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ABSTRACT In recent years, many studies have proposed seizure detection algorithms, but most of them
require high computing resources and a large amount of memory, which are difficult to implement in
wearable devices. This paper proposes a seizure detection algorithm that uses a small number of features to
reduce the memory requirements of the algorithm. During feature extraction, this paper proposes an entropy
estimation method that uses bitwise operations instead of logarithmic operations to reduce the algorithm’s
demand for computing resources. The experimental results show that the computing time can be reduced by
about 81.58%. The seizure detection algorithm in this paper is implemented in an ultra-low power embedded
system and performs 7 classification tasks in the Bonn data set to verify the performance of the algorithm. The
average classification performance is: Accuracy (97.13%), Specificity (97.57%) and Sensitivity (98.42%).
Compared with previous studies, the algorithm of this paper has comparable classification performance, but
the proposed algorithm only needs 0.23 seconds from feature extraction to classification result, to the best
of our knowledge, which is the seizure detection algorithm with the least computing time currently applied

to wearable devices.

INDEX TERMS Electroencephalography, entropy, epilepsy, real-time system, seizure detection.

I. INTRODUCTION
Epilepsy is the second most common neurological disorder
in the world. About 50 million people worldwide suffer
from epilepsy and 2.4 million people are diagnosed with
epilepsy every year. About 80% of the patients live in low-
and middle-income countries [1]. During an epileptic seizure,
the abnormal discharge of brain cells causes the patient to
have symptoms such as convulsions, fainting, and loss of
consciousness. The occurrence of epilepsy in daily life may
not only cause physical harm to the patient, but also more
likely to have psychological problems in the long run [2].
Electroencephalography (EEG) is a method of recording
electrical activity in the brain through electrodes. The tra-
ditional epilepsy diagnosis method for neurologists is to
visually analyze the EEG to determine whether there are
epilepsy symptoms. However, the accuracy of the traditional
detection method is affected by the ability and experience
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of the examiner. Manual long-term EEG analysis is very
important. It is cumbersome and time-consuming, which will
lead to delayed diagnosis results and deterioration of the
condition. Therefore, it is necessary to develop a seizure
detection system to increase the efficiency and accuracy of
diagnosis. Early treatment to reduce the mortality rate caused
by sudden unexpected death in epilepsy (SUDEP) [3].

In the last decade, seizure detection has been regarded as
a classification problem, and many related technologies have
been proposed. Those methods can be roughly divided into
two types: typical machine learning and deep learning. The
algorithm based on typical machine learning usually includes
data preprocessing, feature extraction, screening, classifiers,
etc., and deep learning algorithms mainly use a large amount
of data to make the model converge for classification.

The features used in typical machine learning algorithms
can be divided into four categories [4]: 1. Time domain:
statistical analysis (average, median, standard deviation, etc.),
Hjorth parameter, EEG cross-correlation, principal compo-
nent analysis (PCA); 2. Frequency domain: Fast Fourier
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FIGURE 1. The architecture diagram of the proposed algorithm.

Transform (FFT), power spectral density (PSD); 3. Time-
frequency domain: discrete wavelet transform (DWT), time
spectrum (spectrogram), empirical mode decomposition
(EMD); 4. Nonlinear: entropy.

The most commonly used model based on deep learning
algorithms is Convolutional Neural Network (CNN). For
example: [5] uses a 13-layer one-dimensional convolutional
network to analyze the original EEG signal, [6] uses the time
spectrum and VGG16 [7], based on transfer learning, tunes
the model. [8] used multi-scale convolutional neural networks
to analyze raw EEG signals at different time scales.

Generally, the algorithm based on deep learning has better
accuracy, but it requires a large amount of memory and high
computational complexity [9]. In this case, the algorithm
is only suitable for environments with high computational
performance, and it is difficult to be implemented in wearable
devices or battery-powered mobile devices. However, most
epilepsy patients live in low- and middle-income countries,
and algorithms that require high computing performance are
difficult to implement for those countries.

To implement an effective seizure detection algorithm in
low computing resource environment, this paper proposes
the use of Local Binary Pattern Mean Absolute Devia-
tion (LBPMAD) [9], entropy, variance of local entropy and
logistic regression. It is noted that the proposed method
for estimating entropy is very powerful in low computing
resource environment. Compared with previous algorithms
based on typical machine learning, the proposed algorithm
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has two advantages: 1. very few features; 2. feature extrac-
tion using only basic arithmetic operations (addition, sub-
traction, multiplication and division) and bitwise operations.
It is more suitable for low-cost and low-power wearable
devices.

Il. METHODOLOGY

Algorithm proposed in this paper is shown in Fig. 1, it can
be divided into three parts: preprocessing, feature extraction
and classification. Previous study has shown that the active
frequency band of epileptic seizures is mainly 3-30 Hz [10].
Thus, during preprocessing, we use a band-pass filter of
0.5-40 Hz to filter out signals outside the epileptic activity
band. In the feature extraction part, we extract three features:
the mean absolute deviation of the local binary pattern, the
entropy, and the variation of the local entropy. Based on the
data of the training set, we obtain the normalized standard
deviation and average value of each feature through (1) as
the input to the classifier.

fea[ure — Mfeature

Ofeature

Sfeaturenorm = 1)
where feature, ., the normalized feature, (feqnre is the mean
of the representative feature, and ofzazre is the standard devi-
ation of the representative feature. Finally, the normalized
features are conducted into a third-order logistic regression,
we could conclude the feature generated by the current data
is or is not epilepsy.
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A. DATASET
This paper uses the public dataset provided by Bonn Univer-
sity [11] to evaluate the performance of the algorithm. The
Bonn dataset is one of the most commonly used datasets for
evaluating the performance of seizure detection algorithms.
There are two main reasons for choosing the Bonn Dataset.
First, the Bonn dataset contained different EEG states of
healthy subjects and epileptic patients, which allowed the
performance of the algorithm can be verified under different
conditions. Second, the EEG signals in the Bonn Dataset are
segmented EEG data., so that the bias resulted from different
data segmentation approaches can be eliminated. The Bonn
dataset has a total of 500 EEG records, each of which is
23.6 seconds long and is divided into five sets from A to E.

Sets A and B signals were collected from five healthy
awake subjects, with eyes open for set A and eyes closed
for set B. Sets C, D and E are collected from five epilepsy
patients. Sets C and D are pre-epileptic data (inter-ictal);
set D measures the epileptogenic zone; set C measures the
hippocampal formation of the opposite hemisphere of brain
of the epileptic area; and set E is the brain wave signal during
epileptic seizures.

The Bonn dataset is derived by a 12-bit digital-to-analog
converter sampled at 173.61 Hz for EEG measurements.

B. LOCAL BINARY PATTERN MEAN ABSOLUTE DEVIATION
YAZID et al. used the local binary pattern (LBP) [12] and the
mean absolute deviation [13], [14], [15] to propose the LBP-
MAD simple feature extraction method [9], which combines
the LBP code selection method with the local average value.
Combined with the mean absolute deviation, the selection of
LBP code and local average value are calculated.

LBPMAD is calculated through (2), in which f(x, i, P,
step) represents the regional average value, x is the EEG
signal, i is the current calculated position, P is the number
of data points required for the calculation of LBPMAD, and
step represents the spacing of each data point.

P

1 7
LBPMADi] = — Zp Ix [i + r x step]
r=—3
—f (x,1, P, step)|
P
1 7
and f (x,i, P, step) = —— Z x[i+r xstep] (2)

P+1

)

When step is equal to 2 and P is equal to 8, the LBPMAD

of the EEG is calculated with the average value as the feature

and be normalized through (1). After normalization, draw the

box-and-whisker plot of each category of the Bonn data set as

Fig. 2 We can see that LBPMAD can effectively distinguish
brain waves in general and those during epileptic seizures.

C. ENTROPY
Entropy is used to evaluate the degree of data dispersion.
In general, the higher the entropy value, the more scattered
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FIGURE 2. Box-and-whisker plot of LBPMAD for each category of the
Bonn dataset.

and unpredictable the data is. On the contrary, the lower the
entropy value is, the more concentrated the data is. Many
previous studies have used entropy as a feature of seizure
detection algorithms [16], [17], [18], [19], [20], Shannon
entropy can be calculated through (3) [18].

Entropy = — > " p(x) log, p(x) 3)

xeX

where X represents the range of the time signal and p (x)
represents the appearing probability of the element x.

Observing (3), one sees that a large number of floating-
point and logarithmic operations are required to calcu-
late entropy. Therefore, it is difficult to the realization of
low-performance environments such as wearable devices or
battery-powered mobile devices. For this reason, this paper
proposes a fast entropy estimation method. The method
reduces the computing resources required to calculate entropy
as following:

According to (3), one expands p (x) to get (4).

n n
Entropy = — > p(x)logyp (x) = — D | ﬁ" log, NX 4)

xeX xeX

where n, is the number of times the element x appears, and
N is the total number of measurement points.

Entropy = —(.%; ny Llogz%J) X ]E\/ 5)

or

k
Entropy = — (‘Z ny |_log2nx - logzNJ) X N (6)

eX

where k is an adjustment parameter. Assuming the total num-
ber of measurement points N = 2", (6) becomes

Entropy = — an (LloanxJ — m)) X ]% @)
ex
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Based on (7), one has

Entropy = anm — an LlogznxJ X E
ex xeX N
k
= Nm— an LlogznxJ X N ®)

xeX

The most significant bit (MSB) of | log,ny | can be found
through the bit operation [21].

Bonn Dataset S001

EEG Signal

1000

-1000

0 500 1000 1500 2000 2500 3000 3500
Entropy

87

86

- Entropy

Estimate Entropy
85

0 500 1000 1500 2000 2500 3000 3500

FIGURE 3. Entropy and estimated entropy.
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FIGURE 4. Box-and-whisker plot of entropy for each category of the Bonn
dataset.

The relation between the MSB of n, and n, satisfies
QMSB < QMSB+1 9)
Taking log, operation of (9) results in
log, oMSB < log, ny < log, QMSB+1 (10)
It is obvious that

MSB < log, ny < MSB+ 1 (11

Therefore one gets | logony | = MSB.

Fig. 3 takes S001 of the Bonn dataset as an example.
In the case, the moving window is set to 500 sampling points.
It shows the estimated entropy using (8) and the entropy using

VOLUME 11, 2023

Entropy

SetA Set B Set C SetD SetE

FIGURE 5. Box-and-whisker plot of estimated entropy for each category
of the Bonn dataset.
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FIGURE 6. Box-and-whisker plot of local entropy variance for each
category in the Bonn dataset.

the original form (3). Both calculated entropy and estimated
entropy have the same trend. The calculated entropy normal-
ized through (1) is used as features. The box-and-whisker
plots of each category of the Bonn data set can be drawn.

Fig. 4 and Fig. 5 shows the related set entropy and esti-
mated entropy of EEG respectively. It can be seen that both
can effectively distinguish brain waves in general and those
during epileptic seizures.

In the feature extraction method proposed in this paper,
we use not only entropy but also the variation of local entropy
as features. Fig. 6 divides the EEG signal into 16-segment.
One first uses (8) to estimate the local entropy, and then
calculates its variance. The normalized variance is thus taken
as a feature. The box-and-whisker plots for each category of
the Bonn data set, and it can be seen that the variation of local
entropy can effectively distinguish brain waves in general and
brain waves during epileptic seizures.

D. FEATURE DOMAIN
Fig. 7 shows the distribution of EEG after feature extraction.

In the figure, the brainwave signals of epileptic seizures (Set
E) and normal brain waves (Set A, Set B, Set C and Set D)
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are divided into two groups. Such a feature space distribution
situation proves the effectiveness of the features selected in
this paper.

Feature Domain
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FIGURE 7. Bonn dataset feature distribution.

E. LOGISTIC REGRESSION
This paper uses logistic regression, similar to the literature
[22], to discriminate epilepsy features from other brain wave

features. If there are m extracted features, one defines X €
RMHL gg.

]t (12)

where x; represents the i-feature and T represents the
transpose.

Define the hypothesis function as the sigmoid function,
the output range is [0, 1] as (13), in which feature weights
0 e Rl

X:[l X1 X2 X3 ... X

1
M) = A exp(—0%) (13)

Finally, one calculates the prediction result

500 [0, for h(X) < 0.5

(14)
1, for h(X)>0.5

The prediction result y depends on the feature weight 6.
In this paper, the loss function is defined as the (15). It uses
Stochastic Average Gradient (SAG) [23] to minimize the
overall loss function of the training data to obtain the best
feature weights 6.

| —log(1—=h(X)), fory=0
T&y) = [ g X)), fory=1

where y is the category of the feature X.
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IIl. EXPERIMENTS

A. CLASSIFICATION TASK

This paper uses 5-fold cross-validation and considers differ-
ent scenarios to combine different types of Bonn datasets
to verify the performance of the classifier. Table 1 shows
a total of seven classification tasks, Case 1. Case 2 and
Case 5 are used to evaluate the efficiency of the classifier
to distinguish the brain waves of epileptic seizures from
those of normal people; Case 3, Case 4 and Case 6 are used
to evaluate the classifiers to distinguish the brain waves of
epileptic seizures in patients with epilepsy and seizure-free
brainwave performance; Case 7 evaluates the classifier to
distinguish the brainwave performance of seizure and non-
seizure brainwaves.

TABLE 1. Bonn Dataset classification task.

Classification Case DaFaseF Numb.er of

Combinations EEG signals
Case 1 Evs A 200
Case 2 EvsB 200
Case 3 EvsC 200
Case 4 EvsD 200
Case 5 Evs AB 300
Case 6 Evs CD 300
Case 7 E vs ABCD 500

B. EVALUATION METRICS

This paper uses the accuracy, sensitivity, and specificity to
evaluate the performance of the model in each classification
task. Accuracy shown as (16) is used to evaluate the accuracy
of the overall classification performance of the classifier.

Accuracy = TP+ TN (16)
Y= TP+ FP+1TN + FN

where TP, TN, FP and FN represent true positives, true nega-
tives, false positives, and false negatives, respectively.

Sensitivity defined as (17) is used to calculate the correct
rate of evaluating the classifier when it is positive. And the
specificity defined as (18) is used to evaluate the correctness
of the classifier on negatives.

. TP
Sensitivity = ——— a7n
TP + FN
and
Specificit L (18)
ecificity = ————
P YT IN ¥ FP
IV. RESULTS

The experimental architecture of this paper is shown in Fig. 8.
At first, the statistical training set feature distribution and
logistic regression are performed on a personal computer.
Then the test set validation is performed on an ultra-low
power embedded system (STM32L432KCU6). The experi-
mental results are presented in Table 2. The averages of the
seven classification tasks are higher than 97% in accuracy,
sensitivity and specificity.
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FIGURE 8. Experimental architecture diagram.

The calculation time of each operation of the classification
algorithm proposed in this paper are presented in Table 3. The
overall execution time of the algorithm is only 230.75 ms.
This confirms the feasibility of the algorithm in wearable
systems and real-time applications.

Table 4 and Fig. 9 compare the time required by the
proposed estimation method and the direct calculation
of entropy. The proposed estimation method only needs
6.63ms/per trail on average, while the direct calculation of
entropy requires 36.00 ms/per trail. The calculation time
can be remarkably reduced by about 81.58% through the
proposed estimation method.

TABLE 2. 5-fold cross-validation results of the algorithm in this paper.

Classification Case AC;}Z )a y Speg;)ﬁ)cny Sen(sol/?)wty

Case 1 100.00 100.00 100.00
Case 2 9550 99.00 98.89
Case 3 99.00 99.00 99.00
Case 4 95.00 95.00 95.00
Case 5 97.00 95.00 97.55
Case 6 97.00 99.00 99.50
Case 7 96.4 0 96.00 98.97

Avg. 97.13 97.57 98.42

Table 5 Compares the classification performance of this
paper with previous studies on the Bonn dataset. The
deep learning-based methods [6], [8], [24], [25], and [26]
can achieve excellent classification performance; however,
it requires excellent computing resources and large memory
space for an epilepsy auxiliary diagnosis system on a personal
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TABLE 3. The calculation time of the algorithm in this paper.

Operation Computational Cost ( ms )*
LBPMAD 177.40 = 0.99
Variance of Entropy 46.28 + 0.66
Entropy 7.06 £ 0.51
Classification 0.01 £ 0.00
Total 230.75

* : Fill in the format as mean + standard deviation.

TABLE 4. Calculation time of entropy and estimate entropy.

Computational Cost (ms )
Min. Avg. Max.
Entropy 21.53 36.00 81.52
Estimate Entropy 6.22 6.63 8.04

Computation Time

Estimate entropy [|-|

(ms)

FIGURE 9. Box and whisker plot for calculation time of estimate entropy
and entropy.

computer. In this case, it will be very difficult to implement in
a wearable device for the SUDEP real-time notification sys-
tem, because the wearable device only has a few KB of RAM
and low computing resources. Those methods using typical
machine learning can be found as [9], [27], [28], and [29].
They mainly concern the classification performance; in such
condition, they have to transform time domain signals, such
as Fourier transform, discrete cosine transform or wavelet
transform, into frequency domain signals. In this case, those
methods, based on the transformed signal, perform indirect
feature extraction. However, the proposed method, without
using transform, performs direct feature extraction in the
time domain. As for the direct feature extraction in the time
domain, lower computing resources are generally required.
[30] directly extract time domain features; however, it uses
a lot of matrix operations and therefore requires excellent
computing resource.

On the other hand, when considering the memory space,
[9] needs 18 features for classification and it has to store
at least 2 frequency band signals obtained through DWT
in the process of feature extraction. [27] uses a DCT-based
3rd-order filter bank to divide the EEG signal into 5 frequency
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TABLE 5. Comparison of epilepsy classification performance in the Bonn dataset.

Classification Accuracy (%)

Published Work Classification Algorithm
Casel Case2 Case3 Case4 Case5S Case6 Case7  Avg.
Discrete Cosine Transform Based
Gupta (2018) [27] Filterbank + Statistical modeling + SVM 96.15 96.5 98.4 94.85 97.27 96.92 97.79 96.84
. Fourier Synchro-Squeezed Transform +
Mamli (2019) [28] Gray-Level Co-occurrence Matrix + KNN 100 99.38 99.54 96.48 99.73 99.59 97.38 98.87
Discrete Wavelet Transforms+ Sigmoid
Raghu (2019) [29] Eniropy + SVM 100 - - - - - 9623 98.12
Jiang (2020) [30] Symplectic Geometry Eigenvalues + SVM 100 99.33 99.33 100 100 99.28 99.97 99.70
Zhao (2020) [24] 1D CNN 99.52 99.11 98.02 97.63 99.38 98.03 98.76 98.64
Rashed-Al-Mahfuz (2021) [6] Continuous V\",agg‘l’“gﬁa“s‘c"rm FFT 9938 100 9969 9844 100 9938 100 99.56
Thuwajit (2021 [8] Multiscale CNN-Based Spatiotemporal - ¢, - 9826 9729 ; - 9819 9841
Feature
. 3 level DWT + Local Binary Pattern
Yazid (2021) [9] Transition Histogram+ LBPMAD + KNN 99.94 99.86 99.88 99.70 99.92 99.72 99.97 99.86
Shekokar (2021) [25] 4layer LSTM 100 98 96.5 95 95.16 94.65 91.13 95.78
Yan (2022) [26] MS-WTC + CNN 100 100 99.8 99.8 - - 99.9 99.90
+ + Vari
Proposed Method LBPMAD + Entropy + Variance of Local 15000 9550 9900 9500 9700 9700 9640  97.13
Entropy + Logistic Regression
bands, and extracts 20 features from the 5 frequency bands . .
e . Ablation Experiment
for classification. In the process of feature extraction, at least
3 filters need to be stored. Moreover, in the process feature :Z e - e e
extraction of [28], it has to store the time-frequency map %9 | | SR o7
. 97 96.3 96.1 96.2
generated by Fourier synchro-squeezed transform (FSST) x 9% w ‘
with a size of 177 x 4096, and uses 8 to 35 features for 95 } B s |
classification. Although [29] only uses 2 features for classifi- ot ‘ 3 ‘
. .. . 93 .
cation, it is necessary to store not only the time and frequency W/GLBPMAD  wjsvariarceof  wibEnwopy  Proposed Method
domain signals after wavelet transformation, but also the Local Entropy
value domain distribution for calculating entropy for feature M Accuracy: [WiSensitivity, M Specificity

extraction.

Compared with those methods mentioned above, the pro-
posed method uses 3 features for classification. In addition
to the original EEG signal, it only needs to store the value
range distribution for estimating the entropy in feature extrac-
tion, uses much less memory space and small number of
features.

Table 6 shows the related papers that provide the calcula-
tion time of the algorithm in recent years. Among them, [31],
[32], and [33] have the algorithm that has low computational
complexity and can be implemented in edge devices. But
this paper has better classification performance and lower
computation time. Although [34] and [35] have better classi-
fication performance, the computation time is higher than the
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FIGURE 10. The ablation experiment bar graph of the proposed algorithm.

proposed method, not to mention that they are implemented
on a personal computer (PC).

Based on the above, the proposed method not only has the
same classification performance as the previous methods, but
also is much easier to implement for real-time application
with low computing resources.

The ablation experiment of the algorithm in this paper is
carried out to verify the influence of each feature on the classi-
fication performance. Fig. 10 shows the average performance
histogram of the seven classification tasks. The removal of
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TABLE 6. Comparison of seizure detection algorithms computational time comparison.

. . . . Accuracy Specificity  Sensitivity =~ Computational
Published Work Classification Algorithm Platform %) %) %) Cost (sec)
Khan (2017) [31]°  Slope Detection + Threshold FPGA - 93.60 91.20 0.50
. . Sample Entropy + Permutation Entropy + Ultra-low power
Sopic (2018) [32] Signal Power + Random Forest embedded system ) 93.37 93.80 308
Entropy of Visibility Heights of Hierarchical
Zeng (2019) [34] Neighbors + LS-SVM PC 99.13 - - 1.75
Discrete Wavelet Transformation +
Approximate entropy + Spectral entropy -+
Chen (2019) [35] Fuzzy entropy + Sample entropy + Permutation PC 99.5 99.40 100.00 121
entropy + Shannon entropy + Conditional ’ ’ ’ ’
entropy + Corrected conditional entropy + LS-
SVM
Olokodana (2020) [33] Fractal dimension + 1D Kriging Model Single -board 93.75 - 94.00 0.85
computer
Fractal dimension + Hjorth complexity +
Olokodana (2021) [3] Entropy + 3D Kriging Model - 97.50 94.74 100.00 0.81
Proposed Method LBPMAD + Variance of Local Entropy + Ultra-low power 9713 9757 98.42 023

Entropy + Logistic Regression

embedded system

*: Not verified on Bon n dataset.

TABLE 7. Effects of different input signal lengths on algorithm
performance.

Input Signal Length ~ Accuracy ~ Specificity ~Sensitivity =~ Computational Cost

( sampling points ) (%) (%) (%) (ms)
64 92.42 92.71 89.57 45.09
128 93.41 94.26 91.71 48.86
256 94.35 96.32 94.29 56.31
512 95.39 96.80 95.43 72.59
1024 95.89 97.07 95.86 103.64
2048 96.35 97.77 96.43 165.56
4096 97.13 98.42 97.57 230.75

LBPMAD does not affect the sensitivity and specificity, but
the accuracy decreases, which means that the false positives
of the algorithm increase. And whether the local entropy
variation or entropy is removed, the classification efficiency
of the algorithm will decrease.

Table 7 compares the average performance of the proposed
algorithm on seven tasks with different input signal lengths.
In the case of only 64 sampling points (about 0.36 seconds),
it still has an accuracy of 92.42%, which means that the
algorithm in this paper can correctly identify most epilepsy
signals even if only a very short EEG is required.

This study adopted LBPMAD and Entropy-based
approaches to measure distinct EEG features. The LBPMAD
calculated the average of absolute standard deviation between
each sampling point and its local mean in time domain [9].
The entropy-based approaches, i.e., entropy and local entropy
variance, evaluated the dispersion of the signal according
to the occurrence probability for each EEG value [18].
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The LBPMAD provided the benefit to analyze the relation
between signal amplitude and local waveform, even it was
calculated from a small amount of samples. In contrast, the
entropy-based approaches considered the joint probabilities
among EEG values which required a large amount of data
to achieve better statistical results, in which the relation-
ship between signal amplitude and local waveform was not
considered. We combined the LBPMAD and Entropy-based
features to achieve a more comprehensive representation of
the signal description and better detection performance for
epilepsy detection was obtained.

V. CONCLUSION

This paper proposes a real-time seizure detection algo-
rithm that can be implemented in ultra-low power embedded
systems. The proposed algorithm, without using transform,
performs direct feature extraction in the time domain. The
proposed algorithm uses LBPMAD, local entropy variation
and entropy as features, and then classifies those features
through logistic regression. In order to reduce the computa-
tional complexity of the algorithm, the proposed method finds
the most significant bit to replace the logarithmic operation.
In this way, the calculation time can be considerably reduced
by about 81.58%. Compared with previous studies, this paper
has comparable classification performance with lower com-
putation complexity which is suitable to be implement in a
lower-cost computing environment on microprocessor. The
microprocessor only needs to store EEG data, and the LBP-
MAD and entropy use small amount of memory space with
low computational complexity.
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