
Received 21 December 2022, accepted 7 January 2023, date of publication 16 January 2023, date of current version 25 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237255

De-Noising of Sparse Signals Using Mixture
Model Shrinkage Function
HAYAT ULLAH 1,2, MUHAMMAD AMIR 2, MUHAMMAD IQBAL 3,
SUHEEL ABDULLAH MALIK 2, AND MUHAMMAD MOHSIN KHAN JADOON 4
1Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
2Department of Electrical Engineering, International Islamic University Islamabad, Islamabad 44000, Pakistan
3Department of Automation and Mechanical Engineering, Tampere University, 33720 Tampere, Finland
4Faculty of Electrical, Computer, IT, and Design, Pak-Austria Fachhochschule Institute, Haripur 22653, Pakistan

Corresponding author: Hayat Ullah (hayat.phdee104@iiu.edu.pk)

ABSTRACT In this work a new thresholding function referred to as ’mixture model shrinkage’ (MMS) based
on the minimization of a convex cost function is proposed. Normally, thresholding functions underestimate
larger signal amplitudes during the de-noising process. The proposed model is a more flexible shrinkage
function as it solves the underestimation problem to a greater extent and thus efficiently de-noises the signal
without affecting signal amplitudes. The Expectation minimization (EM) algorithm is used to find the model
parameters along with the majorization-minimization (MM) algorithm that minimize the monotonic cost
function. The proposed model is then applied for de-noising group sparse signals and Shepp Logan phantom
images. Our experimental study shows that MMS outclasses current thresholding functions and overlapping
group shrinkage algorithm without results suffering from underestimation. Furthermore, the proposed model
has the smallest Root Mean Square Error (RMSE) for de-noising group sparse signals.

INDEX TERMS Convex optimization, EM algorithm, maximum a posteriori estimator (MAP), MM algo-
rithm, PSNR, RMSE, sparse signal processing.

I. INTRODUCTION
Different sparsity-based algorithms have been developed in
the past to de-noise and recover sparse signals and images,
that is, soft thresholding [1], hard thresholding [2], [3], [4],
firm thresholding [5], non-negative garrote thresholding [6],
hyperbolic tangent thresholding [7], logarithmic threshold-
ing [8], hankel sparse low-rank approximation [9], proximal
operators [10], [11], [12], alternating direction method of
multipliers [13], [14], block thresholding [15], and overlap-
ping group shrinkage (OGS) [16]. Along with these estab-
lished techniques, some new techniques are also used for
de-noising of specific image types. Jawad in [7] uses hyper-
bolic tangent thresholding and Hayat in [8] uses logarith-
mic based thresholding for de-noising biomedical images.
An adaptive thresholding method based on neural networks is
used for de-noising of Gaussian and speckle noise in natural,
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ultrasound, and SAR (synthetic aperture radar) images [17].
Liu uses a convolutional neural network approach and guided
filtering for SAR image de-noising [18] and hybrid frequency
modulations for the removal of speckle-noise from such
images [19]. In this paper, we consider the estimation of
signal x from its noisy version h.

h(x) = x + δ (1)

where δ is the zero-mean white Gaussian noise which is
independent of x. h is the noisy observed signal, and we
seek the possible noise-free signal x. The problem can be
formulated in the transformed domain as

s(r) = r + δ (2)

s represents noisy coefficients, (e.g., wavelet coefficients),
and r represents the noiseless coefficients. If the transform
is orthogonal, then the noise in the transform domain has
the same correlation function as the original noise in the
signal domain, therefore, when the transform is orthogonal,
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white noise in the signal domain becomes white noise in the
transform domain. To approximate a suitable r̂ (the estimated
signal), basis pursuit de-noising [13], [20] and LASSO (least
absolute shrinkage and selection operator) [21] are used in lit-
erature, which result in a soft threshold function.This function
is frequently used for the de-noising and recovery of sparse
signals. Chen previously used OGS for de-noising of group
sparse signals [16]. OGS is a fine thresholding method that
uses the clustering property of a given signal or coefficients
of a vector r . The algorithm does not act on r block-wise
but acts on the whole r and minimizes the cost function.
The OGS thresholding function is derived using the MM
algorithm [22], [23]. OGS also underestimates the recovered
signal. In this paper, we develop an algorithm referred to as
‘Mixture Model Shrinkage’ (MMS), which is also derived
using the MM algorithm. As an application example, we con-
sider here the de-noising and recovery of group sparse signals
and Shepp-Logan phantom images. To achieve this, we are
modelling the wavelet coefficients using the mixture of a
Gaussian distribution. Our goal is to estimate r from noisy
observations s. The estimated signal is denoted by r̂ . As the
estimated signal r̂ is dependent on the observed noisy signal s,
so, it can be denoted as r̂(s). This can be estimated by using
the maximum aposteriori (MAP) estimator [24], [25], [26],
which is based on the probability density function (PDF) of
r . For example, if s is the observed signal, then the MAP
estimator has to estimate the value of r as to which is more
likely to occur (that is, the MAP estimator is seeking the
specific value of r , where the probability of r is the peak value
of r). The MAP estimator can be defined as

r̂(s) = argmax
r
pr|s(r | s) (3)

where ’arg max’ is the argument value of the point where
the peak of the function occurs. The PDF pr|s(r|s) is the
distribution of r , given a specific value of s. In section III, the
algorithm is discussed in detail. The MAP estimator is given
in (3). The problem is solved through different methods [24],
[27], [28]. In [28], coefficients of the signal are modelled as
Laplacian PDFs, and a close form or explicit solution to the
MAP estimator is obtained in the form of a soft thresholding
function. Although this technique removes noise from sparse
and group sparse signals, it badly affects and over-shrinks the
signal of interest. Natural signals and images actually possess
group sparsity in some transform domains, for example, in the
case of the wavelet transform and Fourier transform domain.
In these cases, linear shrinkage functions cannot properly
separate the coefficients with larger amplitudes [29], [30],
[31]. In the body of literature, different authors use different
properties of signals and images to de-noise data.

Some of these used methods utilize the group sparsity
of the signal for de-noising and recovery. Liu uses block
structure sparsity of the data for de-noising by creating small
signal patches to de-noise them, then block structure spar-
sity properties are used to dynamically group the patches
to produce better de-noising results [32], [33]. OGS is a

recent technique used for the de-noising of group sparse
signals [16]. The method is derived by minimizing a spar-
sity promoting convex cost function. OGS minimizes the
cost function monotonically and has no explicit formulation,
such as soft thresholding, hard-thresholding, or firm thresh-
olding. The technique is used for de-noising and recovery
of group sparse signals. It performs better than soft, hard,
and firm thresholdings but still shrinks larger values of the
coefficients to a certain extent and it is evident from the
de-noising of one dimensional signal in experiments section.
It can also be applied for de-noising and recovery of speech
signals. We use wavelet based de-noising. The main part of
Wavelet de-noising is thresholding or shrinkage functions.
The wavelet coefficients smaller than threshold value are
discarded and the larger coefficients are retained or shrinked
and the signal is then reconstructed. Soft, hard, and firm
thresh are classical thresholding function. Hard thresholding
is keep or kill rule. Soft thresholding shrinks the wavelet cof-
ficients with larger absolute values than the selected threshold
value. Firm thresholding modest way between hard and soft
threhsoldings.

To properly solve the problem of underestimation of the
larger amplitudes of sparse signals, this paper develops a
new shrinkage/thresholding function called mixture model
shrinkage function. The main contributions of the research
are given here.

The mixture model shrinkage function is derived by
using mixture of Gaussian distributions and maximization-
minimization. The nonzero coefficients are modeled as a
parameterized mixture of Gaussian variables. The parameters
are then estimated using maximum likelihood minimization.
The Gaussian mixture model decomposes the noisy signal
into high and low frequencies. It classifies data based on
statistical characteristics.

The motivation is the wavelet-transformed signal is sparse
and most of the coefficients are zero or close to zero. The
energy of the signal is contained by small and large coef-
ficients in the wavelet transform. Noise is spread along all
the coefficients. The larger coefficients carry the important
features and information of the signal. The mixture model
thresholding function is applied in the transform domain to
further sparsify and de-noise the signal. The signal can be
recovered without affecting its larger amplitudes.

II. RELATED WORK
Sparse signals de-noising and recovery is a challenging
problem. Many prior methods have been proposed over the
years to solve this problem, e.g. Convex optimization and
greedy algorithms. Convex optimization-based techniques
offer higher accuracy but greedy techniques are computa-
tionally more efficient and hence better fit for large-scale
problems. Sparse approximate solutions to linear equations
are classically obtained through L1 norm regularized least
squares, but this method often underestimates the true solu-
tion. The low amplitude coefficients are discarded for sparsity
requirements and the other nonzero coefficients are shrunk
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towards zero which causes an underestimation of the larger
coefficients. In our de-noising/reconstruction of the sparse
signals and images, we addressed this problem. Some of
the methods used for de-noising and recovery of sparse sig-
nals are soft thresholding [1], hard thresholding [2], firm
thresholding [5], and hyperbolic tangent thresholding [7].
An improved total variation regularization is applied to
remove salt and pepper noise from images [36]. Mahdaoui
used a compressive sensing approach based on regularization
constraints for image de-noising [37]. Additive white gaus-
sian noise is removed from images by using neural networks
and soft thresholding in wavelet domain [38]. A novel image
de-noising method is proposed by Onur by using Otsu’s
thresholding and wavelet transform to improve the de-noised
image quality [39]. To increase the noise removal level and
improve the quality of the de-noised images using singular
value decomposition and thresholding [40]. Although these
methods effectively reduce the signal noise but also underes-
timate the larger amplitudes of the signal, which consequently
destroys some of the significant information of the signal.
This paper proposes a mixture model shrinkage function that
avoids the systematic underestimation characteristic of L1
norm regularization. The problem is stated as a mixture of
Gaussian distribution and is then solved by the MM method.
The proposed technique is evaluated based on its efficiency
with respect to the de-noising performance and the computa-
tional timing.

III. RESEARCH METHODS
A. PROPOSED METHOD
Wavelet coefficients are modeled as mixture of a Gaussian
distribution. The problem is then solved by MM technique.
This gives a closed form solution called mixture model
shrinkage function. The complete method is given below.

Based on the discussed results in [22], [25], and [26] neigh-
bouring coefficients have statistical dependencies even when
they are uncorrelated, as in the case of wavelet transform.
A wavelet coefficient in the vicinity of a larger coefficient
will be larger even if they aremutually uncorrelated. Here, the
behaviour of wavelet coefficients is formulated using mixture
of Gaussian probability density functions.

p(r) = a(
1

σ1
√
2π

)e
−

r2

2σ21 + (1 − a)(
1

σ2
√
2π

)e
−

r2

2σ22 (4)

where, 0 ≤ a ≤ 1, ’r’ represents the noiseless coefficients
of the signal, and a is the mixing proportion. σ1 and σ2 are
the standard deviations associated with components one and
two, respectively. To find r for which pr|s(r|s) has maximum
amplitude [28], consider

pr|s(r | s) =
pr,s(r, s)
ps(s)

(5)

and

ps|r (s | r) =
pr,s(r, s)
pr (r)

(6)

so, rearranging terms, we get

pr|s(r | s) =
ps|r (s | r)pr (r)

ps(s)
(7)

Equation (7) shows the Bayes′ rule. Therefore, we get

r̂(s) = argmax
r

ps|r (s | r)pr (r)
ps(s)

(8)

The term ps(s) does not depend on r , the value of r that max-
imizes right-hand side is not dependent on the denominator.
The denominator does not influence right hand side of (8). So,
(8) can be written without the denominator [28]. Therefore,
the MAP estimate of r is given by

r̂(s) = argmax
r

[ps|r (s | r).pr (r)] (9)

s = r+δ is Gaussian with mean r . That is, ps|r (s|r) = pδ(s−
r). pδ(δ), is the PDF of the Gaussian random variable with
mean equal to zero. That is, ps|r (s | r) = pδ(s− r). The MAP
estimate of r can be written as:

r̂(s) = argmax
r

[pδ(s− r).pr (r)] (10)

The maximum value of a function F(r) is not changing by
applying amonotonic functionG(r) (that is, if a specific value
of r maximizes F(r), then the value of r will also maximize
G(F(r))) [28]. The logarithmic function is a monotonically
increasing function, therefore (9) can also be written as;

r̂(s) = argmax
r

[log(pδ(s− r)pr (r)] (11)

or equivalently,

r̂(s) = argmax
r

[log(pδ(s− r) + log(pr (r))] (12)

The use of the logarithm simplifies the differentiation.
It is assumed that the noise is the zero mean Gaussian with

variance σδ ,

pδ(δ) =
1

σδ

√
2π

.e
−

δ2

2σ2
δ (13)

By using (13), (12) can be written as [28];

r̂(s) = argmax
r

[−
(s− r)2

2σ 2
δ

+ log(pr (r))] (14)

Suppose f (r) = log(pr (r)), then (14) becomes

r̂(s) = argmax
r

[−
(s− r)2

2σ 2
δ

+ f (r)] (15)

By setting the derivative w.r.t. r to zero, we find the MAP
estimate of r .
We need a probabilistic distribution model pr (r) to prop-

erly represent the transform-domain coefficients vector, r .
Previously used probabilistic models are given in [22], [23],
[24], [25], [26], and [27]. Here, we model the coefficients as
a mixture of a Gaussian distribution;

Thus by using (4), (14) becomes

J (r) =
1

2σ 2
δ

(s− r)2 − log
[ a

σ1
√
2π

.e
−

r2

2σ21
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+ (
1 − a

σ2
√
2π

).e
−

r2

2σ22
]

(16)

To solve this problem, we use the majorization-minimization
technique.

We apply the majorization-minimization technique to the
mixture model given in (16). We get the majorizer of a
function h given by the following relation [35],

hM (c, d; c′, d ′) ≥ h(c, d) (17)

hM is the majorizer of the mixture model h. Both functions
are equal when c = c′ and d = d ′. That is, hM (c, d; c′, d ′) =

h(c′, d ′), as

− (
c′

c′ + d ′
)log(

c′ + d ′

c′
.c) − (

d ′

c′ + d ′
)

log(
c′ + d ′

d ′
.d) ≥ −log(c+ d) (18)

where

c =
a

σ1
√
2π

. exp−(
r2

2σ 2
1

), d =
1 − a

σ2
√
2π

. exp−(
r2

2σ 2
2

),

c′ =
a

σ1
√
2π

. exp−(
r ′2

2σ 2
1

), d ′
=

1 − a

σ1
√
2π

. exp−(
r ′2

2σ 2
1

)

(19)

By using (16) and (30):

f̂ (r; r ′) =
1

2σ 2
δ

(s− r)2 − log(c+ d) (20)

As

−log(c+ d) = − (
c′

c′ + d ′
)log(

c′ + d ′

c′
.

a

σ1
√
2π

.e
−

r2

2σ21 )

− (
d ′

c′ + d ′
)log(

c′ + d ′

d ′
.
1 − a

σ2
√
2π

.e
−

r2

2σ22 )

(21)

Putting (30) in (30), we get

f̂ (r; r ′) =
1

2σ 2
δ

(s− r)2

− (
c′

c′ + d ′
)log(

c′ + d ′

c′
.

a

σ1
√
2π

.e
−

r2

2σ21 )

− (
d ′

c′ + d ′
)log(

c′ + d ′

d ′
.
1 − a

σ2
√
2π

.e
−

r2

2σ22 ) (22)

f̂ (r; r ′) =
1

2σ 2
δ

(s− r)2 + C1 + (
c′

c′ + d ′
)(
r2

2σ 2
1

)

+ C2 + (
d ′

c′ + d ′
)(
r2

2σ 2
2

) (23)

where c, d, c′ and d ′ are given in (30), C1 =

−( c′
c′+d ′ )log( c

′
+d ′

c′ . 6t4e4a
σ1

√
2π

) andC2 = −( d ′

c′+d ′ )log( c
′
+d ′

d ′ . 1−a
σ2

√
2π

).

Majorizer of f (r) is denoted by f M : f M (r; r ′) ≥ f (r) for all r

functions are equal at a point r ′ ( that is, f M (r ′, r ′) = f (r ′)).
Now

∂f M

∂r
=

1

σ 2
δ

(r − s) +
c′

c′ + d ′

1

σ 2
1

r +
d ′

c′ + d ′

1

σ 2
2

r (24)

=r[
1

σ 2
δ

+
1

σ 2
1

c′

c′ + d ′
+

1

σ 2
2

d ′

c′ + d ′
] −

s

σ 2
δ

(25)

Setting the derivative equal to zero, we get,

r[
1

σ 2
δ

+
1

σ 2
1

c′

c′ + d ′
+

1

σ 2
2

d ′

c′ + d ′
] −

s

σ 2
δ

= 0 (26)

⇒ r[
1

σ 2
δ

+
1

σ 2
1

c′

c′ + d ′
+

1

σ 2
2

d ′

c′ + d ′
] =

s

σ 2
δ

(27)

r =

s
σ 2

δ

[ 1
σ 2

δ

+
1
σ 2
1

c′
c′+d ′ +

1
σ 2
2

d ′

c′+d ′ ]
(28)

where r and s are noiseless and noisy coefficient vectors
respectively. σδ is the standard deviation of the noisy signal.
σ1 and σ2 are the standard deviations of the noise-free trans-
form coefficients. c′ and d ′ are the points where the function
f M has its minimum value and f M becomes equal to f .
The parameters σ1, σ2 can be calculated through expectation
minimization in this work.

A schematic diagram of wavelet based de-noising using the
proposed shrinkage function is given in Fig. 1. Wavelet trans-
form is applied to decompose the noisy input signal/image.
By applying wavelet transform, the total energy of the sig-
nal/image is distributed into few coefficients. A specific
threshold value is set according to the requirements of the
problem to hold or shrink certain values of the coefficients
and discard others. Selection of threshold values is further
discussed in the experiment section. Data consistency is
performed in the transformed domain. Then the de-noised
signal/image is examined. The algorithm is run until the
maximum number of iterations reached.

B. ESTIMATING MODEL PARAMETERS
We use an expectation maximization (EM) [34] method for
finding parameters of the mixture model. The linear superpo-
sition of Gaussian:

p(r) =

K∑
k=1

akN (r|µk , σk ) (29)

where N (r|µk , σk ) denotes a normal distribution. K denotes
the total number of Gaussian mixtures, the mixing coefficient
or weight of each distribution is ak , µk represents mean and

σk is variance of k th Gaussian. 0 ≤ ak ≤ 1, and
K∑
k=1

ak = 1.

The log likelihood

ln p(r|µ, σ, a) =

N∑
n=1

ln p(rn)

=

N∑
n=1

ln
{ K∑
k=1

akN (rn|µk , σk )
}

(30)
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FIGURE 1. Flow chart of the proposed de-noising technique.

N denotes the number of observations. We calculate param-
eters in (28) by using EM method. Let us suppose that the

Algorithm 1 Wavelet Based De-Noising Using Mixture
Model Shrinkage (MMS)

Input: s ∈ RN , a, σ1, σ2, σδ,Nit (number of iterations).
Selecting the parameters that control behaviour of the
shrinkage function.
Initialization: s0=s,

c =
a

σ1
√
2π

.e
−

a2

2σ21 , d =
1−a

σ2
√
2π

.e
−

a2

2σ22 ,
c and d are constants.
Iterations:
Step-1: Take wavelet transform of the noisy signal to
distribute energy in a few wavelet coefficients.
Step-2: Apply mixture model shrinkage function in the
wavelet transform to threshold all low frequency
sub-band coefficients and sparsify the input
signal/image.
Step-3: Enfore data consistency r = r(s == 0) + s
Step-4: Take inverse wavelet transform.
Step-5: Calculate peak signal to noise ratio and root
mean square error of the output.
Step-6: Compare the results.
Nit = Nit + 1
Repeat steps 1 through 5 until stop criteria are met.
Output: r̂

mixing coefficients in (30) have prior probabilities for the
components. We estimate the corresponding posterior proba-
bilities of r . Using Bayes rule

γk (r) = p(k|r) =
p(k)p(r|k)

p(r)
=

akN (r|µk , σk )
K∑
j=1

ajN (r|µj, σj)

(31)

where γk is the latent variable, ak =
Nk
N , and Nk are the

samples belonging to cluster k . EM is an iterative optimiza-
tion algorithm and consists of two main steps (that is, the
estimation step and the maximization step). We compute the
expected values of the latent variable in the estimation step
from the given values of the parameter. The parameters are
updated in the maximization step using a maximum like-
lihood (ML) estimation. Here, our aim is to maximize the
likelihood function w.r.t. the current parameters consisting
of mean and co-variance of the elements and the mixing
coefficients. The EM algorithm for finding parameters of the
mixture model is summarized in Algorithm 2 and schematic
diagram of EM algorithm is given in Fig. 2. We run the EM
algorithm in MATLAB to find the parameters of the model.
Values of the parameters are given in table 1.

C. THRESHOLD/SHRINKAGE FUNCTIONS
Definition 1: The soft threshold function soft: R → R is
defined as

soft(s; λ) :=

{
0, |s| ≤ λ

(|s| − λ)sign(s), |s| ≥ λ
(32)
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Algorithm 2 Expectation Maximization for Finding
Parameters of the Mixture Model
Step-1: Initialize µj, σj and aj and find the value of (30).
µj, σj and aj are the means, variance, and weight of each
distribution respectively.
Sep-2 (E-step): Evaluate the responsibilities using the
values of the parameters used in step-1.
γk (r) =

akN (r|µk ,σk )
K∑
j=1

ajN (r|µj,σj)

γk (r) is the latent variable. Finding missing values of the
data using the available values of the parameters.
Step 3 (M-step): Estimate the parameters once agian

using the current values µj =

∑N
n=1 γj(rn)rn
N∑
n=1

γj(rn)
,

σj =

N∑
n=1

γj(rn)(rn−µj)2

N∑
n=1

γj(rn)
,

aj =
1
N

N∑
n=1

γj(rn)

Parameters are updated after E-step
Step-4: Evaluate log likelihood
ln p(r|µ, σ, a) =

∑K
n=1 ln

(∑K
k=1 akN (rn|µk , σk )

)
Repeat Step-2 to step-4 until convergence

TABLE 1. Parameters of the mixture model, a µ1, µ2, σ1, and σ2.

where λ ≥ 0 is threshold parameter.
Definition 2: The hard threshold function is defined as

hard(s; λ) :=

{
0, |s| < λ

s, |s| ≥ λ
(33)

Definition 3: The firm threshold function firm: R → R
with parameters λ > 0 and µ > λ is defined as

firm(s; λ, µ) :=


0, |s| ≤ λ

µ(|s| − λ)/(µ − λ)sign(s), λ ≤ |s| ≤ µ

s, |s| ≥ µ

(34)

As µ → λ the firm threshold function approaches hard
threshold andµ → ∞ the firm threshold function approaches
soft threshold function.

D. COMPUTATIONAL COMPLEXITY AND CONVERGENCE
OF THE ALGORITHM
As the input signal s is sparse with sparsity k , so the computa-
tional complexity per iteration of MMS threshold is of order
k , k ≪ N , N denotes size of vector s.

FIGURE 2. Flow chart of EM algorithm.

The threshold function is derived by using the MM algo-
rithm, the convergence of f (r) is guaranteed and decreases
monotonically from iteration to iteration (that is, f (r(k +

1)) < f (r(k))).

E. SHRINKAGE/THRESHOLDING BEHAVIOUR
From Fig. 3, it is clear that MMS is graphically close to
hard thresholding and firm thresholding but is more flexible.
In case of soft thresholding; if s is independent and identi-
cally distributed (iid) with s ∼ N (0; 1) and r is output of
soft-thresholding then r is given by r = soft(s; λ). r is a
vector with too many zeros (that is, the values of s, for which
the magnitude of s ≤ λ are mapped to 0).

In case of mixture model thresholding, if s is iid with s ∼

N (0; 1) and r is the output of MMS, then it is given by r =

mixture(s; a; σ1; σ2; σδ;Nit ). Here, r is again a vector with
too many zeros. s is the noisy signal, r is the noise-free signal,
a is the mixing proportion, and σ1 and σ2 are the standard
deviations associated with components of mixture one and
two, respectively, while σδ is the standard deviation of noise,
and Nit is the number of iterations.

IV. EXPERIMENTS
A. ONE-DIMENSIONAL SIGNAL
As an illustration, the proposed MMS algorithm is applied to
de-noising the 1D group sparse signal in Fig. 4(a). We sim-
ulate the 1D group sparse signal in MATLAB:

N = 100;
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FIGURE 3. Soft thresholding, hard-thresholding, firm-thresholding, and mixture model curves.

x = zeros(N, 1);
x(20+(-3:3)) = [2 3 4 5 4 3 2];
x(40+(-3:3)) = [3 -2 -4 5 2 4 -3];
x(60+(-3:3)) = [3 4 2 5 -4 -2 -3];
x(80+(-3:3)) = [3 -4 -2 5 4 2 -3];
x is noiseless signal and N is length of the signal. The x

and y-axis are showing the time and amplitude, respectively.
Fig. 4(b) show the independent white Gaussian noise with
standard deviation σ = 0.5. The noisy signal is given in
Fig. 4 (c).We apply the classical thresholding functions along
with the proposed MMS function to de-noise the 1D group
sparse signal. The results of the hard and firm thresholdings
are given in Fig. 4(d) and 4(e) respectively, which are not
satisfactory. The noise is removed up to a great extent in case

of both the soft thresholding and OGS. The soft thresholding
removes the noise contents but also badly affects the larger
amplitudes of the original signal. OGS removes almost all
noise but also attenuates the larger amplitudes to some extent.
The root mean square error (RMSE) is a quality measurement
parameter, while minimizing RMSE does not always lead
to the most favourable de-noising results in practice. In our
experiment, the proposed MMS model negligibly attenuates
the larger amplitudes of the original signal when compared
to soft thresholding and OGS, and the RMSE improved from
0.521 to 0.311, meaning all three methods (that is, soft thresh-
olding, OGS, andMMS) remove the total noise contents. The
de-noising results of soft-thresholding, OGS, and MMS is
illustrated in Fig. 4(f), (g), and (h).
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FIGURE 4. (a) Original signal, (b) Noise, (c) Noisy signal, (d) firm thresholding, (e) Hard thresholding, (f) Soft thresholding, (g) OGS,
and (h) Proposed thresholding functions.

B. IMAGE DE-NOISING
To demonstrate the validity of our proposed model on
biomedical images, we tested on Shepp-Logan phantom
image of size 256 by 256. A 256 by 256 mask is applied

to each original Shepp-Logan phantom image. The original
image, the mask, and the resulting Fourier domain noisy
images are shown in Fig. 6 (a), (b), and (c) respectively.
We have reconstructed the images using soft, hard, firm,
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FIGURE 5. Group sparse signal de-noising: Comparisons of different thresholding function. MMS produces the best clustering results.

and the proposed thresholding models. We take the inverse
Fourier transform of the given noisy image and apply our
proposed thresholding function in the wavelet domain. That
is, x̂t = Threshold(W ∗ x̂i; a; σ1; σ2; σδ;Nit ), where ‘W ’
denotes thewavelet transform, x̂t is the thresholded value, and
x̂i represents the individual samples of the image. The values
below a certain threshold are discarded. Threshold values can
be selected according to λ = 3σ [16]. It can also be selected
as to reduce σ to a specified level. E.g., If σ ranges from 0.1 to
0.5, λ ranges from 0.30 to 1.5. We vary λ from 0.1 to 4. λ

can also be selected to improve PSNR values. It depends on
nature of the problem. Larger values of λ make the solution
sparser but shrink the coefficient amplitudes. After selection
of threshold value, the inverse wavelet transform is applied
to recover the noisy image. Data consistency in the trans-
form domain is enforced, and the algorithm is run up to the
maximum numbers of iterations. The whole process and the
projection onto convex sets (POCS) is detailed in [31].

V. RESULTS AND DISCUSSION
Fig. 5 shows the point-wise error between actual and recov-
ered data for the one-dimensional group sparse signal. Let
rs, rOGS , rh, rf , and rm show the recovered values through
soft, OGS, hard, firm and mixture model thresholding. The

magnitude of the point-wise errors between actual and recov-
ered data for each case are given by errors = abs(r − rs),
errorOGS = abs(r − rOGS ), errorh = abs(r − rh), errorf =

abs(r − rf ), errorm = abs(r − rm).
Fig. 5 shows better classification clustering behaviour of

MMS as compare to the pre-existing classical techniques.
In Fig. 5, the error points in the case of hard-thresholding
and firm-thresholding are more scattered. In the case of OGS
and soft-thresholding, the error points are mostly close to the
origin, while some points are scattered. In the case of the
proposed model, the error points are mostly around the origin
and very few are scattered. Our proposed model exploits
clustering properties of the coefficients of the signals and
leads to minimum possible error. This shows the superiority
of the proposed model. The number of errors of the proposed
model is very low, as only a few values are out of order
because it has the best clustering property as compared to
other classical techniques. It is easier to accurately separate
two or more different types of signals using our proposed
model. The technique can be used for data classification.

Our proposed shrinkage function has better tendency to
separate different types of signal from a mixture. It is clear
from Fig. 4 (h) that almost all noise was removed by our pro-
posed model without affecting the larger signal amplitudes.
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FIGURE 6. (a) Original Shepp-Logan phantom image, (b) Mask, (c) Noisy image, De-noising of images
using (d) hard, (e) soft, (f) firm, and (g) proposed thresholding.

The model has a minimum RMSE of 0.311, which is the best
among all compared thresholding functions in this paper. For
OGS, the RMSE is 0.521, for soft-threshold it is 0.818, for
hard-threshold it is 0.433, and for firm-threshold the RMSE
is 0.844.

In example 2, the reconstructed images by applying hard,
soft,firm, and mixture model thresholding are given in Fig. 6
(d), (e), (f), and (g) respectively.We use the wavelet transform
as a sparsifying transform in example 2. The quality of the

recovered image throughMMS is very high. The peak signal-
to-noise ratio is used as a quality measurement parameter
to examine the accuracy of our proposed model. The PSNR
curves for Firm, hard, soft, and mixture model thresholdings
are given in Fig. 7 The higher the value of the PSNR, the better
the recovery of the image, and the more accurate the recovery
model is. The PSNRof the noisy image is 35.2791. The PSNR
value for the proposed model is 87, which is far better than
firm (76), soft-thresholding (85) and hard-thresholding (83).
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FIGURE 7. PSNR curver of firm thresholding, hard thresholding, soft thresholding, and our proposed mixture model shrinkage function.

The run time for OGS is 7.7 milliseconds while for MMS it
is 5.3 milliseconds. MMS converges faster as compared to
OGS. MMS reaches the peak value in just 8 iterations while
soft-threshold takes 20 iterations to reach the peak value.

VI. CONCLUSION
This paper introduced a computationally-efficient algorithm
for the de-noising of sparse and group sparse signals. In our
approach, we derived a mixture model shrinkage using the
MM algorithm, which is then used for de-noising of group
sparse signals and Shepp-Logan phantom images as shown
in the experiments. Our method is derived as a minimization
of a convex cost function. The herein proposed shrinkage
function overcomes the underestimation problem of larger
values of the signals. MMS leads to better results when
compared to soft-thresholding, OGS, hard-thresholding, and
firm-thresholding in fewer iterations. The proposed model
also has lower RMSE values than the other classical meth-
ods, which is one of the measures for better recovery of
data. In the case of image de-noising, our proposed model
achieves larger PSNR values than soft and hard-thresholding.

It can be used for de-noising and classification of sparse and
group sparse signals. It can also be used for the recovery of
MRI. The proposed model is not efficient for de-noising and
classification of audio sources. We used our proposed model
for speech enhancement (de-noising). The noisy speech is a
male utterance, which is corrupted by additivewhiteGaussian
noise. The main problem in speech enhancement is the audi-
bility of the noise as musical noise. In speech enhancement,
it is desirable to suppress the noise content to a high extent
regardless of the RMSE. The proposed method can be used
in parallel with l1 norm (l1 fused mixture model) for further
improvement for speech de-noising in future. It would be very
interesting to use the proposed model with some amendments
for segmentation, classification, and motion detection.
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