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ABSTRACT We present a nonparametric Bayesian hierarchical (NBH) model and develop a variational
approximation (VA) algorithm for the curve fitting of the functional radiation response data. The NBHmodel
is based on a Bayesian hierarchical (BH) model with a Gaussian-Inverse Wishart process (G-IWP) prior,
which simultaneously smooths multiple functional observations and estimates mean-covariance functions.
We use the automatic differentiation variational inference (ADVI) algorithm with a Gaussian distribution
as the variational distribution for approximating the posterior distribution of parameters of interest, which
is applicable to a wide class of probabilistic models and can also be implemented in Stan (a probabilistic
programming system). Using the NBH model and the Gaussian ADVI algorithm, we fit a dataset for the
semiconductor obtained from the radiation response map (RRM) of South Korea.

INDEX TERMS Bayesian hierarchical model, curve fitting, functional radiation data, Gaussian-inverse
Wishart process, Gaussian variational approximation algorithm.

I. INTRODUCTION
Radiation technology is usually used to refer to the use
of ionization and transmission force characteristics, a phe-
nomenon in which orbital electrons of neutral atoms or
molecules are reversibly separated by the action of radiation.
Radiation technology is deeply intertwined with both basic
and applied sciences, and it is very fashionable thanks to
its property to be integrated across industry sectors ranging
from traditional businesses to high-tech industries such as
new material development, advanced medical technology,
biotechnology, and military science. This is because, in the
past, radiation was limitedly used around material conversion
through radiation irradiation, but radiation technology has
lately moved to fusion technology. Radiation technology is
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largely divided into three generations as follows. The use
of simple radiation irradiation technology in agriculture and
medical fields in the 1960s is classified as the first generation,
and the second generation was a period of active application
of radiation fusion technology, which incorporates existing
radiation irradiation technology into various fields such as
chemistry, biology, nano, environment, and informatics. Cur-
rently, radiation technology is being incorporated into the
fourth industry and is evolving into specific purposes of radi-
ation fusion technology such as radiation response big data
and predictable radiation molecular conversion technology,
which is categorized as the third generation.

National-level databases for radiation responses, in par-
ticular, are being created, and numerous relevant research is
being performed as a result of the development of statistical
techniques and machine learning-based analysis methods.
The United States is conducting various studies and building
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data using neutrons at the National Institute of Standards
and Technology and Oak Ridge National Laboratory [1].
Germany strategically promotes multidisciplinary research
in the field of advanced radiation medicine, centering on
the Heidelberg Ion-Beam Therapy Center [2]. Japan con-
ducts comprehensive research in the field of radiation at the
National Institute for Quantum Science and Technology [3].
The Korea Atomic Energy Research Institute (KAERI) estab-
lished a Radiation Response Map (RRM) modeling platform
to promote and support new radiation convergence industries
as part of its project to expand the radiation research base.
RRM is a database that systematically collects and organizes
reaction information that appears when irradiated with radi-
ation from food to industrial materials. It is worth highlight-
ing, in particular, that this data was rigorously evaluated by
the government and was awarded the highest grade of Data
Quality Certification-Value (DQC-V). It is evaluated that the
radiation utilization platform, which is tricky to predict and
contains huge data, has been officially certified for reliability.
RRM has a data integrity and consistency rate of 99.97% or
higher and can be expected to boost its efficacy by sophisti-
cated prediction models.

We employ a nonparametric Bayesian hierarchical (NBH)
model to analyze the data from the RRM modeling plat-
form. NBH incorporates Bayesian qualities that can quantify
uncertainty by estimating the posterior distribution, while
also including nonparametric and hierarchical properties.
Since [4] proposed a hierarchical bayesian model, NBH has
gained a great deal of attention in complex network analysis
and spatiotemporal modeling [5], [6], [7], [8]. The reasons are
similar to the descriptions following, which are appropriate
for RRM data analysis. First, it deals with nonparametric
characteristics. In real-world applications, the parameter form
of the probability distribution is unknown, and it is often
not easy to assume this. Although Bayesian approaches are
regarded as a very powerful statistical tool for measuring
uncertainty, parametric Bayesian models based on assump-
tions about probability distributions are frequently trouble-
some for inference. As a result, we offer a nonparametric
Bayesian approach with a Gaussian-Inverse Wishart process
(G-IWP) priority in this paper. The second is about hierarchi-
cal characteristics. A hierarchical Bayesian approach is based
on the premise that different models share information by
sharing common parameters. The conditionally independent
hierarchy is the essential foundation of hierarchical modeling,
in which a set of parameters is coupled by making their
distributions rely on a shared underlying parameter. As data
groups with similar statistical properties exchange informa-
tion, the estimated parameters’ uncertainty can be reduced.
This generally results in more accurate statistical estimations.
Furthermore, the hierarchy is highly valuable for providing
a Bayesian interpretation of the concept of shrinkage and
random effects from the perspective of frequentists [5].

In general, complex models with higher parameters make
it difficult to estimate the posterior distribution, which can-

not be obtained directly or, if obtained, is not derived in a
well-known form in Bayesian approaches. For this reason,
the Markov chain Monte Carlo (MCMC) method, which
generates samples from probability distributions proportional
to the posterior distribution and infers, is widely used.MCMC
delivers reasonably accurate results, yet because it involves a
huge amount of calculation formulas, the computational cost
grows extremely long as the amount of data increases or the
model becomes more intricate. In this paper, we employ vari-
ational inference, a Bayesian inference approach that applies
a variational method, to address the MCMC difficulty. [17]
suggested variational inference as a method for discover-
ing and inferring specific distribution which is closest to
posterior distribution among easily obtained distributions.
Because it applies a distribution that is relatively straightfor-
ward to calculate rather than a posterior distribution that is
tricky to calculate, this method is suitable for use not just in
high-dimensional complicated models like NBH, but also in
large-scale data. However, obtaining a probability distribu-
tion that is similar to the posterior distribution for variational
inference is frequently problematic. [20] suggested auto-
mated differentiation variable inference (ADVI) to overcome
this, which is a method of transforming parameters into real
coordinate space and approximating posterior distributions to
Gaussian distributions. In this paper, we estimate the model
described above using ADVI, which does not need to find a
probability distribution similar to the posterior distribution.

The purpose of this paper is to contribute to the growth
of associated sectors via the statistical analysis of radiation
response data on semiconductors. To that purpose, we pro-
pose an advanced prediction model based on the NBHmodel.
In addition, by properly presenting the computation algorithm
for this method, it becomes relatively easy for readers to use.
Our main contributions are summarized as follows:

• We provide the applicability of statistical models for
curve fitting of functional radiation response data.
In addition to the NBH model for further sophisticated
fitting, we describe the ADVI algorithm that is adaptable
to a wide range of probabilistic models for computation.
It also facilitates the implementation of the ADVI algo-
rithm for the NBH model by providing Stan program-
ming code for the convenience of readers.

• We demonstrate usefulness of radiation response data
from the RRM modeling platform via data analysis on
semiconductors. This can help us understand the prop-
erties of semiconductors while also encouraging innova-
tion in radiation technology.

The rest of the paper is organized as follows. Section II
presents preparations for building a model. Section III
describes in detail the main model and its algorithm to be
applied in this study, and the analysis of a real data set is
presented in Section IV. Section VI summarizes the results of
this paper and considers several possible directions for future
research.
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II. PRELIMINARIES
A. GAUSSIAN-INVERSE WISHART PROCESS
G-IWPs are conjugate prior distributions for the mean and
covariance functions of GPs. Here we give a briefly introduc-
tion about GP and IWP.

GPs are commonly used as a natural method for defining
prior distributions on the space of functions with continuous
domains in nonparametric Bayesian (NPB) inference [9],
[10], [11]. Let f = (f (t), t ∈ T ) be a collection of
function valued random variables at an any index set T . Then
f is called a GP if the marginal distribution of any finite-
dimensional f (t1), . . . , f (tm), where m > 0 and t1, . . . , tm ∈
T , is a joint Gaussian distribution by the Kolmogorov’s exis-
tence theorem [12]. The GP is completely determined by
the mean function µ(t) = E[f (t)], t = (t1, . . . , tm) and
the covariance function k(t, t ′) = E[(f (t) − µ(t))(f (x ′) −
µ(t ′))] for t, t ′ ∈ T . Note that k(·, ·) is a symmetric and
positive definite Mercer kernel. We will hereafter write the
GP as

f (t) ∼ GP(µ(t), k(t, t ′)). (1)

Yang et al. [13] and Yang et al. [14] proposed an
IWP prior for the covariance function of the GP prior to
reduce biases caused by misspecifying the covariance kernel
and showed that the prior provides more flexible covari-
ance estimation and accurate fitting of functional observa-
tions. The IWP is defined such that the finite-dimensional
projection k(t, t ′) follows inverse-Wishart distribution [15]
given by

p(k(t, t ′)) ∝ det(k(t, t ′))−
1
2 (δ+2m)e−

1
2 tr(k(t,t

′)−1ψ(t,t ′))

with δ + m − 1 degrees of freedom. Here δ > 4 denotes a
positive-integer valued shape parameter, tr(·) is the trace, and
ψ(t, t ′) is a symmetric and positive definite scaling parame-
ter. We denote the IWP as

K ≡ k(t, t ′) ∼ IWP(δ,9), 9 ≡ ψ(t, t ′). (2)

B. VARIATIONAL APPROXIMATION
Variational approximation (VA) methods (or variational
Bayes methods) [16], [17], [18] are deterministic algorithms,
which are alternatives to simulation-based MCMC algo-
rithms, approximating the posterior distribution given by

p(θ | y) ∝ p(θ)p(y | θ ),

where θ is a parameter of interest, p(θ ) is the prior distri-
bution, and p(y | θ ) is a likelihood of data y. VA methods
assume a class of tractable distributions, Q = {q(θ); θ ∈ 2},
and pick the best approximation distribution (called as vari-
ational distribution) minimizing the Kullback-Leibler (KL)
divergence [19] in that class as follows:

q∗(θ ) = argmin
q∈Q

KL(q(θ )∥p(θ | y)), (3)

where the KL divergence is non-negative and defined by

KL(q(θ )∥p(θ | y)) =
∫

log
q(θ )

p(θ | y)
q(θ)dθ.

Generally, it is difficult to minimize the KL divergence
because of involving the true posterior distribution. Instead,
we seek the variational distribution maximizing the so-called
variational lower bound L(q) obtained from the following
identity

KL(q(θ )∥p(θ | y)) =
∫

log
q(θ )

p(θ )p(y | θ )/p(y)
q(θ )dθ

=

∫
log

q(θ )
p(θ )p(y | θ )

q(θ )dθ + log p(y)

= − L(q)+ log p(y),

where log p(y) = log
∫
p(θ )p(y | θ )dθ is the log marginal

likelihood function and can be often used as the evidence of
the model. Note that the variational lower bound is also called
the evidence lower bound (ELBO).

III. NBH MODEL
In this section, we present a NBH model and develop a VA
algorithm for approximating the posterior distribution. The
model is the NBH model with G-IWP prior proposed by [13]
and the algorithm is based on the automatic differentiation
variational inference (ADVI) [20], [21] that is the VAmethod
with Gaussian distributions as variational distributions of
parameters of interest.

A. MODEL DESCRIPTION
We now describe the NBH model with G-IWP prior
(hGIWP). To do this, let {Yi(·); i = 1, . . . ,N } be N inde-
pendent radiation response trajectories and the ith radiation
response trajectory Yi(·) hasmmeasurements on the radiation
level ti = {ti1, . . . , tim} with tij ∈ T for j = 1, . . . ,m and
ti1 < ti2 < · · · < tim. We assume that the curve of the ith
radiation response is modeled as

Yi(tij) = fi(tij)+ ϵi(tij), (4)

where the errors {ϵi(·)} are independent and identically dis-
tributed (i.i.d.) Gaussian random variables with mean zero
and variance σ 2 > 0, i.e., ϵi(tij)

i.i.d .
∼ N (0, σ 2), and the mean

curves {fi(·)} are defined by

fi(ti) = (fi(ti1), . . . , fi(tim))⊤
i.i.d .
∼ GP(µ(ti), k(ti, tl)).

The hGIWP model assigns the G-IWP prior for the mean
function µ(·) and covariance function k(·, ·) as follows:

µ | K ∼ GP
(
µ0,

1
c
K

)
,

K ∼ IWP(δ,9), (5)

whereµ = µ(ti),µ0 = (µ01, . . . , µ0m)⊤, c is a positive scale
parameter that is set at a fixed value, and the scaling parameter
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9 is defined by the Matérn covariance kernel [9]

ψ(ti, tl) = σ 2
z
21−ν

0(ν)

(
√
2ν
|ti − tl |
ρ

)ν
Kν

(
√
2ν
|ti − tl |
ρ

)
.

Here σ 2
z and ρ are the positive scale parameters, ν is the order,

andKν(·) is the modified Bessel function of second kind [22].
Note that the parameters ρ and ν are often fixed at certain
values to estimate a stable covariance. For more details of the
Matérn covariance kernel, see [9], [13], [14], and references
therein.

For the scale parameter σ 2 of the model (4) and the hyper-
parameter σ 2

z of the Matérn covariance kernel9, the hGIWP
model assumes an inverse-gamma distribution and a gamma
distribution as the prior distributions, respectively:

σ 2
∼ IGa(a, b), σ 2

z ∼ Ga(az, bz),

where IGa(a, b) denotes the inverse-gamma distribution with
shape parameter a and scale parameter b and Ga(az, bz) is
the gamma distribution with shape parameter az and rate
parameter bz.

To facilitate posterior computation, we represent the
hGIWP model (4) with the following equivalent hierarchical
model:

Yi(t) | fi(t), σ 2
∼ N (fi(t), σ 2Im), i = 1, . . . ,N ,

fi(t) | µ(t), k(t, t) ∼ N (µ(t), k(t, t)),

µ | K ∼ N
(
µ0,

1
c
K

)
,

K ∼ IW(δ,9),

σ 2
z ∼ Ga(az, bz),
σ 2
∼ IGa(a, b), (6)

where Im is a m × m identity matrix and t = ∪Ni=1ti is the
pooled grid.

B. POSTERIOR INFERENCE WITH GVA ALGORITHM
We introduce a variational algorithm, which is based on
ADVI method, for approximating the posterior distribution
of the hGIWP model (6) proportional to, up to a constant that
does not depend on the parameters of interest,

N∏
i=1

N (Yi(t) | fi(t), σ 2Im)N (fi(t) | µ(t), k(t, t))

×N (µ | µ0,
1
c
K )IW(K | δ,9)

×Ga(σ 2
z | az, bz)IGa(σ 2

| a, b). (7)

Let θ = (f ⊤1 , · · · , f
⊤
N , µ

⊤,K , σ 2
z , σ

2)⊤ be the parameters
of interest and p(Y , θ) be the joint distribution (7), where Y =
(Y1, . . . ,YN )⊤, Yi = Yi(t), and fi = fi(t) for i = 1, . . . ,N . Let
T (·) be also a one-to-one differentiable function transforming
the support of parameters θ to the real coordinate space RD,
where D is the number of parameters. Then, the transformed
joint distribution is given as

p(Y , φ) = p(Y , θ = T−1(φ))| det JT−1(φ)|,

and the ELBO is

L(q)Eq(φ)

[
log p(Y ,T−1(φ))+ log | det JT−1 (φ)|

]
+Eq(φ)

[
log q(φ)

]
, (8)

where JT−1 is the Jacobian of T−1(·) and det(·) is the deter-
minant of a matrix.

To find the variational distribution q∗(φ) maximizing the
ELBO (8), the ADVI considers a fully factorized (mean-field)
Gaussian family

Q =
{
qη(φ) : qη(φ) =

D∏
d=1

N (φd | υd , τ 2d ),

}
,

and chooses the variational parameter η∗ maximizing the
ELBO parameterized by η ∈ RD, i.e.,

η∗ = arg max
η∈RD

L(η), (9)

where η = (υ1, . . . , υD, κ1, . . . , κD)⊤ and κd = log τd , d =
1, . . . ,D. Note that the ADVI uses the re-parametrization
trick [24], [25], [26] and a stochastic gradient ascent method
with an adaptive step-size satisfying the Robbins and Monro
condition [23] for solving the above optimization problem
(9). The below algorithm (Algorithm 1) describes the specific
steps of the ADVI. The gradients are given as follows:

Algorithm 1: ADVI Algorithm

Initialization υ = (υ1, . . . , υD)⊤ = 0 and
κ = (κ1, . . . , κD)⊤ = 0;
while change in ELBO is above some threshold do

Generate S samples ξs ∼ N (0, ID);
Compute the unbiased estimate of ∇υL(η) using
Monte Carlo method;
Compute the unbiased estimate of ∇κL(η) using
Monte Carlo method;
Update υ ← υ + ρ∇υL(η);
Update κ ← κ + ρ∇κL(η);

end

∇υL(η) = E
[
∇θ log p(Y , φ)

]
,

∇κL(η) = E
[
∇θ log p(Y , φ)η⊤diag(exp(κ))

]
+ 1,

∇θ log p(Y , φ) = ∇θ log p(Y , θ)∇φT−1(φ)

+ ∇φ log | det JT−1 (φ)|.

In this paper, we implement the ADVI algorithm using
Stan that is a probabilistic programming system [27]. The
Stan code is available in Appendix and GitHub repository
(https://github.com/statjs).

IV. A REAL CASE STUDY: SEMICONDUCTOR DATA
In this section, we present the performance of the ADVI
algorithm for the hGIWP model to a competitor, the
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FIGURE 1. The PSRF values.

FIGURE 2. The improved PSRF values.

FIGURE 3. The effective sample size.

No-U-Turn Sampler (NUTS) [28] that is an extension
to a simulation-based Hamiltonian Monte Carlo (HMC)
method [29]. The NUTS uses a Hamiltonian dynamics
simulation based on numerical integration (leapfrog) with-
out tuning the step size parameter and number of steps
to generate a candidate and then accept one by perform-
ing a Metropolis acceptance-rejection step. To this end,
we use a dataset obtained from Radiation Response Map
Modeling Platform developed by Korea Atomic Energy
Research Institute (KAERI). The address of the webpage is
https://www.kaeri.re.kr/rrm/#!/home.

FIGURE 4. Posterior estimates for curves.

We set hyperparameters c = 1, δ = 5, az = 1.515,
a = 2.418, and b = bz = 1 using a heuristic empirical
Bayesian method as described in [13]. For inference via the
NUTS algorithm, we run simultaneously four Markov chains
with different sets of initial values and use 5,000 posterior
samples obtained by saving every 5th sample after a 20,000
burn-in period for each chain. The total number of posterior
samples for inference is 40,000. We check the convergence
of the algorithm using the potential scale reduction factor
(PSRF) introduced in [30] and its improved version proposed
in [31]. We run the NUTS and ADVI algorithms on an Intel
10-Core Xeon W CPU@3GHz 128 GB Ram.

Figure 1 and Figure 2 show the histograms for the PSRF
values of [30] and the improved PSRF values of [31], respec-
tively. From these plots, we can see that theMarkov chains are
converged and mixed well. We also computed the effective
sample size (ESS) in order to check the efficiency of the
posterior samples and found that the minimum of ESS is
about 3,000. It means that the posterior estimates obtained
from these samples are reliable. We display the boxplot of
ESS in Figure 3.

Table 1 shows summary statistics (mean and standard
deviation) of R-sqaured (R2) values and root mean squared
error (RMSE) values over radiation levels (see, e.g., [33])
and Figure 4 displays results of fitting functions on the
radiation-response of three semiconductors. Here the ID
number indicates semiconductor. In the figure, the solid grey
lines denote real observed functions. The solid and dotted red
lines represent the curves and 95% credible intervals fitted by
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TABLE 1. Mean and standard deviation (parenthesis) of R2 and root
mean squared error (RMSE) values over radiation levelsV.

TABLE 2. Computation times (sec).

the NUTS method and the solid and dotted green lines are the
fitted curves and 95% credible intervals approximated from
the ADVI algorithm. These results indicate that the ADVI
algorithm estimates the mean curves considerably accurately
as the NUTS algorithm but underestimates the uncertainty
(This same phenomenon appears in [32]).

Table 2 shows the computation times in seconds. From
the table, we can see that the ADVI method is faster than
the NUTS method. That is, the ADVI algorithm reduces the
computational demands dramatically. These results suggest
that the fully factorized ADVI algorithm can be used to
quickly estimate the mean curves when uncertainty is not
important.

V. CONCLUSION
In this paper, we have presented a nonparametric Bayesian
hierarchical model with the Gaussian-Inverse Wishart pro-
cess prior (hGIWP) and developed a Gaussian variational
approximation (GVA) algorithm based on the automatic dif-
ferentiation variational inference (ADVI) method. We have
compared the GVA algorithm with the well-known No-U-
Turn sampler (NUTS), a modified version of the Hamilto-
nian Monte Carlo (HMC) method, by fitting functions on
the radiation-response of semiconductors. The results sug-
gest that the GVA algorithm can be used for fitting the
mean curves of functional data and when quick calcula-
tions are required because of reducing the computational
demands.

VI. FUTURE WORK
Since the fully factorized (mean-field) GVA algorithm tends
to underestimate the uncertainty, the additional approaches
are needed to calculate accurate posterior variances (see,
e.g., [34]). This is an important research area for future
work.

APPENDIX A
In this appendix, we give the residual plots for checking
normal error assumptions in model (4) of Section III. The
residual plots (Figure 5) below look fine in that there do not
appear to be any strong patterns.

FIGURE 5. Residual plots.

APPENDIX B
We provide a Stan code for the hGIWP model.

data {
int<lower=1> n;
int<lower=1> p;
vector[p] Y[n];
vector[p] T[n];
matrix[p,p] I;
vector[p] mu0;
matrix[p,p] A;
real<lower=0> delta;
real<lower=0> cc;
real<lower=0> a;
real<lower=0> b;
real<lower=0> as;
real<lower=0> bs;

}

parameters {
real<lower=0> sigmae_sq;
real<lower=0> sigmas_sq;
vector[p] Z[n];
vector[p] mu;
cov_matrix[p] S;

}

model {
sigmae_sq~inv_gamma(a, b);
sigmas_sq~inv_gamma(as, bs);
mu~multi_normal(mu0, (1/cc)*S);
S~inv_wishart(delta+p-1, sigmas_sq*A);
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for (i in 1:n) {
Z[i]~multi_normal(mu, S);
}
for (i in 1:n) {
Y[i]~multi_normal(Z[i], sigmae_sq*I);
}

}
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