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ABSTRACT Reinforcement Learning (RL) is a popular approach for deciding on an optimum traffic signal
control policy to alleviate congestion in a road network. However, the traffic signal control policy can also be
optimized in conjunction with the design of vehicular flow directions to further improve traffic performance.
The design of vehicular flow directions refers to the right of way or directional restriction imposed in a
road network. Here, a new RL-based technique is presented for co-optimization of the design of vehicular
flow directions and control policy for traffic signals. This technique consists of a two-step iterative process,
wherein a set of vehicular flow directions for a road network is generated, then a RL-based approach is used
to train the traffic signal control policy over the given set of vehicular flow directions. Following the proposed
technique, the vehicular flow directions with poor traffic performance are iteratively eliminated, while new
vehicular flow directions are generated to achieve better traffic performance and realize convergence to a
maximum possible expected traffic performance. The proposed RL-based technique is evaluated by using
two examples under rush hour and non-rush hour traffic conditions. It is found that, compared to a RL-based
approach in which only traffic signal control policy is considered, the proposed approach can be used to
obtain a better traffic performance in terms of vehicular queue length and throughput.

INDEX TERMS Co-optimization, reinforcement learning, vehicular flow direction design, traffic signal
control, deep neural networks.

I. INTRODUCTION
Increasing population growth and corresponding vehicle
ownership have resulted in heightened traffic congestion,
presenting significant challenges for transportation authori-
ties. Traffic congestion can lead to vehicular queueing, travel
delays, fuel consumption, economic loss, and pollution, par-
ticularly in urban areas, placing a newfound emphasis on
the importance of intelligent urban planning [2]. Two key
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factors that contribute to traffic congestion in road networks
are (i) design of vehicular flow directions and (ii) the con-
trol policy used for traffic signals. Vehicular flow direction
design refers to the right of way directions for roads in a net-
work [3]. For example, urban road networks are composed of
a combination of roads with one- or two-way vehicular flow
directions with turning restrictions at their intersections [4],
[5]. With vehicular flow design, one specifies whether the
road is restricted to a one-way or two-way direction, while
the traffic signal control policy dictates traffic signal patterns
for non-conflicting directions at intersections, controlling
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the vehicular flow between connected roads. Traffic signal
control policy can be adjusted according to real-time traffic
information, including data collected from GPS-equipped
vehicles, navigation systems, and sensors [6].

Traffic performance in congested areas is significantly
impacted by vehicular flow design and control of traffic sig-
nals, whose effects are inherently coupled together. Different
vehicular flow directions can result in distinct traffic signal
control policies and vice versa. Due to their interdependence,
the authors propose the simultaneous consideration of the
design of vehicular flow directions and traffic signal control
policies in order to optimize traffic performance in urban road
networks.

In the literature, approaches to traffic signal control may
be broken down into two broad categories: model-based
optimization and model-free Reinforcement Learning (RL)
techniques. Cong et al. [7] propose four model-based opti-
mization approaches to jointly find an optimal road net-
work topology and traffic signal controller policy. However,
model-based techniques often rely on strong assumptions
and specific traffic control models, making the generaliza-
tion of this approach difficult. On the other hand, model-
free RL techniques [8], [9] have two key benefits. First,
they require less restrictive assumptions and optimal con-
trol policies can be learned from available data, such as
GPS-equipped vehicles and loop detector sensors, lending
the approach to more general problem instances. Within the
RL framework, optimal performance can be achieved through
constant back-and-forth interaction between an agent and
the traffic environment. Additionally, function approximation
techniques can be used to improve computational efficiency
in high-dimensional state-action spaces [10]. The efficiency
of model-free RL approaches is especially important in traf-
fic optimization problems, as the number of variables grow
exponentially with the size of the network.

RL-based techniques have been successfully used for solv-
ing traffic signal control problems [8], [9]. Such approaches
dominate much of the literature and differ in their character-
izations of the state-action space and reward function, and
the RL algorithm variations employed. Conventionally, the
state space is defined in terms of real-time traffic information
such as vehicular flow rate [8], [11], queue length [12], [13],
and average delay time [14], [15]. Recent efforts incorporate
image-like features [15], [16] to provide a more comprehen-
sive description of the traffic conditions, with positions of
vehicles along the lanes represented in the form of a binary
matrix. The action space is traditionally defined as a set of
traffic phase patterns. A traffic signal phase is used to spec-
ify the timing of the permission (green light) or restriction
(red light) of vehicular flow directions. Generally speaking,
the action space may be (i) step-based [11], [17], in which
the traffic controller decides whether to switch or stay in a
traffic phase for a pre-determined time duration, or (ii) phase-
based [8], [18], [19], wherein the controller is used to decide
the time duration for each traffic phase. The reward func-
tion, which is a measure of traffic performance, is typically

defined as a weighted sum of several metrics, such as travel
time [11], [20], queue length [13], [14] and vehicular through-
put. Additionally, various RL algorithms have been inves-
tigated for learning optimal traffic signal control policies,
namely Deep Q-learning Network (DQN) [10], [14], [21],
policy gradient method [22], and actor-critic method [23].
Problem instances for evaluation also vary, spanning single
intersection control [14], multi-intersection control [24], [25],
and even massive-scale scenarios, such as the road network
of Manhattan with 3,971 traffic signals [9]. Even though
significant progress has been made within this domain, pop-
ular techniques only focus on the optimization of the traffic
signal controller assuming a pre-determined or fixed design
of vehicular flow directions.

The task of designing vehicular flow directions is com-
monly viewed as an endeavor disconnected from traffic
signal control policy optimization. Nonetheless, the urban
transportation network design problem is a popular topic in
the literature, and is concerned with building new streets,
expanding existing road capacity, designing public trans-
portation networks (i.e., bus networks) and restricting turn-
ing directions based on current traffic scenarios [26]. The
scope of road network design problems may be classified
into three broad categories: strategic decisions, tactical deci-
sions, and operational decisions. These resolutions range
from long-term decisions that relate to the design of new
infrastructures [27] to short-term decisions that improve the
flow of traffic in preexisting networks [3]. The proposed
approach has applications to both classes of road design
problems, as it may be applied to find optimal vehicular
flow design patterns and a corresponding optimal control
policy for new networks or extensions to existing networks;
furthermore, the proposed co-optimization framework can be
applied to make real-time traffic flow modifications such as
imposing turning restrictions based on traffic demand [28],
[29]. The problem of simultaneously optimizing traffic con-
trol and vehicular flow design in such application cases is one
of the main motivations of this work.

Another key motivation behind this paper is that the tra-
ditional RL-based approaches, which are formulated as stan-
dardMarkovDecision Processes (MDP) [30], do not consider
vehicle flow direction design during the learning procedure.
To resolve this issue, the authors couple the design and control
optimization and employ a bi-level technique; one in which,
first generates a set of candidate vehicular flow directions
for the road network, and then optimizes the traffic signal
controller for each design. In this way, the authors are able
to co-optimize the design and control while capturing their
interdependent relationship.

The contributions made in this paper are as follows:

1) For the first time in the literature, an integrated
approach to the traffic optimization problem is con-
sidered in this paper. The authors integrate the design
of vehicular flow directions into the RL-based traf-
fic signal control problem. This new extension helps
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simultaneously perform a heuristic search of the design
space while optimizing the control policy, which has
not been considered in the conventional MDP-based
approaches. In this way, the proposed bi-level opti-
mization approach is a new extension of a standard
MDP [31], [32]. Furthermore, the proposed approach
is data-driven and requires less assumptions than those
made in conventional model-based techniques, for
example, [7].

2) The incorporation of two new modeling schema. First,
a directed graph is used to model the road network,
which permits the exhaustive generation of feasi-
ble vehicular flow designs [33]. Second, conventional
Deep Q-Learning is extended to approximate traffic
signal control performance for different vehicular flow
direction designs and combined with a decaying ran-
dom search strategy to explore the design space. In this
way, the proposed DQN approach can be used to
explore a diversified set of feasible design alternatives,
and eventually converge to the best combination of
the vehicular flow direction design and traffic signal
control policy.

3) The merits and versatility of the proposed approach
is illustrated by applying the obtained solution to two
road network topologies, namely 4- and 12-intersection
grid networks. Furthermore, the application allows for
the specification of designed roads and incorporates
a signal synchronization scheme, extending the appli-
cability of the model. Through this application, the
authors illustrate that the co-optimization of vehicular
flow design and traffic signal control can scale up to
larger networks and, as evidenced in the applications,
outperform conventional RL-based traffic signal con-
trol only approach.

The rest of the paper is organized as follows. In Sec-
tion II, the authors present an overview of MDP and DQN to
establish the necessary background. The proposed RL-based
approach is outlined in Section III, and includes the problem
definition, a detailed description of the algorithm and the
accompanying deep neural network, an overview of parame-
ter selection procedures, and an outline of the model assump-
tions. Following that, in Section IV, the performance of the
proposed technique is demonstrated by using two examples.
Finally, some concluding remarks are offered in the last sec-
tion, Section V.

II. BACKGROUND
To establish the necessary background, the authors offer a
brief review of Markov Decision Process (MDP) [30], [34]
and Deep Q-learning Network (DQN) concepts [35], [36],
[37], [38].

A. MARKOV DECISION PROCESS (MDP)
MDPs are formally defined by the tuple {S,A,T ,R, γ }, with
finite environment state space S, action space A, transition

function T : S × A × S → [0, 1], reward function R :
S × A × S → R and discount factor γ . Given an MDP,
an agent observes the state of the environment st ∈ S at
timestep t and takes an action at ∈ A according to a control
policy π : S × A → [0, 1]. The control policy π (at |st )
returns the probability of taking an action at given state
st . The transition function T (st , at , st+1) = P(st+1|st , at )
dictates the transition from one state to the next at timestep t
by considering immediate reward rt = R(st , at , st+1). The
objective of the agent is to learn a control policy π∗ that
maximizes the cumulative discounted reward at timestep t

Rt =
T−1∑
i=0

γ irt+i, (1)

where γ ∈ [0, 1) is a discount factor that weights the effect of
immediate and future rewards, and T is the terminal timestep.
With MDP algorithms, one learns an optimal control policy
based on a Q-value function, which quantifies the estimated
expected reward for the agents action in a particular state. The
Q-value function is given by

Qπ (s, a) = E[Rt | s, a, π] (2)

where E is the expected value operator. The function com-
putes an expected reward starting from state st , taking an
action at , and thereafter following policy π . The agent then
chooses the action that yields the maximum Q-value at
each timestep. Thus, the optimal Q-function, Q∗(s, a) =
maxπ Qπ (s, a) = maxπ E[Rt | s, a, π] provides the optimum
policy π∗ by selecting the action a which maximizes the Q-
value for the state s according to

π∗(s) = argmax
a

Q∗(s, a), ∀s ∈ S. (3)

Through the lens of dynamic programming, the Q-value for
state-action pairs is learned via the Bellman equations [34]

Qπ (st , at ) = E
[
rt + γQπ (st+1, π(st+1))

]
. (4)

In practice, the estimates for Qπ are updated with a learning
rate α as

Qπ (st , at )← Qπ (st , at )+ α(yt − Qπ (st , at )), (5)

where yt is the Temporal Difference (TD) target, which is
used to specify the target reward value based on previous
estimates. As an off-policy model, actions of the agent in
Q-learning are updated by maximizing Q-values over the
action using a greedy approach.

B. DEEP Q-LEARNING
Deep Q-learning is an improved version of classical rein-
forcement learning wherein the Q-value function is approx-
imated with a deep neural network, or Deep Q-Learning
Network (DQN) [35]. Deep RL algorithms lend themselves to
high-dimensional and complex systems, for which standard
RL approaches are ineffective at learning necessary features
for function approximation. Within the DQN framework, the
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Q-value function is approximated as Q(s, a; θ ) ≈ Q∗(s, a),
where θ are the neural network hyperparameters [37]. Con-
ventional DQNs take in the state of the environment as input,
estimate the Q-value by using a fully connected neural net-
work architecture to train the network, and then output an
action according to (3).

While many modifications to traditional Deep RL
algorithms exist, two novel techniques introduced by
Minh et al. [36] have been shown to significantly stabilize
learning in DQNs: experience replay and target network.
Experience replay is used to update the Q-network based
on past experiences, so as to mitigate the potential of harm-
ful correlations leading to diverging action values. At each
timestep, the DQN agent interacts with the environment,
obtains data (st , at , rt , st+1) and stores the data in memory
storeD. During training, mini-batches are sampled uniformly
from D, and the Q-network is updated according to a loss
function L

L(θ ) =E(s,a,r,s′)∼U (D)

[(
r + γ max

a′
Q(s′, a′; θ−)

− Q(s, a; θ )
)2]

, (6)

where θ− represents the parameters of the target neural net-
work and E is the expected value over the uniform distribu-
tion U (D) of replay memory D. A target network is further
employed to stabilize learning by designating two separate
networks in the DQN: the main network that approximates
theQ-function and the target network that computes the Tem-
poral Difference (TD) target update for the main network.
While the main network parameters θ are updated during
each iteration in training, the target network parameters θ−

are updated only after a user-specified number of timesteps.
The use of a target network allows for the utilization of a
Double Dueling DQN (DDQN), which extends the standard
Q-learning algorithm with a single estimator to one with two
estimators [38].

III. PROPOSED REINFORCEMENT LEARNING APPROACH
In the following section, the authors outline the co-
optimization approach to traffic design and signal control.
First, a description of the RL environment is offered by
formally defining the state-action space, and reward function.
Next, the authors propose a new extension of a MDP, which
formulates the co-optimization problem at hand in an RL
setting. Then, a directed graph model is presented, which is
used to determine the feasibility of vehicular flow directions.
Finally, the co-optimization framework and corresponding
assumptions are discussed.

A. ENVIRONMENT DEFINITION
The problem objective is to co-optimize the design of vehicu-
lar flow directions and control of traffic signals at one or mul-
tiple intersections such that the overall traffic performance
in the road network is maximized. For traffic performance,
one considers the number of vehicles that safely passing

through intersections and the congestion of vehicles in the
road network. To solve this traffic optimization problem, the
authors use a RL framework that is defined by the state space,
the action space, and a reward function. The state space S
represents the traffic state in the road network and the action
space A is a set of actions the agent may take at each time
step. The reward functionR, which drives the learning process
of the agent, quantifies the current traffic state. The goal
of the RL agent is to learn a policy that maximizes traffic
performance by observing the current state of the system and
choosing an action at each timestep.

1) STATE
The state space captures the information received during the
agent’s observation of the environment. Suppose there are m
intersections in the road network, where the intersection i is
composed of ni roads. The state of the environment is defined
by three variables: the head-car distance from intersection
of vehicles, the number of vehicles driving towards each
intersection, and the head-car turning intention. Formally, the
observed state at time t is given by the matrix st ∈ RN×3,
where N =

∑m
i=1 ni is the number of roads flowing into all

intersections, referred to as in-roads. Row j of the matrix,
where 1 ≤ j ≤ N , represents the observation of in-road j
and is stored as the tuple sjt = (d jt , ν

j
t , τ

j
t ), where d

j
t ∈ R

is the distance between the leading vehicle on in-road j and
the intersection, referred to as the head-car distance, νjt ∈ N
is the number of cars on road j and τ

j
t ∈ {−1, 0, 1} is the

head-car intention (left-turn, straight ahead or right-turn).
At each timestep 0 ≤ t ≤ T , the agent observes the current
state st and receives a reward based on this current state.

2) REWARD
The traffic performance is calculated based on a weighted
sum of two normalized criteria, where the weights are
assumed to be predetermined by a traffic authority. The
reward function R : S × A × S → R is used to quantify
the current traffic performance, where higher values indicate
a better traffic condition. The first criterion is a cumulative
vehicle throughput for all intersections in a road network. Let
ηit be the number of vehicles that pass through intersection
i during timestep t . The cumulative vehicle throughput is
defined as the sum of the number of vehicles passing through
all intersections per unit of time: Ft =

∑m
i=1 ηi. The second

criterion is cumulative queue length of vehicles’ per unit time
for all intersections. The queue length qjt of in-road j, where
1 ≤ j ≤ N , at time t is defined as the number of vehicles
waiting to be served by a traffic signal. The cumulative queue
length is then calculated by

Qt =
m∑
i=1

max
ni

qjt , (7)

where ni is the indices of in-roads to intersection i. Thus,
the cumulative queue length measures the sum of the worst,
or longest, queue length at each intersection. The reward rt at
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FIGURE 1. Examples of (a) T-junction, (b) four-legged intersection and
(c) five-legged intersection types.

FIGURE 2. Example of four traffic signal for (a) south road, (b) west road,
(c) north road and (d) east road, in a four-legged intersection (Figure 1b).
A dashed line indicates a restricted direction, while a solid line indicates
a non-restricted direction.

time t is calculated by using the weighted sum

rt = R(st , at , st+1) = wf Ft − wqQt , (8)

wherewf andwq are predetermined parameters for weighting
set by traffic authorities. The objective of the agent is to fol-
low a policy that maximizes this reward and thereby improve
traffic performance in the network.

3) ACTION
Given the vehicular flow direction design for a road network,
a centralized traffic control policy π is assumed to control the
traffic signal for all intersections. Each traffic signal can take
on a phase from a predetermined, finite set of phase patterns;
therefore, the agent is used to take phase-based actions. For
the road networks considered in this paper, it is assumed that a
traffic signal controls the flow of traffic for each road entering
the intersection. A phase is used to assign the permission
(green light) or restriction (red light) to a combination of
non-conflicting vehicular flow directions through an inter-
section. For example, in the four-legged intersection shown
in Figure 1b, there can be four signal phases as shown in
Figure 2. In general, an ni-legged intersection is controlled
by ni traffic signals with ni phase options. The goal of the
centralized traffic controller is to choose a signal phase for
each intersection at each timestep. For a road network with
m multi-legged intersections, the traffic signal controller is
used to decide on a combination of signal phases at =
(a1t , a

2
t , . . . , a

m
t ) for each intersection. Thus, at each time t ,

the total number of signal phase combinations is n1 × n2 ×
. . .× nm.

4) DESIGN
The vehicular flow direction design is defined by the vector
x ∈ {−1, 0, 1}N , where N is the number of roads to be

designed in the network, and -1, 0 and 1 represent one-
way clockwise, two-way and one-way counterclockwise flow
directions, respectively. The vehicular flow direction of a
road can be designed to have a one- or two-way direction,
for a total of three design options per road. Examples of
vehicular flow directions are shown in Figure 1. Consider the
design of vehicular flow directions for the roads in a road net-
work composed of N roads and mmulti-legged intersections,
where intersection i has ni roads. Since each road has three
design options (two one-way vehicular flow directions and
one two-way flow direction), there are 3N possible design
options for the network. However, not all design options are
feasible, since conflicts in vehicle flow may arise, especially,
as the size of the network grows. Further, note that the subset
of feasible signal phases also depends on the flow direction
on roads into intersections.Within the co-optimization frame-
work, the vehicular flow design acts as a component of the
state observation space.

B. MDP EXTENSION
The co-optimization of vehicular flow direction design and
traffic signal control is formulated as an extension of a con-
ventionalMDP, defined by the tuple {X , S,A,T ,R, γ }, where
X is the design space. In the proposed approach, a heuristic
search of the design space is integrated with at traditional
MDP to create a bi-level optimization framework, as illus-
trated in Figure 4. The action at ∈ A taken by the agent
dictates the traffic signal control policy π and this action
is taken based on both the state of the environment and the
vehicular flow design variable. Thus, the policy is redefined
as the function π : S × A × X → [0, 1], where π (at |st , x)
is used to compute the probability of taking action at given
current state st and design x. The vehicular flow design in a
road network governs the traffic controller’s interaction with
the environment through a transition probability function
T (st , at , st+1, x) = P(st+1|st , at , x). The transition function,
formally defined as T : S ×A× S ×X → [0, 1], dictates the
transition from one state to the next at each timestep. In this
way, the reward function R : S × A × S × X → R is also
dependent on the vehicular flow direction design, which is
given by rt = R(st , at , st+1, x).

The objective is to maximize the expected future reward R
by co-optimizing the vehicular flow direction design x and
traffic signal control policy π , with the optimal Q value

Q∗ = max
x,π

E [R(st , at , st+1) | s = s0, at = π (st , x), x] (9)

where s0 is the initial state. As before, the agent’s objective
is to learn a control policy π and design x that achieves this
maximum expected future reward, which is approximated by
the Q-value function in (2) and (4).

C. DIGRAPH MODEL FOR FEASIBLE DESIGN
CLASSIFICATION
The design of the vehicular flow directions for a road network
can be modeled by a directed graph G = (V ,E), with
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FIGURE 3. Directed graph representation of vehicular flow directions for
(a) T-junction and (b) four-legged intersection, where a dashed lines and
solid lines indicate restricted and permitted directions, respectively.

the vertex set V and the edge set E . In the model, vertices
represent roads in the network and edges represent vehicular
flow between roads. Specifically, edge eii′ ∈ E corresponds to
a vehicular flow direction from road vi to road vi′ . In this way,
the vehicular flow direction design for a road network can
be visualized as a directed graph, as shown in Figure 3. The
directed graph model allows for the classification of feasible
designs [39]. A road design is feasible if the injection roads
into the network are strongly connected. That is, if there is
a path between all pairs of vertices that represent an injec-
tion road. To determine whether injection roads are strongly
connected, the authors employ Kosaraju’s algorithm [33],
in which one uses depth-first search to recursively traverse
the directed graph to find strongly connected components.
The algorithm is run with time complexity O(|V | + |E|),
where |V | = m and |E| = m(m − 1) for a network of m
intersections, so the complexity of Kosaraju’s algorithm is
O(m2). In this way, a feasible set of vehicular flow directions
can be determined efficiently.

D. CO-OPTIMIZATION FRAMEWORK
The DQN approach to the aforementioned RL technique may
be extended to account for the co-optimization of design
and control as well. In addition to the traffic signal con-
troller inputs, the Q-value function is extended to account
for the design variables as additional inputs: Q(s, a, x; θ ) ≈
Q∗(s, a, x), with neural network parameters θ . As such, the
objective function is formulated as

max
x,θ

Eπ [Q(s, a, x; θ )|a = π (s, x)]. (10)

Following this formulation, the optimization of vehicular
flow direction design and traffic signal control are coupled.
The Q-value function is used to estimate the traffic control
performance for different designs, which is then used to
eliminate poor performing feasible designs until an optimal
design is achieved. Once a vehicular flow direction design
is fixed, the optimal value of the Q-value function Q∗ =
maxπ Qπ , yields an optimal control policy π∗(at | st , x) for
this optimal design. The combination of signal phases at for
multiple intersections is decided by obtaining the maximum
Q-value as at ∈ argmaxat Q

∗(st , at , x).

The co-optimization is done by using a co-learning
approach, in which, one trains the Q-value function to
simultaneously optimize the vehicular flow direction design
and traffic signal controller. In the approach, first, the
Q-value function is approximated by using a neural network
Q(s, a, x; θ ), where the parameters of the neural network
θ are randomly initialized. Then, an iterative optimization
process follows, for updating to the Q-value function. The
computational framework is illustrated in the flowchart of
Figure 4 and outlined in Algorithm 1.

Algorithm 1 Pseudocode for Co-Optimization of Vehicular
Flow Direction Design and Traffic Signal Control
1: Input Sample size N , batch size d , exploration rate ϵ,

number of timesteps T , update frequencyM
2: Initialize Replay memory D
3: InitializeMain and target network weights θ and θ−

4: Initialize Feasible design set X by Kosaraju’s algorithm
5: while not converge do
6: Generate sample of N feasible designs from U (X )
7: for i = 1, . . . ,N do
8: Initialize Design x ∼ U (X )
9: for t = 1, . . . ,T do

10: Take action at = argmaxaQ
π (st , a, x; θ)

with probability 1− ϵ

11: Store tuple (st , at , rt , st+1, x) in replay
memory D

12: Sample D tuples randomly from D
13: Set yt = rt + γ maxa Qπ (st+1, at+1, x; θ )
14: Perform SGD to update θ

15: Set θ− = θ everyM steps
16: end for
17: end for
18: Eliminate bottom k designs from X based Q-value

estimation
19: Set N = N · δ
20: Check whether converged to one design option
21: end while

Algorithm 1 is begun by generating all possible designs and
determining a set of feasible designs according to the directed
graph model outlined in Line 4. Following these initialization
steps, the learning process is started by generating a sample of
N designs from a uniform distribution of all feasible designs
in Line 6. At this point, the RL training process to learn an
optimal policy π is begun in Lines 5-21. By choosing a new
design x ∼ U (X ) at the beginning of each training iteration
in Line 12, the agent attempts to learn a control policy that is
optimal for all feasible design candidates. At each timestep,
the centralized traffic signal controller decides on a combi-
nation of signal phases at according to the current control
policy π(at |st , x) such that at ∈ argmaxat Q(st , at , x) (Line
10). The agent receives an immediate traffic performance
reward rt and observes the resulting traffic state st+1 in Line
11. After completing one training iteration, a set of traffic
data for vehicular flow direction design x is collected as
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{s0, a0, r0, s1 . . . sT−1, aT−1, rT−1, sT , x}. In the next step,
theQ-value function is updated with the collected traffic data
using experience replay in Line 13. A mini-batch of D traffic
datapoints is uniformly drawn at random from the stored
traffic data D. Then, the stochastic gradient-decent (SGD)
method is used in Line 14 to update the Q-value function
parameters θ by minimizing the following loss function as

L(θ ) =E(s,a,r,s′)∼U (D)

[(
r + γ max

a′
Q(s′, a′, x; θ−)

− Q(s, a, x; θ )
)2]

, (11)

where θ− is the neural network parameters at the previous
training iteration [37]. During the procedure, the Q-value
function is updated based on data from a diversified set of
feasible vehicular flow direction designs. As such, the agent
learns a policy π that is optimal for all designs in the current
feasible set.

Next, the updated Q-value function is used to approximate
the traffic performance on the current set of feasible designs.
The estimation of traffic performance for a single design x
is calculated by the summation of the Q-values for a set of
traffic states, given the current control policy

Qx =
∑
sx

Q(s, a, x; θ |a = π (s, x)), (12)

where sx is a randomly generated set of traffic states that cor-
responds to design x. Once a full training cycle is complete,
the Q-value estimation is used to quantify the performance
of the sample of vehicular flow direction designs. Based on
this estimation, a portion of the design alternatives with the
lowest estimated traffic performance is removed from further
consideration in Line 18. This portion is dictated by an elim-
ination rate k ∈ (0, 1), which dictates the number of designs
that are eliminated from the optimization. The elimination
rate is determined via experimentation to balance the speed
of the convergence and quality of the solution obtained.

The final step is to check whether there is only a sin-
gle vehicular flow direction design remaining. If not, the
approach is used to explore the remaining design candidates
by sampling another round of design and continuing to train
the signal control policy. This process is repeated until only
one candidate design remains. Thereafter, the traffic signal
controller is trained by using that design until the agent
converges to an optimal control policy.

The computational complexity of the proposed approach
is dependent on the number of timesteps T in one simulation,
the sample size of designs N and the size of the action space
|A|, which is a function of the number of intersections m.
Namely, in a network with m L-legged intersections, one
has |A| = Lm. To analyze the complexity of Algorithm 1,
the authors consider consider the number of function calls
performed in one training iteration. A function call is defined
as an instance when the agent calls the reward function or
Q-values function [40], [41]. As a result, if one neglects the
one-time cost of Kosaraju’s algorithm in Line 4 and neural

network parameter updates via SGD, the worst case cost at
time t is Lm. Overall, in a network with sample size N and T
timesteps, the algorithm requiresN ·T ·Lm orO(Lm) function
calls per iteration. The authors explore ways to mitigate this
complexity in Section III-G.

E. NEURAL NETWORK ARCHITECTURE
In the proposed co-optimization framework, the DQN plays
a similar role as in traditional RL-based traffic control algo-
rithms. The DQN outputs an estimated Q-value for each
action a ∈ A, denoted by Q(s, a, x; θ ), which approximates
the value of taking action a, given the current state of the
environment. The agent uses this estimation to choose an
action a ∈ argmaxat Q(s, a, x), which maximizes the future
expected reward. The input of the DQN is extended to include
the design variable x in addition to the current state of the
environment s. As such, the input layer is a vector of size
3N + K , where K is the number of roads to design in the
network. The output is then a vector of size

∏m
i=1 ni, assuming

that intersection i has ni possible phase options. The hidden
layers of the DQN are fully connected layers with Rectified
Linear Unit (ReLU) activation functions, the size of which
are determined via a grid search of hyperparameters, outlined
in Section III-F2. A target network is employed to stabilize
training, as outlined in Section II-B. This network has the
same architecture as the main network, shown in Figure 5;
however, it takes in previous state s′ and design x, and outputs
Q(s′, a′, x; θ−) to evaluate successive action a′. In the pro-
posed technique, the authors also make use of DDQN and use
the target network estimation to evaluate the action selected
by the main network, by updated the TD target according
to (5).

F. PARAMETER SELECTION EXPERIMENTS
The proposed co-optimization approach is dependent on a
number of parameters that impacts its performance and the
stability of the learning process. In particular, there are two
sets of parameters that impact algorithm performance: design
sampling parameters and DQN hyperparameters. The former
influences how designs are sampled from the feasible design
set, and the latter effects the approximation of Q-values in
the deep neural network. Both sets of parameters are deter-
mined based on the results of a grid search of the parameter
space, as outlined below. For both experiments, the impact
on stability, measured by the standard deviation of the agents
reward at each training episode, traffic performance, which
is quantified by the average episode reward received by the
agent, is recorded.

1) DESIGN SAMPLING PARAMETERS
Design sampling parameters govern the manner with which
designs are chosen from the feasible design set at the begin-
ning of each training iteration. The following four design
sampling parameters are tested for their impact on learning
stability and performance: sample size N , elimination rate k ,
decreasing factor δ, and distribution of designs (weighted or
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FIGURE 4. RL-based flowchart for co-optimization of vehicular flow direction design and traffic signal control. Each iteration is started by
sampling a set of feasible designs (Steps 1-3), then the control policy π is trained by using a standard Deep RL approach with each design
in the sample (Steps 4-6). Finally, poor performing designs, as measured by Q-value approximations, are eliminated. The process is
repeated until the algorithm converges to a single feasible design.

FIGURE 5. Deep Q-Network architecture with two fully connected hidden
layers used in the implementation of the Deep RL approach. The network
takes in state s and design x and outputs the Q-values associated with
taking each action a ∈ A.

uniform). The sample size N ∈ Z dictates how many designs
are sampled from the feasible design set X at Step 6 in Algo-
rithm 1. In all cases, the sample size N exceeds the number
of feasible designs, thus, the traffic controller agent trains on
the same design for multiple iterations. At the beginning of
each training episode, a feasible design is sampled from a
distribution of candidate designs, which dictates the design
of vehicular flow directions in the agent’s environment for all
timesteps in the ensuing episode (Step 8 in Algorithm 1). The
elimination rate k ∈ (0, 1) determines the ratio of designs that
are eliminated from consideration after each training cycle.
Poor performing designs, as determined by the cumulative
estimatedQ-values of the previous iteration according to (12),
are eliminated from the candidate design set at the end of each
training cycle until one design remains. As such, the elimi-
nation rate directly impacts the speed of design convergence
in the proposed algorithm. The decreasing factor δ ∈ (0, 1],
governs the update to the sample size made after each training
cycle in Step 19 of Algorithm 1. The methodology behind
the decreasing factor δ is that the sample size of feasible
designs should decrease with the number of feasible candi-

date designs. Finally, the distribution used in the sampling
dictates how designs are sampled from the feasible candidate
set X . A uniform sampling distribution selects design xi with
equal probability pi = 1/|X |, while a weighting distribution
selects design x with probability

pi =
Ri∑
xj∈X Rj

, (13)

where Ri is the average reward obtained with design xi dur-
ing the previous training. Defined in this way, a weighted
sampling will sample better performing designs with higher
probability.

2) DQN HYPERPARAMETERS
DeepQ-learning approaches are sensitive to the tuning of var-
ious hyperparameters that dictate the structure of the neural
network and its ability to learn features during training. Such
parameters include the quantity and size of layers in the net-
work, the learning rate α, the ϵ decay rate, experience replay
buffer length, and batch size M . A combination of these five
hyperparameters were chosen through experimentation, for
use with each application network through a grid search of the
parameter space. The standard deviation of episode rewards
during training and the average episode reward were used as
metrics of comparison to quantify the impact of each hyper-
parameter on learning stability and performance. Results and
analysis from hyperparameter experimentation are presented
in Section IV-A.

G. MODEL ASSUMPTIONS
While the proposed approach is applicable to general road
networks, since the design and action space scale exponen-
tially to the number of roads and intersections, respectively,
reductions on these spaces must be imposed to allow for
application to larger road networks. Furthermore, the follow-
ing assumptions were made during the implementation of the
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FIGURE 6. Signal synchronization scheme and road importance measures
on 12-node grid network. Signals are placed in clusters
S = {(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)}, where signals in the same
cluster share phase patterns at each timestep. Road betweenness
centrality are calculated according to (14) based on directed graph model.

model: (i) A subset of roads are designated as injection roads,
which are used to inject vehicles into the road network during
simulation. Injection roads are fixed to be two-way roads by
which cars enter and exit the road network. The injection rate
for each injection roads can be modified to simulate rush hour
or non-rush hour scenarios; (ii) A vehicular flow direction
design is feasible if a vehicle that enters from any injection
road can exit from all other roads, including the road from
which the vehicle injects; (iii) One-way roads are assumed to
have a single lane, while bi-directional roads have one lane
for each direction; (iv) A centralized traffic controller is used
to control signal phases for all intersections; (v) Sensors (e.g.,
inductive-loop traffic detectors) located at each intersection
are used to collect traffic data such as the number of vehicles
passing through the intersection and distance of the lead vehi-
cle from the intersection; and (vi) drivers’ turning intentions
are known before arriving at an intersection.

To increase the applicability of the approach and address
the scalability of the model, two simplifications are made.
The use of traffic signal synchronization is used to control
traffic signals in clusters wherein all signals in one cluster
follow the same phase pattern. This is a popular approach in
the literature, as traffic signal synchronization may be used to
improve the flow of traffic along heavily traveled routes [42].
For networks composed of more than 4 intersections, a signal
synchronization scheme of k clusters is fixed, as shown in
Figure 6 for a 12-node network. In this example, 4 clusters of
3 traffic signals is chosen to reduce the sufficiently reduce
the action space to 44 = 256 to ensure the problem is
computationally feasible. In road networks with more diverse
intersection types, the dimension of the action space becomes
|A| = 5k

i=1ni, where ni is the number of incoming roads
to intersections in cluster i. Continuing the discussion on

computational complexity from Section III-D, by usingM ≪
m signal clusters in a network with L-legged intersections,
one reduces the number of function calls per timestep to LM .
Additionally, the model may be generalized to consider the
design of a subset internal roads in the network. This could
allow practitioners to fix the design of certain roads in the
network, while including a smaller set of roads in the design
space, possibly permitting the redesign of particular roads in a
network as in reference [43]. For implementation, roads in the
design space are decided by the importance of each internal
road. By using the directed graph model of road networks
presented in Section III-C, the importance of a road can be
measured by calculating the betweenness centrality of each
node

c(u) =
∑
s,t ̸=u

nst (u)
Nst

, (14)

where nst (u) is the number of shortest paths from node s to
node t that pass through node u, and Nst is the total number
of shortest paths from s to t [44]. The betweenness centrality
of a road is a measure of the importance of a road as the
likelihood of a vehicle driving along a particular road based
on network topology. By using this metric, only a subset of
roads is chosen as the most important and used as the design
space in the co-optimization framework.

IV. APPLICATION & RESULTS
The proposed RL-based approach is implemented by using
a traffic simulation tool OpenTrafficLab [45], which is
built in MATLABR [46] by using the Automated Driving
ToolboxTM [47]. To evaluate performance, the authors imple-
ment the model on two road network sizes with two different
traffic scenarios. In the first application case, the model is
implemented on a grid-shaped road network with 4 inter-
sections, as shown in Figure 8a, as a proof of concept and
to demonstrate the inner-workings of the algorithm. In the
next example, the authors consider a road network composed
of twelve-intersections, as shown in 8b, to demonstrate the
scalability of the problem and application to complex road
networks. Additionally, the authors apply the approach in
two traffic scenarios: (1) symmetric high traffic flow from all
injection roads with a 4-node network, shown in Figure 8a,
meant to simulate rush-hour traffic across the road network,
and (2) asymmetric high traffic flow from a subset of injection
roads with a 12-node network, meant to simulate concen-
trated rush-hour traffic. In each case, the co-optimization
approach is compared to three control agents with random
designs, which are trained using the conventional RL-based
for traffic signal optimization. Through these two examples,
one can quantify the usefulness of the proposed approach and
exhibit the interdependence of signal control and vehicular
flow direction design in road networks.

The co-optimization agent undergoes offline training to
learn an optimal design and control policy by interacting with
the traffic environment. The traffic environment is defined by
the road network topology and a vehicle traffic simulation,
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FIGURE 7. Four non-conflicting traffic signal phases for a four-legged
intersection: (a) straight and right turn from North and South; (b) straight
and right turn from West and East; (c) left turn from North and South, and
right turn from West and East; and (d) left turn from West and East, and
right turn from North and South.

which imitates real-world traffic scenarios. During the sim-
ulation, vehicles enter the road network from injection roads
according to a Poisson distribution. As a vehicle approaches
an intersection, it is allowed to randomly choose one of the
following actions: (1) turn right, (2) turn left or (3) continue
straight, each with equal probability. A vehicle that enters the
network from an injection road acts in this manner until it
exits the road network and leaves the simulation. The reward
function is computed as the weighted sum of traffic perfor-
mance criteria according to (8) at each timestep. After the
algorithm converges to an optimal design, the signal control
policy is further optimized with the design fixed. At each
training iteration, the traffic performance reward is recorded
to quantify learning progress.

A. PARAMETER SELECTION
In order to effectively train the deep reinforcement learn-
ing agent within the co-optimization framework, the authors
investigate the impact on design sampling and DQN parame-
ters on offline training, as outlined in Section III-F. To begin,
a set of DQN hyperparameters is fixed and the offline training
scheme in Algorithm 1 is run with different design sam-
pling parameters until the algorithm converges to a single
design. Next, by using this set of design sampling parameters,
the DQN hyperparameter space on the same algorithm is
searched. The following investigation was performed sepa-
rately for the 4- and 12-node road network typologies, and the
parameters are outlined in Table 1. The authors search all pos-
sible permutations of the parameters. Thus, the experiment
consisted of 24 design sampling parameter sets and 16 DQN
hyperparameter sets for both 4- and 12-node road networks.
Each set of parameters is evaluated based on its offline traffic
performance, as measured by the reward function, and the
stability of learning, as measured by the standard deviation
of the agent’s offline learning curve.

Design sampling parameters directly impact both the speed
of convergence and the quality of the design determined in
the co-optimization framework. For example, a high elimi-
nation rate will lead to faster convergence but at the cost of
lower exploration, which impacts the quality of the converged
design. From the grid search outlined above, the authors
found the optimal set of design sampling parameters for the

FIGURE 8. Road Network Scenarios used during implementation, where
bold and thin arrows indicate rush-hour and non-rush-hour traffic flow,
respectively, and each color shade of intersections corresponds to
clusters of traffic signals whose phase is synchronized: (a) Four-Node
Road Network with symmetric injection rates across injection roads and
four independent traffic signal phases; (b) Twelve-Node Road Network
with asymmetric injection rates and four signal phase clusters.

TABLE 1. Design sampling and Deep Q-Network parameter space for grid
search on m = 4, 12-node road networks. Design sampling parameters
are sample size N , elimination rate k , sampling distribution, and
descending N rate δ. DQN hyperparameters are neural network layers
architecture, learning rate α, decay rate ϵ and mini-batch size D.

4-node road network to beN = 1000, k = 0.75, dist = W (X )
and δ = 0.75, and N = 5000, k = 0.75, dist = W (X ) and
δ = 0.8 for the 12-node road network. The high sampling
size N allows the agent to explore a large set of designs,
while a high elimination rate and low descending N rate
eliminates poor designs more quickly, allowing for faster and
more stable convergence to high-quality designs.
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By using the aforementioned optimal design sampling
parameters, the authors evaluate the impact of DQN hyper-
parameter sets. For the 4-node intersection, the authors found
the optimal set of DQN parameters to be a 2-layer neural
network with 512 nodes in layer 1 and 400 nodes in layer 2,
learning rate α = 5 × 10−5, decay rate ϵ = 10−3 and
mini-batch size D = 256. Similarly, for the 12-node road
network these parameters were 512 and 400 node layers,
α = 5 × 10−5, ϵ = 10−3 and D = 512. Due to the
randomness of the vehicle scenario, it was found that a lower
learning rate produced more stable learning from the agent,
while a higher ϵ-decay rate lead to more exploration of the
action space, producing more effective control policies dur-
ing the co-optimization procedure. In addition to the DQN
hyperparameters and design sampling parameters determined
via experimentation, the deep RL approach is implemented
with a discount factor γ = 0.99 and exploration rate ϵ = 0.9.

B. FOUR-NODE ROAD NETWORK
The design-control co-optimization agent is trained in the
four-node road network environment (Figure 8) following
the proposed approach outlined in Section III by using the set
of DQN parameters and design sampling parameters deter-
mined in Section IV-A. At each time step, the centralized
traffic signal controller is used to choose a signal phase (or
action) for each of the four intersections from the set of
non-conflicting signal phases shown in Figure 7. These signal
phases comprise the action space for the signal control pol-
icy, which has size 4m for m independently operating traffic
signals. In the 4 node road network, the action space has
size 44 = 256 at each time step t . At the beginning of the
algorithm, all possible vehicular flow designs for the internal
roads are generated, of which there are 3M for a road network
with M internal roads. Thereafter, the set of feasible designs
is obtained through the directed-graph model outlined in
Section III-C. In the four-node road network, the initial design
space is comprised of 34 = 81 designs, 31 of which are
feasible. These 31 feasible designs comprise the initial design
sampling space in the co-optimization algorithm.

1) OFFLINE TRAINING
The learning curve for the offline training of the
co-optimization agent is presented in Figure 10a. The agent
converged to a single feasible design after the first 5000 iter-
ations, upon which the optimal design was fixed and the
control optimization continued for another 4000 iterations.
The traffic performance remained stagnant during the design
optimization, likely due to the complex dynamics of the
traffic environment and the symmetric injection rates. The
training curve indicates that the agent struggled to improve
traffic performance while optimizing control and design
simultaneously in the first 5000 iterations; however, once
the design converged the agent effectively improved traffic
conditions in the continuation of the control optimization.
It appears the agent was able to effectively use its past
experiences to quickly improve the control policy after the

FIGURE 9. Design of 4-node network for co-optimization agents in online
simulation comparison.

FIGURE 10. Reward function at each iteration during offline training of
co-optimization agents: (a) four-node road network with symmetric
injection rates and (b) twelve-node road network with asymmetric
injection rates.

design optimization terminates, eliminating the overhead of
learning a control policy from scratch. To further explore
the effectiveness of this approach, the authors compare these
results to conventional RL-based signal control optimization
agents.

2) ONLINE SIMULATION
To display the effectiveness of the proposed co-optimization
approach, the authors train three traffic control agents by
using a conventional RL-based approach with a randomly
generated, fixed design, and compare the performance of
the agents in an online traffic environment simulation. The
control-only agents begin with a random feasible design,
and train for 4000 iterations in an offline environment. The
vehicular flow direction designs are presented in Figure 9.
Next, a random vehicular flow pattern is initialized and each
agents acts in the environment for 2000 time steps, with the
traffic performance measured at each time step. To measure
traffic performance, the authors record the cumulative vehic-
ular throughput and cumulative queue length; the two metrics
which define the reward function. To statistically analyze the
results, the experiment is run by using 20 different randomly
generated traffic scenarios. A plot of the results from one
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FIGURE 11. (a) Cumulative queue length and (b) cumulative vehicular
throughput at each time step during online simulation of co-optimization
agent and three control agents in four-node road network scenario.

TABLE 2. Mean and standard deviation of cumulative vehicular
throughput Fput and vehicle queue length Qlen through n = 20 online
traffic simulations of co-optimization and control-only agents.

online simulation is presented in Figure 11, and the averages
across simulations are presented in Table 2.
It is observed that the co-optimization agent outperforms

all three control-only agents on average, producing a higher
cumulative vehicular throughput and lower queue length.
This corresponds to more vehicles passing through inter-
sections and less waiting time for vehicles in the network.
Based on the averages and standard deviations summarized
in Table 2, one can accept this result with 95% confidence,
indicating that co-optimizing design and control produces
a signal control policy that is more effective at improving
traffic conditions compared to the conventional control-only
approach.

C. TWELVE-NODE ROAD NETWORK
To exhibit the scalability of the approach, the authors extend
the approach to a more complex road network of twelve inter-
sections, displayed in Figure 8b. In addition to the increased
size of the road network topology, the injection rates are
asymmetric, with incoming traffic flow concentrated in the
top left of the grid system. In order to scale the approach
to this larger road network, two techniques are taken to
reduce the action and design space size. The first is a signal
clustering scheme, summarized in Figure 6, which reduces
the action space to 44 = 256 at each time step for the
centralized traffic controller. In the second technique, one
reduces the design space by selecting a subset of internal
roads to design, which is summarized in Section III-G. With

FIGURE 12. Design of 12-node network for co-optimization agents in
online simulation comparison.

the reduced action space, the agent decides on an optimal
design for 5 internal roads, while the other 12 internal roads
are fixed to be bi-directional. Therefore, the design space is
composed of 35 = 243 possible designs, 181 of which are
feasible. At the beginning of the algorithm, these 181 feasible
designs comprise the design space which the agent searches
throughout the co-optimization framework.

1) OFFLINE TRAINING
Similar to the implementation of the four-node network, the
co-optimization agent is trained in an offline traffic envi-
ronment by using the empirically determined parameters in
Section IV-A. The offline learning curve for the agent in
the twelve node environment is shown in Figure 10b. With
a larger design space to search, the agent converged to a
single design after 8000 iterations, and thereafter continued
to optimize the control policy for another 6000 iterations.
During the design and control optimization, the agent was
able to effectively improve its reward through interactions
with the environment. It appears that the asymmetry in the
injection roads improved the agent’s ability to learn while
searching the feasible design space. After the optimal design
was fixed, the agent continued to improve traffic performance
while converging to an optimal control policy.

2) ONLINE SIMULATION
The performance of the co-optimization agent is compared
to the conventional RL-based control only approach in the
twelve-intersection road network scenario. As before, three
feasible designs are selected from a uniform distribution and
three control agents are trained for 6000 iterations using the
same DQN hyperparamters with a fixed design, shown in
Figure 12. A random vehicular flow pattern is initialized and
each agent interacts with the environment for 2000 time steps.
The traffic information is measured at each time step and is
summarized in Figure 13. This process is repeated 20 times
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FIGURE 13. (a) Cumulative queue length and (b) cumulative vehicular
throughput at each time step during online simulation of co-optimization
agent and three control agents in twelve-node road network scenario.

and the mean and standard deviation of traffic performance
over 20 simulations is summarized in Table 2.

Again, the co-optimization technique outperforms the
three control-only agents, allowing more vehicles to pass
through intersections and reducing vehicle waiting times at
intersections. From the statistics provided in Table 2, the
authors accept the true mean with 95% confidence, indicating
that the co-optimization framework is effective in improv-
ing traffic conditions compared to conventional control-only
approaches. Furthermore, the proposed technique is capable
of capturing the dynamics of larger and more complex road
networks. It should be noted that due to the increased size of
the design space, the training process was slow when run on a
high performance computing cluster, indicating that reducing
computational cost is key to scaling up the approach to larger
networks.

V. CONCLUSION
The goal of any intelligent transportation system is to improve
traffic conditions in a road network and effectively capture the
complex dynamics of urban transportation systems. To that
end, the goal of the present work is to propose a novel
RL-based approach to road network management successful
at this task. The authors present a technique, in which the
design of vehicular flow directions is integrated into the
conventional RL-based traffic signal control problem. In the
approach, other methods such as a directed graph model are
leveraged to determine design feasibility, a centrality mea-
sure to quantify road importance, and a set of reasonable
measures to reduce design and action space size. At a high
level, this approach is an extension of the deep reinforcement
learning framework to explore design options via random
search, optimizing signal control while eliminating feasible
designs based on performance. After a sufficient number of
training iterations, the algorithm is found to converge to a
best combination of vehicular flow direction design and a
corresponding signal control policy.

The proposed approach is demonstrated in two problem
instances: a four-node grid network with symmetric vehicle
injection, and a twelve-node grid network with asymmetric
vehicle injection. These applications are used to illustrate
the algorithm’s ability to optimize vehicular flow design for

multiple roads and to learn an effective control policy imple-
mented by a centralized traffic controller. In each instance,
the design-control co-optimization approach is compared to
several RL-based control techniques in an online traffic simu-
lation. When acting in this environment, the co-optimization
method is found to achieve better traffic performance than the
conventional control approaches. This comparison not only
illustrates the ability of the present technique to capture the
complex dynamics of road networks; but further displays the
interdependence on vehicular flow design and signal control;
the results indicate that the simultaneous optimization of
design and control produce a policy better equipped to reduce
traffic congestion.

The present data-driven approach has many advantages.
Compared to model-based approaches, the problem is easy
to generalize to different road network topologies and traf-
fic scenarios. For example, the approach can be modified
to design a specified subset of roads, or to incorporate the
synchronization of traffic signals. Although the authors were
able to make realistic assumptions to scale the approach
to mid-scale networks, the scalability of the approach is
one potential limitation. As the role of a centralized traffic
controller scales the problem exponentially with the num-
ber of independent traffic signals, further modifications to
the approach, such as the implementation of a decentralized
traffic controller, may be needed to scale the network to
mega-scale networks present in the real-world. Nonetheless,
the present co-optimization framework sheds light on the
interdependence of the design and control of road systems,
and effectively reduces traffic congestion in urban road net-
works.
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