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ABSTRACT Accurate threshold setting for energy detector is important for example in dynamic spectrum
access. This requires accurate statistical distributionmodels of the observed energy. In this paper, we consider
energy detection (ED) for M -ary quadrature amplitude modulation (QAM) signals. The derivation of the
exact solution of the distribution model (ES) requires all combinations of QAM signals in the observed
signals based on the brute-force search and it leads to a significant computational cost. For this issue,
this paper proposes three statistical distribution models which assume M = ∞ to avoid the brute-force
search. Due to the assumption of M , the proposed models are independent of M and can handle adaptive
modulation where M can be changed dynamically. In the numerical evaluations, we compare the three
proposed models with the other typical approximation models under additive white Gaussian noise (AWGN)
channel and Rayleigh fading channel. In addition, the proposed models are extended for more realistic
scenario where imperfect synchronization is considered. The comprehensive numerical evaluations show that
the first proposed model is most accurate among all considered models except ES but requires relatively high
computational cost. The second proposed model where the observed energy is assumed to follow Gaussian
distribution is the least complexity but can have reduced accuracy. The third proposed model based on
skew-normal distribution can achieve comparable accuracy and less complexity compared to the first model.

INDEX TERMS Energy detection, quadrature amplitude modulation signal, spectrum sensing, dynamic
spectrum access.

I. INTRODUCTION
The rapid increase in wireless communication services had
led to the scarcity of spectrum resource and this is currently a
significant problem in the wireless communication field. The
spectrum resource is usually allocated to each wireless ser-
vice/system exclusively and new wireless services/systems
have difficulty in getting their own spectrum resource since
the spectrum is a finite resource [1], [2]. However, accord-
ing to numerous spectrum usage measurement campaigns,
e.g. [3], utilization ratio of the allocated spectrum resource is
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not always high and may rather be significantly low. This fact
indicates that the allocated spectrum resource has not been
utilized efficiently.

In order to solve the spectrum scarcity problem, the con-
cept of dynamic spectrum access (DSA) and smart spectrum
access have emerged [4], [5], [6]. In the DSA concept, the
secondary users (SUs) who do not have own spectrum, can
access the unused spectrum owned by licensed users, such
as primary users (PUs) and incumbent users, provided that
the spectrum usage by the SUs does not cause any harmful
interference to PU. One way for the DSA to work is that
SUs find spectrum which PU is currently not using. One
possible way to find the unused spectrum is spectrum sensing
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which can detect whether the spectrum is used by PUs or
not [7], [8]. Energy detection (ED), which is one of the spec-
trum sensing techniques, has several advantages as follows.
ED is low complexity in terms of operation and implemen-
tation and it does not need a prior information about the
received signal [9], [10] unlike other approaches such as the
matched filter based spectrum sensing [11], [12].

Consequently, a variety of ED based spectrum sensing
approaches have been developed nowadays. In [13], intelli-
gent reflecting surface is used to enhance the performance of
spectrum sensing. ED with multiple antenna is analyzed by
considering the correlation among antennas [14]. A practical
ED scheme has been proposed to detect the presence of a burst
signal in [15]. ED with dynamic threshold based on noise
measurement is investigated in [16].

The ED used by SU compares observed energy with the
predetermined detection threshold. If the observed energy
exceeds the threshold, SU decides the spectrum is occupied.
Otherwise SU decides the spectrum is idle. Therefore, it is
a critical requirement to set a proper detection threshold to
achieve the target performance of ED. The detection thresh-
old can be set by the statistical distribution model of observed
energy which consists of a possible signal component and a
noise component which always exists. Typically, the noise
component is assumed to follow a Gaussian distribution and
the observed energy with the noise component follows the
central Chi-square distribution [17]. On the other hand, the
transmitted energy which consists of only signal component
can belong to two categories: a deterministic signal and
a random signal. In case of constant envelope modulation
signal, such as M -ary phase shift keying (PSK) modulation
using single carrier technique, the transmitted energy with
the signal component can be approximated by a constant
value that corresponds to the deterministic signal. In this
case, the observed energy follows the non-central Chi-square
distribution in additive white Gaussian noise (AWGN) chan-
nel [18]. Furthermore, ED for deterministic signals under
Rayleigh and Nakagami fading channels was investigated
in [19]. In case of random signal, Gaussian approximation
for the signal component can provide analytical distributions
of the observed energy [17]. For example, the orthogonal fre-
quency division multiplexing (OFDM) signal can be modeled
using the Gaussian approximation due to the central limit
theorem [20]. Moreover, several works in the literature have
approximated the observed energy to a Gaussian distribution
under AWGN channel when the number of samples is suffi-
ciently large [21], [22], [23], [24].

The transmitted energy with a quadrature amplitude mod-
ulation (QAM) signal based on single carrier technique (such
as IEEE standard 802.15.3d-2017 [25]) also belongs to the
random signal. Nowadays QAM is attractive because it can
achieve the high data rate. In fact, QAM with single carrier
communications are investigated for future wireless commu-
nications [26], [27], [28]. For the statistical distribution for
the observed energy, Gaussian approximation could be one
of the options [17], however it dose not always provide an

accurate distribution. To tackle this issue, the analysis of ED
for theQAMsignal (i.e. detection probability) has been inves-
tigated in [29]. The analysis can provide an exact solution,
called ES in this paper, but it requires enormous computa-
tional complexity when the number of samples for ED (K )
and modulation order (M ) are relatively large. To simplify the
derivation, reference [30] has developed an approximation for
the observed energy toGaussian distribution forM -QAM sig-
nals. In our preliminary conference paper [31], we proposed a
model, called PM1, to obtain the approximated distribution of
the observed energy for the QAM signal case under AWGN
channel. Instead of the Gaussian approximation, finite M is
approximated by infinity to obtain the distribution analyti-
cally in PM1. The numerical evaluations in [31] indicated
that the accuracy of PM1 is better than the Gaussian approx-
imation of the signal component [17]. PM1 can achieve less
computational cost compared to ES in [29]. However, PM1
still requires K -fold convolution and its computational cost
is not negligible.

In this paper, we investigate the appropriate statistical mod-
els for ED with single carrier based M -QAM signals. The
contributions of this paper are summarized as follows.

• In addition to PM1 [31], we propose two further models,
defined as PM2 and PM3 in this paper, for the dis-
tribution of observed energy in the case of the QAM
signal. One of the benefits of the proposed models is that
they are independent ofM and this is a preferred aspect
for adaptive modulation schemes [32] with M -QAM
signals. In addition, the proposed models can achieve
less complexity compared to the ES [29].

• In PM2, the observed energy is approximated by Gaus-
sian distribution. On the other hand, the transmitted
energy of PM3 is approximated by skew normal distribu-
tion. PM3 has an advantage in terms of accuracy, while
PM2 can achieve relatively lower complexity.

• We investigate the proposed models not only under
AWGN channel but also under Rayleigh fading channel.
In addition, we also consider the effect of imperfect
synchronization in which there is a timing offset in the
symbol sampling and it causes intersymbol interference
(ISI). Specifically, the proposed model is extended by
assuming that ISI component follows Gaussian random
process.

• Comprehensive numerical evaluations show the benefits
of the proposed models in terms of accuracy as com-
pared to approximated statistical distributions used in
the literature ([17], [21], [22], [23], [24], [30]) and in
terms of complexity as compared to ES in [29].

The remainder of this paper is organized as follows. First,
Section II summarizes energy detection problem considered
in this paper. Section III describes statistical distributionmod-
els for the observed energy. Specifically, conventional models
and three proposed models in cases of AWGN channel and
Rayleigh fading channel are shown. In Section IV, compre-
hensive numerical evaluations based on computer simulations
are provided to verify the validity of the proposed models by
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their accuracy. Section V summarizes the comparison among
the conventional and proposedmodels based on the numerical
evaluations in Section IV. Finally, Section VI concludes this
paper.

II. ENERGY DETECTION MODEL
Adetection problem in the spectrum sensing can be expressed
by a binary hypothesis testing problem in which two hypothe-
ses areH0 (only noise component) andH1 (noise and signal
components) as [22]:

H0 : y[k] = w[k]

H1 : y[k] = h
√
Pĥ(τT )x[k] + I [k] + w[k]

(1)

where k (k = 0, 1, 2, . . . ,K − 1) is the index number for
the time domain sample, K is the number of samples during
the observation interval for spectrum sensing, y[k] is the kth
observed signal at the SU, ĥ(τT ) is an real-valued impulse
response of a band limited filter where τ (−0.5 ≤ τ ≤ 0.5)
is timing offset normalized by symbol time duration and
T denotes sampling time duration and the symbol time dura-
tion, I [k] is ISI component caused by the sampling timing,
and w[k] is noise component which follows circularly sym-
metric complex Gaussian distribution with zero mean and
variance σ 2

n . x[k] is a signal component sent from the PUwith
unit variance, h is the channel gain andP indicates the average
power for the signal component.

In this paper, we consider two cases in terms of symbol
synchronization as the perfect synchronization case and the
imperfect synchronization case. In the perfect synchroniza-
tion case, the sampled signal is assumed to be able to avoid
ISI and it leads to I [k] = 0. In the imperfect synchronization
case, the ISI component at the k-th sample is given by

I [k] =
√
P
∑
n̸=0

ĥ((n+ τ )T )x[n+ k]. (2)

In (1), the noise component is uncorrelated with x[k]
and I [k]. In this paper, we consider AWGN channel in
which h = 1 and Rayleigh fading channel in which
h follows complex circularly symmetric Gaussian distribu-
tion with zero mean and unit variance. Under Rayleigh fading
channel, a block fading is assumed and h is constant during
one observation interval for spectrum sensing. The average
signal to noise power ratio (SNR) and instantaneous SNR are
defined by γ = Pĥ(0)2/σ 2

n and |h|2Pĥ(0)2/σ 2
n , respectively.

Themaximum amplitude of an impulse response is equivalent
to ĥ(0) and let ĥ(0) be unity without loss of generality.

The normalized observed energy V ′ at the SU is given by:

V ′
=

K−1∑
k=0

(
|y[k]|√
σ 2
n /2

)2

(3)

The observed energy is normalized by σ 2
n /2 in (3) without

loss of generality [29]. The assumed modulation type for x[k]
isM -ary QAM whereM is power of four, such as 16, 64 and
256. The QAM signal provides additional randomness in the

observed energy unlike a constant envelope modulation type,
such as quadrature phase shift keying (QPSK).

The detection rule in ED is as follows: if V ′ is larger than
the predetermined threshold V ′

T , the detection result is H1,
otherwise the detection result isH0, i.e.

V ′
H1
≷
H0

V ′
T . (4)

The false alarm probability (PFA) and the detection probabil-
ity (PD) are used as two criteria to evaluate ED. The event
for PFA is that the detection result is H1 when H0 is correct
hypothesis and the event for PD is that the detection result is
H1 when H1 is the correct hypothesis. Mathematically PFA
and PD are given by:

PFA = Pr(V ′
≥ V ′

T |H0) (5)

PD = Pr(V ′
≥ V ′

T |H1), (6)

where Pr() is the probability of its argument.

III. STATISTICAL DISTRIBUTION MODEL FOR OBSERVED
ENERGY
For a proper design of ED, the threshold V ′

T is typically
set to satisfy either target PFA or target PD. The normalized
observed energy V ′ underH0 is given by

V ′
=

K−1∑
k=0

(
wI [k]√
σ 2
n /2

)2

+

K−1∑
k=0

(
wQ[k]√
σ 2
n /2

)2

. (7)

where I and Q indicate inphase and quadrature component,
i.e. x[k] = xI [k] + jxQ[k], w[k] = wI [k] + jwQ[k], h =

hI + jhQ and I [k] = II [k] + IQ[k]. It is well known that the
probability density function (PDF) of V ′ under H0 follows
a central chi-square distribution with 2K degrees of freedom
(DOF) [18]. The distribution is given by

p(V ′
|H0) = pχ2,2K (V

′) =


V

′K−1e−
V ′

2

2K0(K )
V ′ > 0

0 otherwise

(8)

where 0(K ) is the gamma function.
On the other hand, PD depends on the distribution of V ′

under H1. In this paper, we focus on the distribution of V ′

underH1 since PD is a critical evaluation criterion in DSA to
avoid significant interference.

In this paper, we will show models for the distribution of
V ′ comprehensively. Specifically, ES [29], three conventional
Gaussian approximations (CGA) [21], [22], [23], [30], [33],
and three proposed models (PM) under three following cases:
AWGN channel with perfect synchronization, Rayleigh fad-
ing channel with perfect synchronization, and AWGN chan-
nel with imperfect synchronization.

A. AWGN CHANNEL WITH PERFECT SYNCHRONIZATION
In the AWGN with perfect synchronization case, h = 1 and
I [k] = 0 due to no ISI in (1). Let λA denote the normalized
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observed energy due to the signal component in V ′. V ′ and
λA are expressed by

2V ′
=

K−1∑
k=0

(√
PxI [k] + wI [k]√

σ 2
n /2

)2

+

K−1∑
k=0

(√
PxQ[k] + wQ[k]√

σ 2
n /2

)2

, (9)

and,

λA =

K−1∑
k=0

(√
PxI [k]√
σ 2
n /2

)2

+

K−1∑
k=0

(√
PxQ[k]√
σ 2
n /2

)2

, (10)

respectively. For a given λA, PDF of V ′ under H1 follows a
noncentral chi-square distribution with 2K DOF as

p(V ′
|λA,H1) = pχ2,2K (V

′
|λA)

=

∞∑
i=0

e
−λA
2 (−λA

2 )i

i!
pχ2,2K+2i(V

′), (11)

and λA is known as the non-centrality parameter in the
chi-square distribution [17]. In this case, an achievable PD
with given threshold V ′

T and λA is [29]:

PD(V ′
T |λA) = QK

(√
λA,

√
V ′
T

)
, (12)

where QK (·) is the generalized Marcum Q-function [34].
In case of QAM, λA is random and let pA(λA) denote the

distribution of λA. In this case, PDF of p(V ′
|H1) is given by

p(V ′
|H1) =

∫
∞

0
pχ2,2K (V

′
|λA)pA(λA)dλA. (13)

Similarly, by averaging (12) over pA(λA), average PD can be
obtained by [35]

PD(V ′
T ) =

∫
∞

V ′
T

p(V ′
|H1)dV ′

=

∫
∞

0
PD(V ′

T |λA)pA(λA)dλA

=

∫
∞

0
QK

(√
λA,

√
V ′
T

)
pA(λA)dλA. (14)

The equations in (13) and (14) indicate that either pA(λA)
or p(V ′

|H1) is necessary to set the threshold to satisfy the
target PD.

1) EXACT SOLUTION (ES)
In [29], a model to obtain the distribution of observed energy
due to signal component, λA, was shown. Let ES

K denote
the sample space of observed energy contributed by signal
component during K samples. Thus, the exact pA(λA) can be
expressed by

pA(λA) =

∑
ϵ∈ES

K

δ(λA − ϵ)Pr(ϵ), (15)

FIGURE 1. The number of outcomes as a function of the number of
samples.

where Pr(ϵ) denotes probability of observed energy ϵ due to
the signal components. Then, by using (14), PD is given by

PD(V ′
T |λA) =

∑
ϵ∈ES

K

Pr(ϵ)QK (
√

λA(ϵ),
√
V ′
T ). (16)

One issue in this model is that the number of elements in the
set ES

K can be significantly large. For instance, the number
of elements in ES

K is denoted by NK which is given by [29]:

NK =
(N1 + K − 1)!
(N1 − 1)!K !

, (17)

where N1 indicates possible energy levels for M -QAM.
In case of 16-QAM, N1 = 3.
In Fig. 1, NK as a function of K for M = 16 and M =

256 are plotted. For largerM , such asM = 256,NK increases
significantly as K increases. In fact, K can be more than
100 samples and this leads to significantly large NK .

2) CONVENTIONAL GAUSSIAN APPROXIMATIONS (CGAs)
Three CGAbasedmodels to obtain approximated distribution
of V ′ are shown in this section. In the first CGA (CGA1),
x[k] is assumed to follow Gaussian distribution since the
signal component is random process due to QAM. In this
case p(V ′

|H1) follows the generalized chi-squared distribu-
tion [33]:

p(V ′
|H1) =


V

′K−1e−
V ′

2(1+γ )

(2 (1 + γ ))K 0(K )
V ′ > 0

0 otherwise.

(18)

In the second CGA (CGA2), not only x[k], but also V ′ are
assumed to follow Gaussian distribution as [21], [22], [23]:

V ′
∼ N

(
2K (γ + 1), 4K (γ + 1)2

)
. (19)

This approximation is valid when K is large number due to
the central limit theorem.
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FIGURE 2. Constellation points for M-QAM.

In the third CGA (CGA3), V ′ is approximated by Gaussian
distribution while x[k] is theM -QAM signal as [30]:

V ′
∼ N

(
2K (γ + 1), 4K

(
2
5
M − 4
M − 1

γ 2
+ 2γ + 1

))
,

(20)

in which the mean and variance have been obtained based on
exact statistics ofM -QAM signals.

3) PROPOSED MODELS (PMs)
In the three proposed models (PM1, PM2 and PM3), pA(λA)
is approximated by assumingM = ∞. In Fig. 2, constellation
points for different M (16, 256, and ∞) in QAM signals are
plotted. This figure indicates that the distributions of x[k]
have a square shape. According to this fact, the PDF of λA
with K = 1 and M = ∞ under AWGN channel can be
expressed by

p∞,1,A(λA)

=



π

8γ a2
(0 < λA ≤ 2γ a2)

π

2
− 2 cos−1

√
2γ a2

λA

4γ a2
(2γ a2 ≤ λA ≤ 4γ a2),

(21)

where suffix 1 of p∞,1,A(λA) indicates thatK = 1. The details
of the derivation of p∞,1,A(λA) are shown in Appendix A. For
the general K , p∞,K ,A(λA) can be obtained by

p∞,K ,A(λA) =

K︷ ︸︸ ︷
p∞,1,A(λA) ∗ p∞,1,A(λA) · · · p∞,1,A(λA),

(22)

where ∗ denotes convolution. It has been well known that
the complexity of the convolution can be reduced from
quadratic computational complexity to linearithmic compu-
tational complexity by employing fast Fourier transform [36].
The approximated p(V ′

|H1) can be obtained by plugging in
p∞,K ,A(λA) for (13). This distribution p(V ′

|H1) is denoted
by PM1.

In the second proposedmodel (PM2), theGaussian approx-
imation is applied for PM1. Specifically, p(V ′

|H1) in PM2 is
approximated to be Gaussian distribution with mean µV ′ and

variance σ 2
V ′ . For a given λA, V ′ follows the non-central chi-

squared distribution with the mean and variance given by

µV ′|λA = 2K + λA

σ 2
V ′|λA

= 4K + 4λA.

Next, mean and variance of λA are given by

µλA = 2Kγ (23)

σ 2
λA

=
8
5
Kγ 2, (24)

and the details of the derivation of µλA and σ 2
λA

are shown in
Appendix B. According to the law of total expectation and
law of total variance [37], µV ′ and σ 2

V ′ are given by

µV ′ = 2Kγ + 2K (25)

σ 2
V ′ =

8
5
Kγ 2

+ 8Kγ + 4K . (26)

Therefore, the distribution of V ′ in PM2 is given by

V ′
∼ N

(
2K (γ + 1), 4K

(
2
5
γ 2

+ 2γ + 1
))

. (27)

PM2 has a significant benefit in terms of computational
complexity compared to PM1.

In PM1, the integration calculations in (22) is not negli-
gible especially when K is large even if FFT is employed.
For this issue, PM3 uses skew normal distribution [38] with
parameters ξ , ω and α to approximate (22). The distribu-
tion approximated by skew normal distribution ps(λA) is
expressed by

ps(λA) =
2
ω

φ

(
λA − ξ

ω

)
8

(
α

(
λA − ξ

ω

))
(28)

where φ(x) and 8(x) are Gaussian probability density func-
tion and Gaussian cumulative distribution function, given by

φ(x) =
1

√
2π

e−
x2
2 , (29)

8(x) =

∫ x

−∞

1
√
2π

e−
t2
2 dt, (30)

respectively. The parameters α, ω and ξ are given by mean
µλA and variance σ 2

λA
as follows:

α =
δ√

|1 − δ2|
, (31)

ω =

√√√√√ σ 2
λA

1 −
2δ2

π

, (32)

ξ = µλA − ωδ

√
2
π

, (33)

where δ is

δ =
κλA

|κλA |

√√√√√√π

2
|κλA |

2
3(

4 − π

2

) 2
3

+ |κλA |
2
3

, (34)
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where κλA is skewness of λA and given by

κλA =

√
10

7
√
K

. (35)

The details of derivation in terms of skewness κλA is shown
in Appendix B.

B. RAYLEIGH FADING CHANNEL WITH PERFECT
SYNCHRONIZATION
In case of Rayleigh fading channel, the models can be cat-
egorized into two types. In the first type, the distribution of
signal component λA under AWGN channel is used and this
corresponds to CGA1, PM1, and PM3. In the second type, the
Gaussian approximation is applied for the observed energy
under AWGN channel and this corresponds to CGA2, CGA3
and PM2. The distributions of the signal component under
AWGN channel and Rayleigh fading channel are denoted by
pA(λA) and pF (λF ), respectively.

1) CGA1, PM1, AND PM3
Under Rayleigh fading channel, h follows complex circularly
symmetric Gaussian distribution with zero mean and unit
variance. In this case, the normalized observed energy V ′ is
given by

V ′
=

K−1∑
k=0

(√
P
(
hI xI [k] − hQxQ[k]

)
+ wI [k]√

σ 2
n /2

)2

+

K−1∑
k=0

(√
P
(
hQxI [k] + hI xQ[k]

)
+ wQ[k]√

σ 2
n /2

)2

.(36)

Besides, the normalized transmitted energy of signal compo-
nent after a fading channel, λF , is given by

λF =

K−1∑
k=0

(
|h|

√
PxI [k]√
σ 2
n /2

)2

+

K−1∑
k=0

(
|h|

√
PxQ[k]√
σ 2
n /2

)2

= |h|2


K−1∑
k=0

(√
PxI [k]√
σ 2
n /2

)2

+

K−1∑
k=0

(√
PxQ[k]√
σ 2
n /2

)2


= |h|2λA. (37)

For a given pA(λA), pF (λF ) is given by

pF (λF ) =

∫
∞

0

∫
∞

0
δ
(
λF − |h|2λA

)
pA(λA)

· exp(−|h|2)d |h|2dλA, (38)

where

δ(x) =

{
∞, x = 0
0, x ̸= 0

is Dirac delta function, and |h|2 follows exponential dis-
tribution as p(|h|2) = exp(−|h|2) under Rayleigh fading
channel.

Based on (13) and (38), p(V ′
|H1) under Rayleigh fading

channel can be calculated as follows:

p(V ′
|H1)

=

∫
∞

0
pχ2,2K (V

′
|λF )pF (λF )dλF ,

=

∫
∞

0

∫
∞

0

∫
∞

0
pχ2,2K (V

′
|λF )δ

(
λF − |h|2λA

)
dλF

· exp(−|h|2)d |h|2pA(λA)dλA,

=

∫
∞

0

∫
∞

0
pχ2,2K (V

′
||h|2λA) exp(−|h|2)d |h|2pA(λA)dλA,

=

∫
∞

0
pF,2K (V ′

|λA)pA(λA)dλA, (39)

where

pF,2K (V ′
|λA) =

∫
∞

0
pχ2,2K (V

′
||h|2λA) exp(−|h|2)d |h|2.

(40)

pF,2K (V ′
|λA) can be interpreted as the distribution of the

observed energy with given λA under Rayleigh fading chan-
nel. According to [39], pF,2K (V ′

|λA) is given by

CClpF,2K (V ′
|λA) =

(
λA + 2

λA

)K−1

pe(V ′
|λA + 2)

·P
(
K − 1,

λAV ′

2(λA + 2)

)
, (41)

where P(a, b) = γ (a, b)/0(a) is the normalized incomplete
gamma function and γ (a, b) is the lower incomplete gamma
function. The pe(x|a) is the exponential probability density
function defined as:

pe(x|a) = H (x)
exp

(
−
x
a

)
a

, (42)

where H (x) =

{
1, x ≥ 0
0, x < 0

is the Heaviside step function.

In addition, the achievable PD with given threshold V ′
T and

λA in Rayleigh fading case is [19], [39]:

PD(V ′
T |λA) = e−

V ′
T
2

K−2∑
n=0

1
n!

(
V ′
T

2

)n
+

(
λA + 2

λA

)K−1

·

[
e−

V ′
T

λA+2 −e−
V ′
T
2

K−2∑
n=0

1
n!

(
λAV ′

T

2(λA + 2)

)n]
.

(43)

Finally, PD under Rayleigh fading channel is given by:

PD(V ′
T ) =

∫
∞

V ′
T

p(V ′
|H1)dV ′

=

∫
∞

0
PD(V ′

T |λA)pA(λA)dλA. (44)

(41)-(44) indicate PD under Rayleigh fading channel also
requires p(V ′

|H1) or pA(λA).
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2) CGA2, CGA3, AND PM2
In the second type, the Gaussian approximation is applied
for the observed energy under AWGN channel. Based
on (39), p(V ′

|H1) under Rayleigh fading channel can also be
expressed as follows:

p(V ′
|H1)

=

∫
∞

0

∫
∞

0
pχ2,2K (V

′
||h|2λA) exp(−|h|2)d |h|2pA(λA)dλA

=

∫
∞

0

∫
∞

0
pχ2,2K (V

′
||h|2λA)pA(λA)dλA exp(−|h|2)d |h|2

=

∫
∞

0
p(V ′

||h|2,H1) exp(−|h|2)d |h|2, (45)

where p(V ′
||h|2,H1) can be interpreted as the distribution

of the observed energy under AWGN channel when a chan-
nel gain |h|2 is given. The distribution of V ′ under the
Rayleigh fading is given by the Gaussian approximation of
p(V ′

||h|2,H1):

p(V ′
|H1) =

∫
∞

0
φ

(
V ′

− µV ′||h|2

σV ′||h|2

)
exp(−|h|2)d |h|2, (46)

where µV ′||h|2 and σ 2
V ′||h|2

are mean and variance of the

approximated Gaussian distribution of V ′ with a given |h|2,
respectively. The mean and variance with given |h|2 depend
on each model, such as CGA2, CGA3, and PM2. According
to (19), (20), (25) and (26), they are as follows:

µCGA2
V ′||h|2 = 2K |h|2γ + 2K ,

µPM2
V ′||h|2 = 2K |h|2γ + 2K ,

σ 2 CGA2
V ′||h|2 = 4K (|h|2γ + 1)2,

σ 2 CGA3
V ′||h|2 = 4K

(
2
5
M − 4
M − 1

|h|4γ 2
+ 2|h|2γ + 1

)
,

σ 2 PM2
V ′||h|2 =

8
5
K |h|4γ 2

+ 8K |h|2γ + 4K . (47)

C. AWGN CHANNEL WITH IMPERFECT
SYNCHRONIZATION
In the imperfect synchronization case, τ is nonzero and it
leads to ISI with the interference component I [k]. I [k] is the
sum of interference signals from the neighboring symbols and
thus I [k] can be approximated as Gaussian random variable
due to the central limit theorem. The received signal can be
approximated by

y[k] ≃
√
Pĥ(τT )x[k] + w′[k], (48)

where w′[k] = I [k] + w[k] is assumed to follow circularly
symmetric complexGaussian distributionwith zeromean and
variance σ 2

n + σ 2
I , where σ 2

I is the variance of I [k] given by

σ 2
I = P

∑
n̸=0

ĥ((n+ τ )T )2. (49)

The normalized observed energy is also approximated as:

V ′
≃

σ 2
n + σ 2

I

σ 2
n

V ′
I , (50)

FIGURE 3. PDF of normalized observed energy for empirical distributions
and PM1,2,3 with γ = 0 dB and K = 30 under AWGN channel in perfect
synchronization case.

where

V ′
I =

K−1∑
k=0

√
Pĥ(τT )xI [k] + w′

I [k]√
(σ 2
n + σ 2

I )/2

2

+

K−1∑
k=0

√
Pĥ(τT )xQ[k] + w′

Q[k]√
(σ 2
n + σ 2

I )/2

2

. (51)

As compared to (9), V ′
I in (51) can be interpreted as the

observed energy in III-A. In this case, signal to noise and
interference power ratio (SINR) γ ′ is given by

γ ′
=
Pĥ(τT )2

σ 2
n + σ 2

I

. (52)

In the statistics for PMs of the perfect synchronization case,
SNR γ is used in (21)-(26). For the PMs in the imperfect syn-
chronization case, the appropriate PDFs of observed energy
are available by replacing γ with γ ′.

IV. NUMERICAL EVALUATIONS
For the evaluations of the models (CGA1, CGA2, CGA3,
PM1, PM2 and PM3), we employ probability density func-
tion (PDF), Kolmogorov-Smirnov (KS) statistics, and detec-
tion probability (PD). PDF of normalized observed energy V ′

shows the comparison of visual accuracy between empirical
distribution and the distributions based on our proposed mod-
els. Generally, PDF is used for the ED design. Specifically,
based on the accurate PDF and target PFA or PD, the thresh-
old can be set properly. The KS statistics can indicate the
accuracy of the distribution numerically. Finally, PD can indi-
cate the accuracy of each model in the scenario of spectrum
sensing.

A. AWGN CHANNEL WITH PERFECT SYNCHRONIZATION
In Fig. 3, the PDFs of V ′ by the proposed models (PM1, PM2
and PM3) and empirical PDFswithM = 4, 16, 64 and 256 for
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FIGURE 4. PDF of normalized observed energy for empirical distributions
and PM1,2,3 with γ = 10 dB and K = 30 under AWGN channel in perfect
synchronization case.

γ = 0 dB and K = 30 are plotted. The modulation type with
M = 4 corresponds to QPSK. Notice that the empirical PDFs
with M ≥ 16 and the distribution with the three proposed
models approximately coincide except the empirical distri-
bution with QPSK. In the case of QPSK, λA is deterministic
since QPSK is a constant envelope modulation while λA with
M ≥ 16 is random. In addition, we can confirm the small
error between the PDF with PM2 and the empirical PDFs.
This result indicates the validity of approximation (M = ∞)
in the three proposed models.

In Fig. 4, the PDFs of V ′ in case of high SNR are shown.
Specifically, the PDFs of V ′ by the three proposed models
(PM1, PM2 and PM3) and empirical PDFs for γ = 10 dB
and K = 30 are plotted. In the relatively high SNR case,
the PDFs with the three proposed models still approximately
coincide with the empirical PDFs with M ≥ 64. On the
other hand, the empirical PDF with M = 16 is slightly
different from the other empirical PDFs with M ≥ 64. The
results in Figs. 3 and 4 indicate that the proposed model is
relatively more accurate in low SNR. This is the preferred
aspect since spectrum sensing in dynamic spectrum access
is usually conducted in relatively low SNR such as less
than 0 dB [40], [41], [42].

In Figs. 3 and 4, the empirical PDFs as a function of
normalized observed energy with larger M get closer to the
proposed model distribution. This aspect is more clearly con-
firmed in Fig. 4 and the statistics of observed energy in (20).
The mean of observed energy does not depend onM . In addi-
tion, the term (M − 4)/(M − 1) in the variance component
in (20) converges to 1 asM increases. These facts imply that
the PDF for larger M converges to one PDF with M = ∞.
To confirm this aspect, Fig. 5 shows the variance component
in (20) against M . The variance of finite M asymptotically
approach to the variance of infinite M , while the variances
when finite M is small e.g., M = 16, can be approximated

FIGURE 5. The variance of observed energy as a function of M with
K = 30 and γ = 0 dB under AWGN channel in perfect synchronization
case.

FIGURE 6. KS statistics as a function of γ with M = 64 and K = 30 under
AWGN channel in perfect synchronization case.

to the variance when M is infinite. This is the reason why
the proposed model which assume M = ∞ can provide an
accurate PDF.

Now we will evaluate the approximation models by
Kolmogorov-Smirnov (KS) statistic [43], [44], [45]. The KS
statistics indicates a difference between empirical cumulative
distribution function (CDF)FEmp(V ′) andCDF obtained from
the approximation model FModel(V ′) by

DKS = max
V ′
KS<V

′<∞

|FEmp(V ′) − FModel(V ′)|, (53)

whereV ′
KS is used to determine a range for the CDF.FEmp(V ′)

is obtained by empirical simulation and FModel(V ′) is given
by 1 − PD(V ′) with (14) for AWGN channel and with (44)
under Rayleigh fading channel. Without loss of generality,
V ′
KS is set to satisfy FEmp(V ′

KS ) = 0.1. The reason of
FEmp(V ′

KS ) = 0.1 is to evaluate the KS statistics in the

6312 VOLUME 11, 2023



S. Ishihara et al.: Energy Detection for M-QAM Signals

FIGURE 7. KS statistics as a function of K with M = 64 and γ = 0 dB
under AWGN channel in perfect synchronization case.

FIGURE 8. KS statistics as a function of M with K = 30 and γ = 0 dB
under AWGN channel in perfect synchronization case.

region in terms of CDF where PD ≥ 0.9 according to the
requirement of PD in the IEEE 802.22 standard [46].
Fig. 6 shows the KS statistics as a function of SNR (γ )

for M = 64 and K = 30 in the AWGN channel. The accu-
racy of CGA1 and CGA2 gets significantly worse as SNR
increases while other approximation models can achieve rela-
tively accurate performance. This is because both CGA1 and
CGA2 assume that the signal component follows Gaussian
distribution while the other approximation models consider
the actual statistics of the QAM signal. In addition, PM1
and PM3 can achieve the most accurate performance in the
considered SNR region.

Fig. 7 shows KS statistics as a function of K (the number
of samples) for M = 64 and γ = 0 dB. In the whole K
region, PM1 can achieve the best accuracy. PM3 can achieve
comparable performance with PM1 except for K = 1. In the
low K region such as K < 10, CGA1 can achieve relatively
accurate performance. On the other hand, in the high K
region, PM2 and CGA3 can outperform CGA1.

FIGURE 9. Obtained PD as function of target PD for M = 64 where
K = 30 and γ = 0 dB under AWGN channel in perfect synchronization
case.

FIGURE 10. Obtained PD as function of target PD for M = 64 where
K = 30 and γ = 10 dB under AWGN channel in perfect synchronization
case.

In Fig. 8, the KS statistics as a function of M for γ =

0 dB and K = 30 is shown. The KS performance of CGA3
is independent of M while KS performances of the other
approximation models is improved for higher number of M .
In most ofM , PM1 and PM3 can achieve the best accuracy.

In the following part, we evaluate the effect of accuracy
of the approximation models in the spectrum sensing perfor-
mance. Constant detection rate (CDR) rule is adopted where
ED threshold is set to satisfy a target PD [47]. There would
be a gap between the target PD and obtained PD due to the
approximations in each model.

In Fig. 9, the obtained PD as a function of target PD with
γ = 0 dB is shown. This result corresponds to low SNR
case. In this evaluation, the target region of PD is set to more
than 0.9 [48]. PM1 and PM3 can achieve the most accurate
performance compared to the other models.

VOLUME 11, 2023 6313



S. Ishihara et al.: Energy Detection for M-QAM Signals

FIGURE 11. PDF of normalized observed energy for empirical
distributions and PM1,2,3 with γ = 0 dB and K = 30 under Rayleigh
fading channel in perfect synchronization case.

FIGURE 12. KS statistics as a function of γ with M = 64 and K = 30 under
Rayleigh fading channel in perfect synchronization case.

In Fig. 10, the obtained PD as a function of target PD
with high SNR case γ = 10 dB is shown. In the high SNR
case, not only PM1 and PM3, but also PM2 and CGA3 can
achieve almost equivalent performance. However, in CGA1
and CGA2, the gaps between the obtained PD and the target
PD are increased.
From the results under AWGN channel, PM1 and PM3

can achieve the best performance while the computational
cost of PM3 is less than PM1. PM2 and CGA3 can achieve
relatively better performance than CGA1 and CGA2 since
PM2 and CGA3 consider the characteristics of QAM signal
in the approximations.

B. FADING CHANNEL WITH PERFECT SYNCHRONIZATION
In this section, we evaluate the approximation models under
Rayleigh fading channel. In Fig. 11, the PDFs of the proposed
models and empirical PDFs with M = 4, 16, 64 and 256 for
γ = 0 dB is shown. The result indicates that all PDFs

FIGURE 13. KS statistics as a function of K with M = 64 and γ = 0 dB
under Rayleigh fading channel in perfect synchronization case.

approximately coincide. As already shown in Figs. 3 and 4,
the PDFs of the observed energy of M -QAM signals can be
approximated to the PDF with M = ∞. According to (45),
the PDF of observed energy under fading channel is equiva-
lent to the expectation of distribution under AWGN channel
over realized channel gain |h|2. Therefore, the approximation
with M = ∞ also works appropriately under the fading
channel.

The model based on PM1 can provide accurate distribu-
tions for all M and the empirical distributions indicate that
M is not significant parameter to determine the shape of
distribution. Fig. 12 shows the KS statistics as a function
of SNR for M = 64 and K = 30. The KS performances
under Rayleigh fading channel are better than the perfor-
mances under AWGN channel, such as result in Fig. 6. Under
Rayleigh fading channel, PM1 and PM3 can also achieve
the most accurate performance in whole SNR region. Unlike
the case under AWGN channel, CGA1 can achieve relatively
good performance. This is because the signal component
under Rayleigh fading channel has not only randomness due
to QAM, but also randomness due to the fading channel.

Fig. 13 shows the KS statistics as a function of K for
M = 64 and γ = 0 dB. PM1 can again achieve the best per-
formance while PM3 achieve nearly the same performance
as PM1 except for K = 1. In addition, CGA1 can also
achieve relatively accurate performance. On the other hand,
PM2 and CGA2 and CGA3 require the large number of K
to achieve the accurate performance. This result indicate that
the Gaussian approximation for observed energy can be valid
for the large number of K .
Fig. 14 shows the KS statistics as a function of M for

K = 30 and γ = 0 dB. The result indicates that the KS
performance depends much less onM under Rayleigh fading
channel than under AWGN channel.

The effects of the model accuracy to the the spectrum
sensing performance under CDR rule in fading channel are
evaluated in Fig. 15. Specifically, obtained PD as a function
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FIGURE 14. KS statistics as a function of M with K = 30 and γ = 0 dB
under Rayleigh fading channel in perfect synchronization case.

FIGURE 15. Obtained PD as function of target PD for M = 64 where
K = 30 and γ = 0 dB under Rayleigh fading channel in perfect
synchronization case.

of target PD is plotted in the figure when K = 30, γ = 0 dB.
The gap between the obtained PD and target PD under fading
channel is smaller than the gap under AWGN channel, while
PM1 and PM3 can achieve the best performance. The results
in Figs. 12 and 13 indicate that the gap between PM3 (or
PM1) and the conventional models in Fig. 15 would increase
for smaller K or smaller γ .

C. AWGN CHANNEL WITH WITH IMPERFECT
SYNCHRONIZATION
In this section, the simulation results here are only considered
in 0 ≤ τ ≤ 0.5 because normalized timing offset τ is
symmetric with respect to τ = 0. For achieving I (k) =

0, not only perfect synchronization but also matched filter
based approach with an appropriate filter, such as a square-
root-raised-cosine filter, may be required. However, this is

FIGURE 16. PDF of normalized observed energy for empirical
distributions and PM1, 2, 3 with γ = 0 dB, K = 30 and τ = 0.5 in
imperfect synchronization case.

FIGURE 17. KS statistics as a function of τ with γ = 0dB, M = 64 and
K = 30 in imperfect synchronization case.

not practical. Therefore, this section assumes non-matched
filter case: square-root-raised-cosine filter with the roll-off
factor β = 0.2 as the transmitting filter and any filter with
sufficiently wider bandwidth than that of the transmitting
filter as the receiving filter. The imperfect synchronization
and non-matched filter lead to non-zero ISI in (]]2).

Fig. 16 shows the PDFs of the proposed models and empir-
ical PDFs with M = 4, 16, 64, 256, τ = 0.5, and γ =

0 dB. Fig. 16 indicates that the proposed models can provide
reasonably accurate PDFs evenwhen there is sampling timing
error.

Fig. 17 shows the KS statistics as a function of τ with
M = 64, K = 30, γ = 0 dB. This numerical evaluation
indicates that PM1 and PM3 are still more accurate than other
models in any τ .

In a practical case, τ is not known at the ED and the design
of ED under imperfect synchronization is one of the issues.
For this issue, we design ED with a predetermined τ which
is denoted by τ ′. Specifically, the threshold is set based on
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FIGURE 18. Obtained detection probability as a function of actual
normalized timing offset τ with γ = 0 dB, K = 30 and assumed
normalized timing offset τ ′ = 0 and 0.25 in imperfect synchronization
case.

the target PD and the predetermined τ ′. Fig. 18 shows the
obtained detection probability as a function of actual normal-
ized timing offset τ with the target PD = 0.95, M = 64,
K = 30, and γ = 0 dB. In this result, we evaluate the EDwith
τ ′

= 0 and τ ′
= 0.25. The result indicates that τ ′

̸= τ leads to
the error between the obtained PD and the target PD = 0.95.
However, the maximum error can be relatively suppressed by
τ ′

= 0.25 compared to the case of τ ′
= 0.

V. DISCUSSION
This section comprehensively discusses the performance of
models shown in this paper. Table 1 summarizes the approx-
imation types and the required computational cost.

Although ES can provide the actual distribution, the deriva-
tion of actual distribution of λA (15) requires significant
computational cost as shown in Fig 1. In CGA1, CGA2,
CGA3 and PM2, Gaussian approximation is used in either
the distribution for signal component or the distribution for
observed energy. These models can reduce the computational
cost significantly compared to the cost in ES. In addition,
the numerical evaluations reveal that CGA3 and PM2 in
which the mean and variance are obtained by considering
QAM signal can achieve relatively accurate PDF compared to
CGA1 and CGA2. The difference between PM2 and CGA3
is whether they are independent of or dependent on M ,
respectively. Specifically, in the proposed models includ-
ing PM2, M is set to ∞. Nevertheless, the numerical eval-
uations show that PM2 and CGA3 can achieve similarly
accurate PDF.

Comparing PM1 and PM3, they can achieve the best
accuracy among PMs and CGAs while PM3 can reduce
computational cost compared to PM1 by avoiding K -fold
convolution (22).

As confirmed in Figs. 3, 4, 11 and 16, the PMs can
provide accurate PDF even though they approximate M =

∞. This is a preferred aspect of the PMs because they can

handle adaptive modulation schemes where M can be
changed dynamically according to the status of wireless com-
munication channel, such as SNR. In the case of adaptive
modulation scheme, the spectrum sensing based on ED has
to perform without knowledge ofM . For this matter, the PMs
have an advantage because they are independent ofM .

VI. CONCLUSION
In this paper, approximation models for the distribution
of observed energy in case of M -ary QAM signals were
investigated. In a previous work, an exact solution for the
distribution was derived, however it requires significant com-
putational costs. For this problem, we proposed three mod-
els based on an approximation to assume M = ∞ in the
model for PDF of the observed energy. The first proposed
model only employs the approximation of M = ∞ to
derive the approximated PDF. In the second proposed model,
Gaussian approximation for the observed energy is used and
this can reduce the computational cost significantly. The
third proposed model approximates the distribution of signal
component by skew normal distribution and this can also
reduce the computational cost compared to the first proposed
model while it can achieve accurate distribution. In the com-
prehensive numerical evaluation, the proposed models and
conventional models are evaluated and the results indicate
that the third proposed model can achieve the most accurate
distribution with a reasonable computational cost. In addition
to AWGN channel case, more realistic cases are considered,
i.e., Rayleigh fading channel and imperfect synchronization
case. Numerical results indicate that the proposed models
are still applicable to realistic cases. For future works, actual
experiments are essential to confirm the validity of our pro-
posed models.

APPENDIX A
DERIVATION OF p∞,1,A(λA) FOR PM1
In the following, the derivation of p∞,1,A(λA) is shown.
Fig.2c is IQ plane, where the blue plane is aggregation of
constellation points of x[k] in M = ∞. Circumference l on
the blue plane is expressed as follows:

l =

{
2πr (0 < r ≤ a)

4r
(π

2
− 2 cos−1 a

r

)
(a ≤ r ≤

√
2a),

(54)

where r is absolute value of amplitude and 2a is one side of IQ

plane (a =

√
3
2 ), as Fig. 2c shows. Since l can be interpreted

as likelihood of r , p∞,1,A(r) is given by:

p∞,1,A(r) =


πr
2a2

(0 < r ≤ a)
r
a2

(π

2
− 2 cos−1 a

r

)
(a ≤ r ≤

√
2a),

(55)

where p∞,1,A(r) can be calculated by the normalization of
4a2, the area of IQ plane. Moreover, since λA is described
as 2γ r2 when K = 1, p∞,1,A(λA) can be calculated
by using the transformation of random variable from r
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TABLE 1. Summary of models shown in this paper based on computational cost and approximation.

to λA as follows:

p∞,1,A(λA)

=



π

8γ a2
(0 < λA ≤ 2γ a2)

π

2
− 2 cos−1

√
2γ a2

λA

4γ a2
(2γ a2 ≤ λA ≤ 4γ a2).

(56)

APPENDIX B
PROOF OF THE EXPECTATION, VARIANCE AND
SKEWNESS OF λ FOR PM2 AND PM3
This appendix shows the derivation ofµλA , σ

2
λA

and κλA based
on (56). First of all, we consider the expectation, variance and
skewness of λA when K = 1, denoted by E1[λA], Var1[λA]
and κ1[λA], defined as

E1[λA] =

∫
∞

−∞

λAp∞,1,A(λA)dλA, (57)

Var1[λA] =

∫
∞

−∞

(λA − E1[λA])2 p∞,1,A(λA)dλA, (58)

κ1[λA] =

∫
∞

−∞

(λA − E1[λA])3

Var1[λA]
p∞,1,A(λA)dλA, (59)

where p∞,1,A(λA) is PDF of λA when M = ∞ in (56). In the
following, we calculate E1[λA] as follows:

E1[λA] =

∫ 4γ a2

0
λA

π

8γ a2
dλA

−
1

2γ a2

∫ 4γ a2

2γ a2
λA cos−1

√
2γ a2

λA
dλA

= πγ a2 − 4γ a2
∫ √

2

1
x3 cos−1 1

x
dx

=
4
3
γ a2 = 2γ

(
∵ a =

√
3
2

)
, (60)

where cos−1 denotes arccosine function and x satisfies

x =

√
λA

2γ a2
. (61)

Based on (60), we calculate Var1[λA] as follows:

Var1[λA] =

∫
∞

−∞

(λA − 2γ )2 p∞,1,A(λA)dλA

=

∫
∞

−∞

λ2Ap∞,1,A(λA)dλA

−4γ
∫

∞

−∞

λAp∞,1,A(λA)dλA

+4γ 2
∫

∞

−∞

p∞,1,A(λA)dλA

=

∫
∞

−∞

λ2Ap∞,1,A(λA)dλA − 4γE1[λA] + 4γ 2

=

∫
∞

−∞

λ2Ap∞,1,A(λA)dλA − 4γ 2. (62)

Here we calculate∫
∞

−∞

λ2Ap∞,1,A(λA)dλA

=

∫ 4γ a2

0
λ2A

π

8γ a2
dλA−

1
2γ a2

∫ 4γ a2

2γ a2
λ2A cos

−1

√
2γ a2

λA
dλA

=
8
3
πγ 2a4 − 8γ 2a4

∫ √
2

1
x5 cos−1 1

x
dx

=
112
45

γ 2a4 =
28
5

γ 2

(
∵ a=

√
3
2

)
, (63)

therefore,

Var1[λA] =
28
5

γ 2
− 4γ 2

=
8
5
γ 2. (64)

Based on (60) and (64), we calculate κ1[λA] as follows:

κ1[λA] =

∫
∞

−∞

(λA − E1[λA])3

Var1[λA]
3
2

p∞,1,A(λA)dλA

=
5
√
5

16
√
2γ 3

{∫
∞

−∞

λ3Ap∞,1,A(λA)dλA

− 6γ
∫

∞

−∞

λ2Ap∞,1,A(λA)dλA

+ 12γ 2
∫

∞

−∞

λAp∞,1,A(λA)dλA
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− 8γ 3
∫

∞

−∞

p∞,1,A(λA)dλA

}
=

5
√
5

16
√
2γ 3

{∫
∞

−∞

λ3Ap∞,1,A(λA)dλA

−
168
5

γ 3
+ 24γ 3

− 8γ 3
}

. (65)

Here we calculate∫
∞

−∞

λ3Ap∞,1,A(λA)dλA

=

∫ 4γ a2

0
λ3A

π

8γ a2
dλA −

1
2γ a2

∫ 4γ a2

2γ a2
λ3A cos

−1

√
2γ a2

λA
dλA

= 8πγ 3a6 − 16γ 3a6
∫ √

2

1
x7 cos−1 1

x
dx

=
192
35

γ 3a6 =
648
35

γ 3

(
∵ a =

√
3
2

)
, (66)

therefore,

κ1[λA] =
5
√
5

16
√
2γ 3

{
648
35

γ 3
−

168
5

γ 3
+ 24γ 3

− 8γ 3
}

=

√
10
7

. (67)

Finally, because of linearity, µλA and σ 2
λA

can be expressed as
follows:

µλA = K · E1[λA] = 2Kγ

σ 2
λA

= K · Var1[λA] =
8
5
Kγ 2

κλA =
κ1[λA]
√
K

=

√
10

7
√
K

. (68)
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