the dataset has been generated is not clearly described
in the paper. To foster research in 5G New Radio (NR)
technology, a simulated dataset has been generated in [126]
which comprises of the channel frequency response obtained

TABLE 5. Available mm-wave and UWB based dataset resources for
positioning applications.

for MIMO configuration in both indoor and outdoor settings.
The dataset has been generated using the carrier frequency of
3.5 GHz and 40 GHz in accordance with the 3rd Generation
Partnership Project (3GPP) Release 16 (R16) standard. Few
other mm-wave datasets can be found at [127]. While some
of the datasets are made publicly available, others require
purchased subscriptions to access them. Table 5 summarizes
some of the available datasets, which can be used for the
applications of indoor positioning and radio SLAM.

B. SENSORS
Cost-efficient sensors play a key role in the rapid devel-
opment of PoCs and experimental validation. Decawaves
DW1000 [130] is a low-cost UWB transceiver, which can
be employed for UWB-based positioning and localization
[47], [137]. For mm-waves, there are some cheap evaluation
kits available by Texas Instruments [138] and Joybein [139]
which can be leveraged to validate mm-wave-based position-
ing and SLAM methods in real-world scenarios. The eval-
uation kits [131], [132], [134] process the received signals
and provide MPC parameters such as range, AoA, doppler,
and SNR. To access the raw IQ data samples, TI provides
an additional DCA1000EV M kit [133], which can be con-
nected with the mm-wave kits from TI. Access to the raw
IQ data can enable researchers to develop and test their own
custom signal processing algorithms for indoor positioning
and radio-SLAM. Table 6 summarizes some of the available
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transceivers that can be employed for the implementation of
PoCs.

TABLE 6. Available mm-wave and UWB radio transceivers.

VIII. CHALLENGES AND FUTURE DIRECTIONS
A. MM-WAVE SLAM
Themm-wave band is widely used in positioning applications
due to its increased localization accuracy. However, it shows
relatively poor performance in long range applications, as it
suffers from high attenuation (path loss) as it propagates
through the channel, compared to low-frequency signals.
Therefore, the development of robust algorithms that can
mitigate the path loss problem is required.

B. BEYOND MM-WAVE SLAM
Frequencies beyond mm-wave band such as the THz band
are gaining attention in 6G communications and localization
lately. Since location-aware communication is becoming the
core of 6G communications, and sub-THz bands are soon
to be supported by 6G, the research interest in THz based
localization is increasing rapidly over time. An extensive
review has been provided on the recent developments and
challenges of THz based localization [141]. Recent studies
have validated the implementation of THz based SLAM
in an indoor environment [142] and demonstrated that the
THz band has the potential to outperform mm-wave based
localization [141]. The THz band seems to be promising for
future communication and localization networks, however, its

challenges and appropriate scope of applications still need to
be explored.

C. LIMITATIONS IN DEEP LEARNING BASED
IMPLEMENTATION
As discussed earlier, DL based methods continue to outper-
form classical estimation methods. However, one needs to
know the number of parameters to be estimated in advance.
For example, in the case of AoA estimation, the output nodes
of the regression and classification model translate to the
number of possible reflectors or nodes in the environment.
This implies, that the information about the source reflectors
must be known in advance in order to design a DL model.
For the classification model, not only the number of source
reflectors should be known in advance, but the values of AoA
associated with each reflector must also be known a priori.
These limitations can lead to the complete failure of such DL
models if deployed in an unfamiliar environment.

D. OUT-OF-DISTRIBUTION PERFORMANCE
Unlike in the field of computer vision, there are only a
handful of datasets available for the wireless technology
domain, and those datasets are limited for specific applica-
tions only. Also, the distribution of wireless signals can be
affected by numerous parameters. Some of these parameters
are SNR, wireless propagation channel, modulation type,
frequency band, bandwidth, and perturbations caused by the
nonlinear behavior of the hardware components. In addition,
the aforementioned factors are further controlled by various
other parameters, which makes it challenging to create a
well-generalized dataset that considers the combination of all
the factors. Therefore, ML and DL model tends to overfit
on the dataset containing a specific distribution of param-
eters. However, the model fails to generalize as soon as it
encounters the data with a slight distribution shift in those
parameters. In DL, this is known as the out-of-distribution
problem. This usually happens when a model is trained on a
particular training data distribution, but it fails to performwell
in real-time scenarios as the actual data distribution changes
with respect to the training dataset.

To increase the robustness of data-driven models against
distribution shifts, it is imperative to do research in devising
intelligent ways for curating generalized datasets as well as
designing DL models that are invariant to changes in the
data distribution. Furthermore, just like CNN and transformer
models are mainly designed to work with images and sequen-
tial data, respectively, a different DL framework can be devel-
oped that will work optimally for wireless data.

IX. CONCLUSION
This paper provides a holistic overview of radio-based meth-
ods for localization and mapping with special emphasis on
mm-wave and some UWB based methods. It extensively
overviews the potentials and challenges of conventional and
DL-based methods used for implementing radio SLAM.
While there is a fast development of DL-based methods
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for localization, methods for mapping still follow classical
approaches, such as EKF and PF, leaving room to incorporate
data-driven based methods for improved mapping perfor-
mance. Furthermore, it is also important to note that enhanced
localization accuracy using DL algorithms usually comes at
the cost of generalizability. Therefore, not only is it necessary
to create well-generalized datasets, but it is important to
explore the avenues of designing generalized DL models for
wireless data. The potentials of mm-wave together with the
generalized data-driven models can pave a way for robust
radio SLAM in the future.
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