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ABSTRACT Energy limitation is amajor issue inwireless sensor networkswhere a high volume of redundant
data is collected periodically and transmitted through the network. Therefore, efficient energy consumption
is the key solution to maximize the network lifetime. This paper proposes an adaptive sampling approach
based on spatio-temporal correlation of collected data and on nodes residual energy. This approach aims to
optimize sampling rates of sensor nodes while ensuring a high quality of the collected data. In addition, a data
reconstruction method based on linear regression is adopted in the sink to reconstruct the missing samples
due to the sampling rate reduction and adaptation compared to the case of a constant maximal sampling
rate. We compared our approach with recently proposed adaptive sampling benchmark methods in different
scenarios of data temporal correlation. Simulation results demonstrate the effectiveness of our proposed
method in optimizing energy consumption by reducing the sampling rate while maintaining data quality.
Our contribution can be applied to several fields, particularly, the field of water resources management.

INDEX TERMS Wireless sensor network, adaptive sampling, spatio-temporal correlation, residual energy,
data reconstruction.

I. INTRODUCTION
A. BACKGROUND
In recent years, the term Internet of Things (IoT) has been
widely used to describe solutions developed with different
devices with computational capacity and connected to the
Internet [1]. With IoT, the entire physical infrastructure is
closely coupled with information and communication tech-
nologies; where intelligent monitoring and management can
be achieved via the usage of networked embedded devices.
In such system, devices are interconnected to transmit useful
measurement information and control instructions via dis-
tributed sensor networks.

Wireless Sensor Network (WSN) is an enabling tech-
nology for the IoT. WSNs are regarded as a revolutionary
information gathering method to build the information and
communication system which greatly improve the reliability
and efficiency of infrastructure systems. Compared to the
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wired solution, WSNs feature easier deployment and better
flexibility of devices [2].

WSN is an emerging technology which has a wide array
of applications including infrastructure protection,industrial
sensing and diagnostics, environmental monitoring and intel-
ligent home and responsive environment [3]. This kind of
network is composed of a large number of low-cost sensor
nodes where each node is equipped with a sensor, able to
detect physical or environmental data measurements. The
main components of aWSN are the sensor nodes and the sink
node where the monitored events data are collected. The sen-
sor nodes are usually deployed randomly over the area to be
sensed in severe conditions where no power source to aliment
batteries exsists. Those small devices should perform their
functions by measuring and transmitting a high volume of
data periodically to the sink node which might be connected
to the internet.

B. MOTIVATION
The design of sustainable WSN is a very challeng-
ing issue [4]. First, the resource limitation in terms of

7670

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-7977-6079
https://orcid.org/0000-0002-2350-6640
https://orcid.org/0000-0001-7997-6038


M. Fattoum et al.: Adaptive Sampling Approach Exploiting Spatio-Temporal Correlation and Residual Energy

computational capacities and memory of sensor nodes pre-
vent the use of complex algorithms. Second, the most chal-
lenging problem in WSN is the power consumption issue.
In such way, energy-constrained sensors are expected to run
autonomously for long periods. It may be cost-prohibitive
to replace exhausted batteries or even impossible in hostile
environments. Additionally, a huge amount of data is col-
lected and transmitted through the network. Those data can
be redundant and strongly correlated in space and time.

Therefore, minimizing the energy consumption for data
agregation and transmission is one of the most important
design considerations in WSNs. For this aim, this paper
focuses on energy efficiency. In this manner, to design an
energy-efficient scheme, it is necessary to guarantee a trade-
off between energy consumption and data accuracy.

For this reason, a data reduction adaptive sampling
approach can be used to adapt the sampling rate of each
sensor node for the sake of energy conservation while keep-
ing sufficiently good reconstruction performance at the sink
node. The quantity of sampled data will be reduced when the
correlation of data is important. In consequence, this method
reduces redundant data transmission by collecting less data
when correlated.

C. CONTRIBUTION
The main objective of this paper is to propose a new solu-
tion that guarantees the energy efficiency of WSN while
preserving the accuracy of the collected data. We will pro-
pose a spatio-temporal adaptive sampling approach based on
residual energy (STASRE) in long range wide area network
(LoRaWAN). The gateway (sink) will be responsible for
collecting data from long range (LoRa) end nodes in its range
of communication. Then, it calculates the spatial correlation
in terms of geographical proximity of nodes and the spatial
and temporal correlation among sensor nodes data. The new
sampling rate should increase when a low spatio-temporal
correlation of data is detected to acquire enough information,
and, should decrease when there is a high spatio-temporal
correlation among data and/or when the node residual energy
reaches a critical low level. We will compare our approach to
spatial-temporal correlation based approach for sampling and
transmission rate adaptation (STCSTA) [5], aggregation and
adaptive sampling approach (AAS) [6] and fixed sampling
rate method where data is be sampled and sent to the gateway
directly at the same maximal rate without any processing
operation. We will study the performance of our approach
in three scenarios with varying the temporal correlation of
data by evaluating the energy efficiency in terms of total
energy consumption and number of dead nodes per period.
We will present the effectiveness of our method in reducing
data without losing significant data. The integrity of the data
will be reconstructed in the gateway.

The rest of the paper is organized as follows: Section II
provides a survey on the work related to energy conservation
within WSN. Section III describes the system network model
and the energy model that manages the energy consumption.

Section IV details the proposed spatio-temporal adaptive
approach based on residual energy (STASRE). Section V
describes the used data reconstruction method. The perfor-
mance evaluation and analysis are discussed in section VI.
Finally, section VII summarizes the contribution and opens
some perspectives.

II. RELATED WORKS
Several energy saving strategies are studied to manage the
scarce energy resource of WSN [7]. Thoses strategies can be
categorized as: duty cycling schemes, energy efficient routing
and data driven approaches that optimize either the collected
data volume or the data acquisition process itself.

Duty cycling is one of sleep/wake trading schemes where
sensor nodes operate at low power and enter in sleep mode for
most of the timewhenever there is no task to be performed [8].
The radio transceiver then is switched off to save energy.
The authors in [9] propose a duty cycle energy management
scheme based on medium access control (MAC) protocol.
One part of the duty cycle is allocated for transmitting the
data of the sensor node itself and another part is allocated
for receiving/transmitting data of neighbor nodes. The node
turns off in sleep mode when no data is available in order
to conserve energy. In [10], a dynamic duty cycle (DDC)
scheme is proposed to minimize the transmission delay and,
then, maximize the network lifetime.

In energy efficient routing technique [11], the distance
between sensor nodes and their sink is a key factor to
choose the optimal path to route the collected data. This
energy efficient routing path should minimize the com-
munication cost. Low-energy adaptive clustering hierarchy
protocol (LEACH), proposed in [12], is one among the most
popular clustering-based routing approaches in WSN which
is based on two main steps. For the first step, which is the
setup phase, the selection of cluster heads and the cluster
formation are performed based on energy and probability
function. In steady state phase, cluster heads collect data
from nodes in their respective clusters using a time division
multiple access (TDMA) scheduling and perform data aggre-
gation before transmitting to the base station. This method
ensures energy load distribution in all nodes of each cluster.
A clustering and routing approach based on genetic algorithm
for multi objective optimization (CRMOGA) is proposed
in [13]. The goal is to find a near optimal network config-
uration by selecting optimal cluster heads, and, finding the
optimal path to route the collected data. The multi objective
fitness function aims to reduce the energy consumption of the
network.

Data driven approaches are based on the exploitation of
spatio-temporal correlation between sensor nodes’ data. Two
techniques of data reduction in WSN are compression and
aggregation [14] where data will be reduced before being
transmitted to the sink. For compression techniques, a recov-
ery process will be performed in the base station [15], [16].
In [17], an energy-efficient data collection based on com-
pressive sensing technique (CCS) in cluster-based network is
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proposed. This method uses block diagonal matrices as mea-
surements matrices. Then, the base station performs recovery
process to reconstruct data. In [18], an energy efficient com-
pressed data collection method based on compressive sensing
theory and quantized compressed sensing is proposed. The
authors in [19] propose a data aggregation method based
on clustering network topology. The clustering approach is
divided into two steps. The first step consists in dividing
the sensed region into correlated contiguous regions on the
basis of position and data correlation. The second step con-
sists in performing clustering on each region on the basis
of residual energy. Each cluster head collects, aggregates
data and routes it toward the sink. This method allows an
energy load distribution among sensor nodes in each cluster.
In [20], authors introduce a method based on fuzzy logic
model in two levels for energy efficient clustering (FLTLC)
using similarity, distances and residual energy as input fuzzy
logic parameters.

Considering that sampling is one of the most consuming
activities in addition to transmission and processing, one
of the efficient data acquisition techniques is the adaptive
sampling method where sensor nodes adapt their sampling
rate on the basis of data changes detection. This method
reduces the number of collected data, and then, reduces the
energy consumptionwhen the data is highly correlated. In [6],
authors propose a new method, AAS, to adapt sensor sam-
pling rate in tow steps to reduce data collection and, thus,
reduce the energy consumption. This method is applied at two
levels: sensor node level for the aggregation phase and cluster
head level for adaptive sampling phase. The sensor node data
collection is performed periodically. In the first step, each
sensor node calculates the similarity between the collected
data in order to eliminate redundancy and reduce the amount
of collected data. Then, the cluster head determines the new
sampling rate on the basis of spatial and temporal correlation
of collected data. In [5], authors propose a spatial-temporal
correlation method in cluster-based network to adapt sam-
pling and transmission rates. According to the correlation
degree between sensor nodes’ data, calculated using Pear-
son correlation coefficient, the sampling rate will be either
increased or decreased. In [21], a data driven adaptive sam-
pling algorithm (DDAS) is proposed. This method is based on
a revised sigmoid function that allows to dynamically change
the sampling frequency, depending on a number of the most
recent data and the last two detected data.

Some researchers combine adaptive sampling approach
and data prediction techniques. A prediction model is then
built in the sink to reconstruct and predict the data using
the historical collected measurements. In [22], a data pre-
diction with cubic adaptive sampling method is proposed.
This method combines an adaptive sampling technique, based
on TCP CUBIC protocol, with a prediction model based
on the simple exponential smoothing model. The authors
in [23] propose a data reduction method based on adap-
tive sampling combined with a transmitted data reduction
based on a prediction model. This method reduces the energy

FIGURE 1. LoRa Network Architecture.

consumption by reducing the sensed data and the radio com-
munication burden.

In this paper, we propose an adaptive sampling approach
based first on spatio-temporal correlation of periodically
collected data and based second on residual energy. The
proposed scheme is developed in LoRa/LoRaWAN based
architecture network. The algorithm is performed at the gate-
way level.

NOTATIONS
si Sensor node si.
SRpi Sampling rate of sensor si at period p.
SRmax Maximal sampling rate.
Msi Set of sensor nodes spatio-temporally correlated

with si.
vpi Vector of measurements of si at period p.
vpij jth measurement of si at period p, j = 1 . . . SRi.
µvi , Mean of measurements of node si.
σvi Standard deviation of measurements of node si.
Rs Neighboring range.
dij Euclidian distance between node si and node sj.

III. NETWORK DESCRIPTION AND ENERGY MODEL
A. NETWORK DESCRIPTION
1) LoRaWAN-BASED IoT ARCHITECTURE
LoRa/LoRaWAN is one of the mostly used protocols in
low power wide area network (LPWAN) [24], it provides a
very low power consumption and a long range transmission.
LoRaWAN uses a star topology illustrated in Fig. 1 where
sensor nodes transmit the collected data to the gateway. Each
received packet is relayed to the LoRaWAN network server.
The latter checks the received packets to authenticate the
nodes before transmitting them to the corresponding appli-
cation server.

2) SYSTEM MODEL AND ASSUMPTIONS
We consider a LoRaWANWSN composed ofN sensor nodes
randomly distributed in a monitored field and a gateway.
We consider a periodic data collection in sensor network
illustrated in Fig. 2 for sensor node si.

During the first period, N sensor nodes collect data using
the maximal sampling rate SRmax . This data is stored in a
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FIGURE 2. Periodic data collection of sensor node si .

matrix D. Each row corresponds to one sensor measurements
during the period.

D =


v1
v2
.

.

vN

 =

v11 v12 . . . v1SRmax
v21 v22 . . . v2SRmax
. . . .

. . . .

vN1 vN2 . . . vNSRmax

 . (1)

Then, the sampling rate will be updated through periods
according to data dynamics. The stored matrix D during the
period is given by the following equation:

D =


v11 v12 . . . Nan .. v1SRmax
v21 Nan . . . . . . . v2SRmax
. . . . . .

. . Nan . . .

vN1 vN2 . . . . . . . vNSRmax

 , (2)

where ’Nan’ corresponds to missing samples whenever the
sampling rate decreases with respect to its maximal value
SRmax . Such non sampled data of the matrix D are recon-
structed at the sink at each period using a reconstruction
method. The possible herein envisaged reconstruction meth-
ods are the mean and median imputation in space or time and
the regression imputation [29].

B. ENERGY MODEL DESCRIPTION
In order to compute the energy consumption of each
sensor node, the energy consumption model based on
LoRa/LoRaWAN architecture is presented in [25]. This
model states that for a given node, the consumed energy E
is given by:

E = Eactive + Esleep. (3)

The total energy consumption Eactive is the sum of dissipated
energy by the sensor unit, the processing unit and the com-
munication unit.

Eactive = Ewu + Em + Eproc + Ewut + ET + ER, (4)

where Ewu, Em, Eproc, Ewut , ET and ER are respectively,
energies dissipated in the system wake-up, the data measure-
ments, the microcontroller processing, the wake-up of the
LoRa tranceiver, and the transmission and reception modes.

FIGURE 3. Overlap area between two sensor nodes.

We assume that Esleep, Ewu, Eproc and Ewut are negligible
with respect to other energy components. In this way, Equa-
tion (3) reduces to

E = Em + ET + ER, (5)

where Em is the energy dissipated by measuring SR values of
the considered period.

Em = SR(PmTm), (6)

where Pm and Tm are the power consumption and the time
duration of one measurement.

ET = PTTT , (7)

where PT and TT are the power consumption and the duration
of transmission mode.

ER = PRTR, (8)

where PR and TR are the power consumption and the duration
of reception mode.

In addition to the energy dissipated by the data communi-
cation, this energy model demonstrates that the sampling rate
affects the energy consumption of the network in the phase
of data measurements. In this paper, we will optimize the
sampling rate of data measurements to enhance the lifetime
of the network and reduce effectively the energy dissipation.

IV. PROPOSED SPATIO-TEMPORAL ADAPTIVE
SAMPLING BASED ON RESIDUAL ENERGY (STASRE)
In this section, we will firstly detail how the spatial and
temporal correlation between sensor nodes’ measurements
and the residual energy level are exploited in our proposed
adaptive approach. Then, we will give a description of the
sampling rate updating through data collection periods. For
this aim, we will start by computing the spatial correlation
between sensor nodes and measuring the data similarity.

A. CALCULATING SPATIAL CORRELATION BETWEEN
SENSORS
In WSN generally, the closer neighbor nodes are, the more
spatially correlated are their collected data. To this end,
we introduce the overlap area between sensor nodes to calcu-
late the degree of correlation between collected data of sensor
nodes. The overlap area A(si, sj) between two neighbor nodes
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si and sj with spacing verifiying dij < 2Rs, as shown in Fig. 3,
is defined by the following equation [26]:

A(si, sj) =
2
π
arccos

( dij
2Rs

)
−

dij
πR2s

√
R2s −

d2ij
4

. (9)

The parameter Rs is defined as the neighboring range,
which is half the lower range with zero overlapping area. Two
sensor nodes are spatially correlated when the overlap area
between them is greater than a predefined threshold a.
The set of spatially correlated nodes with si is defined as:

spatial_Corr(si) = {sj, dij < 2Rs and A(si, sj) ≥ a}. (10)

B. DATA SIMILARITY MEASURE
There are a variety of similarity functions that we can use
to measure the similarity between collected data of different
sensor nodes, such as Cosine similarity, Jaccard similarity,
Pearson correlation coefficient [27], [28].

We define in Equation (11) the cosine similarity func-
tion Similar(si, sj) which measures the degree of similarity
between two vectors of measurements of two sensor nodes
si and sj measured at the same period and maximal sampling
rate SRmax .

Similar(si, sj) =

SRmax∑
k=1

vikvjk√√√√SRmax∑
k=1

v2ik

√√√√SRmax∑
k=1

v2jk

. (11)

The set of correlated nodes with sensor node si is defined
as:

data_Corr(si) = {sj, Similar(si, sj) > s}, (12)

where s is the threshold for the correlation between sensor
nodes.

After evaluating the spatial correlation and measuring the
data similarity, a set of spatially-temporally correlated sensor
nodes denoted asMsi is extracted for sensor node si by:

Msi = spatial_Corr(si) ∩ data_Corr(si). (13)

C. PROPOSED ADAPTIVE SAMPLING SCHEME
The different steps of our proposed adaptive sampling
approach are presented by Algorithm 1 starting by the data
acquisition until the sampling rate updating. Indeed, at each
period the gateway adjusts the sampling rate of each sensor
node taking into account the degree of temporal correlation
between the nodes in the set Msi evaluated in Equation (13)
and the level of residual energy Er of the considered node.
Hereafter, we give a detailed description of the three phases
of our proposed STASRE scheme.
• Phase 1: Initialization
At the first period, all the sensor nodes have the same
initial energy equal to the maximal energy, Er = Emax .

The sampling rate takes the maximum value as follows:

SR1si = SRmax , i = 1, ..,N . (14)

• Phase 2: Sampling rate updating
We here discuss the update of the sampling rate at each
period according to the residual energy Epr,si of node si
at period p. In such way, two cases can be distinguished.
-Case 1: Emin < Epr,si < Emax
When the residual energyEpr,si of sensor node si at period
p decreases and does not reach the minimum energy
level Emin, its sampling rate is changed by exploiting
both the spatial and temporal correlations. More pre-
cisely, its updated value at period p+ 1 is expressed as a
weighted sum of a part related to spatial correlation and a
part related to temporal correlation denoted respectively
as SCp+1 and TCp+1. In such way, the updated sampling

rate for sensor node si at period p + 1 combines SCp+1
si

and TCp+1
si as:

SRp+1si = αSCp+1
si + (1− α)TCp+1

si , (15)

where α ∈ [0, 1] is a ponderation coefficient. As already
mentioned, the SC term depends on neighboring sensors
spatial correlation. Therefore, if sensor si has one corre-
lated node sj, then SC

p+1
si,1

is expressed as:

SCp+1
si,1
= SRmax

(
1− ρ̃

p
S (si, sj)

)
, (16)

where ρ̃
p
S (si, sj) is the estimated spatial correlation

between the two spatially-temporally correlated sensor
nodes si and sj given by the following equation:

ρ̃
p
S (si, sj) =

1
SRmax

SRmax∑
k=1

(
|vpik − µ

p
vi |

σ
p
vi

)(
|vpjk − µ

p
vj |

σ
p
vj

)
,

(17)

If sensor node si has two correlated sensor nodes sj and
sk , then SC

p+1
si,2

is expressed as:

SCp+1
si,2
= SCp+1

si,1
(1− ρ̃

p
S (si, sj))

= SRmax(1−ρ̃
p
S (si, sj))(1−ρ̃

p
S (si, sk )) (18)

If sensor node si has more than two correlated sensor
nodes, the expression of SCp+1 is given by:

SCp+1
si = SRmax

∏
sj∈Msi

(
1− ρ̃

p
S (si, sj)

)
(19)

The expression of SCp+1 is inspired from the AAS
method [6].
For TC temporal correlation term, we take into account
the correlation between data collected by the same node
in successive periods. Therefore, TCp+1

si for sensor si at
period p+ 1 is expressed as:

TCp+1
si = SRpsi (1− ρ̃

p
T (si)), (20)
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where ρ̃
p
T (si) is the estimated temporal correlation

between measurments of sensor node si in two succes-
sive periods p−1 and p given by the following equation:

ρ̃
p
T (si) =

1
SRmax

SRmax∑
k=1

(
|vpik−µ

p
vi |

σ
p
vi

)(
|vp−1ik −µ

p−1
vi |

σ
p−1
vi

)
.

(21)

In summary, the updated sampling rate SRp+1i of sensor
node si is then expressed as:

SRp+1si = αSRmax
∏
sj∈Msi

(
1− ρ̃

p
S (si, sj)

)
+ (1− α)SRpsi (1− ρ̃

p
T (si)). (22)

-Case 2: 0 < Epr,si ≤ Emin
When the residual energy of sensor si decreases enor-
mously under a threshold energy level min, its new
sampling rate will decrease according to the level of its
residual energy. More precisely, its sampling rate update
is discussed according to its mean spatial correlation
ρmeansi as follows:
– If ρmeansi ≤ ϵ then

SRp+1si =
Epr,si
Emax

SRmax , (23)

– If ρmeansi > ϵ then

SRp+1si =
Epr,si
Emax

SRpsi , (24)

where

ρmeansi =
1

M si

∑
sj∈Msi

ρ̃
p
S (si, sj), (25)

and ϵ is a predefined threshold, ∗ indicates the cardinal
of the set.
Throughout the different phases, the gateway calculates
and sends the new sampling rate of each sensor node to
be taken into account in the next period.

• Phase 3: Data Acquisition
Once the sampling rate is updated according to the pre-
vious discussions, each sensor node collects data using
its own already updated sampling rate and transmits
these readings to the gateway. The non-sampled data
is replaced by ′Nan′ when filling the sampled data in
matrix D. However, in order to guarantee a good esti-
mation of the spatial and temporal correlations given
respectively by Equations (17) and (21), each Nan value
is estimated by the mean imputation where the missing
value is replaced by the mean value of the samples
measurements.

V. MISSING DATA RECONSTRUCTION
In this section, we describe the spatial correlation based data
estimation method used in the gateway to reconstruct the
missing data. Indeed, the missing data is the data that is

Algorithm 1 Proposed Adaptive Sampling Scheme
STASRE
Input: SRmax ,Emax ,Emin
p← 1;
while Alive nodes do

#Data acquisition
k ← 1;
while Period not end do

for (each sensor node si) do
if Nothing is received then

Data[i][k]← Nan;
else

Data[i][k]← vik ;

k ← k + 1;
Data← reconstruction(missing Samples);
#Spatio-temporal correlation evaluation
for each sensor node si do

spatial_Corr(si)← find_similar(Data);
data_Corr(si)← find_temp_corr(Data);
M (si)← spatial_Corr ∩ data_Corr;

#Sampling rate update
for each sensor node si do

ρ̃S ← Spatial_Corr_degree(M (si),Data);
ρ̃T ← Temporal_Corr_degree(Data);
if Epr,si == Emax then

SRpsi ← SRmax;
else

if Emin ≤ E
p
r,si < Emax then

SRpsi ← newSR(ρ̃S , ρ̃T , α);
else

if mean(ρ) ≤ ϵ then
SRpsi ←
newSR(SRmax ,E

p−1
r,si ,Emax)

else
SRpsi ←
newSR(SRp−1si ,Ep−1r,si ,Emax)

p← p+ 1

not sampled as could be the case if the maximal sampling
rate were used. This estimation method adopts the multiple
linear regression model [29] to describe the data correlation
among multiple neighbor nodes. Indeed, the data sensed by
the sensor nodes whose locations are nearby are similar or
have some relationships. For example, as shown in Fig.4,
we can see that the data sensed by node 1 and node 30 which
are neighbor nodes have similar variation curves. Therefore,
when some sensor nodes data are missed, we can estimate
them using its neighbor nodes data.

Equation (26) illustrates the linear regression model.

vit = βi0 + βi1v1t + βi2v2t + · · · + βimvmt + µt , (26)

where vit is the data measurement of si at time t , and vkt is
the data measurement of neighbor node sk (k = 1, . . . ,m)

VOLUME 11, 2023 7675



M. Fattoum et al.: Adaptive Sampling Approach Exploiting Spatio-Temporal Correlation and Residual Energy

FIGURE 4. Measurements of two neighbor nodes.

at the same time, βik is the partial correlation coefficient
corresponding to vkt , β0 represents a basic lag of the value
at time t and µt is the random error.
In order to estimate the missing data, we collect the data in

matrix X from h sets of m neighbor nodes measurements vij,
1 ≤ i ≤ m and 1 ≤ j ≤ h, where h − m ≥ 2, j = 1, . . . , h
corresponds to time index.

X =


1 v11 v21 · · · vm1
1 v12 v22 · · · vm2
...

...
...

. . .
...

1 v1h v2h · · · vmh

 . (27)

such that Xβ = V, where V = (vi1, . . . vih)T and β =

(βi0, . . . , βim)T .
After a learning phase about the sensed data of neighbor

nodes, it is possible to estimate the coefficients as given:

(β̃i0, β̃i1, . . . , β̃im) = (XTX)−1XTV. (28)

Therefore, the missing data can be estimated as follows:

ṽit = β̃i0 + β̃i1v1t + β̃i2v2t + · · · + β̃imvmt . (29)

VI. PERFORMANCE EVALUATION AND ANALYSIS
A. SCENARIO DESCRIPTION
We consider a WSN composed of N sensor nodes randomly
deployed in a squared field (L×L)m2 and one gateway placed
in the center of the sensed field.

In our scenario, we assume that sensing nodes serve to col-
lect environmental parameters such as temperature, humidity,
light, pressure, which are generally highly correlated both in
space and time domains. Also, we consider a periodic WSN
where sensor nodes collect and store data during a predefined
period p. After each period, they aggregate data and send a set
of measurements to the gateway. The gateway receives data
measurements and performs the adaptive sampling algorithm
to determine the new sampling rate of each sensor node to
apply at the next period.

We assume that all the sensor nodes have the same neigh-
boring range, transmitting range and initial energy.

The parameters setting are fixed in Table. 1.

TABLE 1. Simulation parameters.

B. SPATIO-TEMPORAL CORRELATED SYNTHETIC DATA
GENERATION
1) SPATIAL CORRELATION MODELS
To generate correlated readings of the sensors according to
the spatial dimension, we adopt the most conventional corre-
lation model, the exponential model [19] where the mutual
spatial correlation between ith and jth nodes is given by:

ρS (si, sj) = exp
(
−

(dij
θ1

)θ2
)
, θ1 > 0, 0 < θ2 ≤ 2. (30)

From this correlation model, a network correlation matrix B
is generated with (i, j)th element given by ρS (si, sj). Then,
to generate correlated random variable, we use the Cholesky
decomposition. The vector of correlated variables is given
by Cx where C is the Cholesky decomposition of B, with
B = CCT and x is a vector of uncorrelated Gaussian random
variables.

2) SPACE TIME CORRELATED SIGNAL MODEL
To enforce the temporal correlation, we adopt the autore-
gressive filter according to which the ith node measurement
evolves after a time interval 1T as: [30]

vi(t0 + k1T ) = ρT (1T )vi(t0 + (k − 1)1T )

+

√
1− ρT (1T )2ϵ(t0 + k1T ), (31)

where ϵ(t0 + k1T ) is an i.i.d. random Gaussian Noise, k =
1, 2, .., SRmax , 1T denotes the duration of one period of
time and ρT (1T ) is a temporal correlation coefficient to be
fixed according to requirements. If we are in the case of
important correlation, ρT should take high values and for low
correlation, ρT should have low values. In our study, we focus
on evaluating the performance of our proposed adaptive sam-
pling approach for different scenarios of temporal correlation.
For this, threes scenarios, low, medium and high temporal
correlation have been discussed by conserving the same spa-
tial correlation degree. In such way, Fig.5 illustrates an esti-
mate of the considered spatial correlation versus normalized
distance evaluted according to Equation (17). Also, as shown
in Fig. 6, an estimated temporal correlation is displayed for
each scenario with a mean spatial correlation equal to 0.7.
The displayed temporal correlation is evaluated according to
Equation (21).
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FIGURE 5. Estimated Spatial correlation.

FIGURE 6. Estimated Temporal Correlation.

C. SIMULATION RESULTS: COMPARISON TO
BENCHMARKS
We compare our proposed adaptive sampling method to two
recently published methods AAS and STCSTA and to the
Fixed SR method where all data will be sent to the gateway
directly at a maximal rate and without any processing oper-
ation. We evaluate the performance of the proposed scheme
and of the benchmark methods in different scenarios by vary-
ing the temporal correlation of generated data. In particular,
we envisage 3 scenarios: high, medium and low temporal
correlation as shown in Fig. 6.

1) SCENARIO 1: HIGH TEMPORAL CORRELATION
The first scenario represents the case of high temporal corre-
lation of data generated of each sensor node through periods.
The estimated temporal correlation corresponds to the curve
High in Fig. 6.

We evaluate the energy efficiency by studying the lifetime
of the network in terms of total energy consumption and
number of dead nodes per period. We vary the minimun
residual energy threshold Emin for our proposed algorithm.
We also compare the efficiency of each algorithm in reducing
the number of sampled data in percentage. Figures 7 and 8
display respectively the total residual energy of sensor nodes
and the number of dead nodes through periods. The perfor-
mances of our proposedmethod and STCSTA are close. After
around 250 periods of communication, the network still has

FIGURE 7. Scenario 1: Sum of residual energy vs. period.

FIGURE 8. Scenario 1: Dead node vs. period.

FIGURE 9. Scenario 1: Percentage of samples vs. period.

alive nodes while the AAS and the Fixed SR networks are
totally disconnected respectively at around period 160 and
period 80. Our proposed method outperforms all the other
methods for all values of threshold energy level Emin in
terms of remaining alive nodes and residual energy. Fig. 9
represents the percentage of reduction of samples number at
a period p with respect to processing at a maximal sampling
rate SRmax , and is calculated as:

%Samplesp =

Nalive∑
k=1

SRpsk × 100

Nalive × SRmax
. (32)

VOLUME 11, 2023 7677



M. Fattoum et al.: Adaptive Sampling Approach Exploiting Spatio-Temporal Correlation and Residual Energy

FIGURE 10. Scenario 1: Pecentage of samples per sensor node.

In addition to the data correlation, our proposed method
uses the residual energy level as a factor to decrease the
sampling rate when the nodes don’t have enough residual
energy to work at full capacity. This factor prolongs the
netwok lifetime. Figures shows that AAS has the lowest
percentage of samples volume reduction through periods.
STCSTA has almost steady percentage of samples throughout
periods whereas our scheme has a decreasing percentage of
samples through periods as it accounts for energy depletion.
Fig. 10 represents the percentage of reduction of samples
number throughout Pmax periods with respect to full maximal
sampling rate SRmax , for a given ith node, and is evaluated as:

%Samplesi =

Pmax∑
p=1

SRpsi × 100

Pmax × SRmax
, (33)

where Pmax is the number of periods of the network lifetime.
Figures 10 shows that AAS has the lowest percentage of

samples volume reduction for different sensors throughout
the network lifetime. Our proposed method has the lowest
percentage of samples between 20 to 30 percent by node,
while STCSTA percentage of samples exceeds 30 percent.

2) SCENARIO 2: LOW TEMPORAL CORRELATION
The second scenario represents the case of low temporal
correlation of data generated of each sensor node through
periods. The estimated temporal correlation corresponds to
the curve Low in Fig. 6. Our proposed method outperforms
AAS, Fixed SR method and STCSTA in terms of energy
preservation. This is due to the use of additional criteria to
adapt the sampling rate such as the correlation of collected
data by the same sensor in successive periods and the residual
energy of sensor nodes. Fig. 11 illustrates the total residual
energy of sensor nodes. The network is totally disconnected
after around 170 periods for STCSTA, 180 periods for AAS
and remains alive until more than 200 periods for our pro-
posed method. In Fig. 13, the percentage of sampling rate
for our proposed method is higher than the other methods
because of the low correlation between data measurements.
However, its number of dead nodes illustrated in Fig. 12 is

FIGURE 11. Scenario 2: Sum of residual energy.

FIGURE 12. Scenario 2: Dead Nodes vs Period.

FIGURE 13. Scenario 2: Percentage of samples per period.

lower. This is due to the use of the residual energy criterion
to compute the sampling rate when the residual energy of a
sensor node decreases under a threshold level. This allows
to maximize the node lifetime and manage the remaining
little amount of energy. It is better to collect a low number
of measurements than not to collect any information.

3) SCENARIO 3: MEDIUM TEMPORAL CORRELATION
The third scenario represents the case of medium temporal
correlation of data generated by each sensor node through
periods. The estimated temporal correlation corresponds to
the curve Medium in Fig. 6. Our proposed method outper-
forms STCSTA, AAS ans Fixed SR methods in terms of
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FIGURE 14. Scenario 3: Sum of residual energy.

FIGURE 15. Scenario 3: Dead Nodes vs Period.

FIGURE 16. Scenario 3: Percentage of samples per period.

energy efficiency as illustrated in Figures 14 and 15. The
networks of AAS and STCSTA methods are totally discon-
nected respectively at around periods 170 and 210, while
our network of the proposed method is still connected after
around 250 periods.

In TABLE 2, we have summarized the percentage of sam-
pling rate %SR calculated using Equation (32) for the first
100 periods and the number of collected data SRtot of our
proposed method for the three scenarios where the temporal
correlation of the generated data varies. Higher is the tempo-
ral correlation of data, lower is the percentage of sampling
rate, which reduces the number of collected data, and then,
reduces the energy consumption of the network.

TABLE 2. Summary of sampling rate of the proposed method.

FIGURE 17. Node’s sampling rate repartition.

D. DATA RECONSTRUCTION PERFORMANCE
Data quality is a crucial factor that trades off with the sam-
pling rate reduction. In this way we evaluate for node si
the normalized squared error denoted by reconstruction error
(RE) given by the following equation to validate the accuracy
of the estimated data at the sink level:

RE(si) =
||vi − v̂i||22
||vi||22

, (34)

where vi is the vector of effective measurements of sensor
node si and v̂i is the estimated vector of measurements, recon-
structed at the sink level.

To study the impact of the sampling rate adaptation,
we consider a periodic WSN using a maximum sampling rate
SRmax = 100 and a low temporal correlation among sensing
data.

In Fig.17, we present an example in 2D of the obtained
sampling rate of each sensor node for a given period of
our proposed adaptive sampling through the samples index.
In such representation, the black color indicates that the
sensor is in sleep mode, whereas in white zone the acquisition
and then the sampling steps are done. In order to exploit the
linear regression for missing data estimation, a learning phase
is required. For this aim, we use a mean based imputation
approach to recover the missing points. In such way, three
illustrations based on linear regression are presented.
• Illustration 1: We here assume that we have only one
sensor node with missing data and therefore we have
a knowledge of the exact data transmitted by the other
nodes. This case is the ideal case for missing data
recovery, and is therefore studied here as a reference
benchmark.

• Illustration 2: During each period, the missing data of
each sensor node at time t are estimated according to the
Equation (29). In such case, the mean based imputation
is called to estimate the non sampled data of all the other
sensor nodes still with missed points.
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FIGURE 18. Reconstruction error of our proposed method.

FIGURE 19. Reconstruction error of benchmark methods.

FIGURE 20. Missing rate percentage vs Period.

FIGURE 21. Reconstructed signal.

• Illustration 3: This illustration is similar to illustration
2 but we consider only the neighbor nodes of the con-
sidered sensor to estimate the non sampled points with
Equation (29).

Fig.18 shows the reconstruction error, RE, of the estimated
data of our proposed method using the regression imputation
as described above, and the mean and median imputation that
respectively replace the missing data by the mean and the
median value of sampled measurements in space and time.
The regression imputation presents a better signal reconstruc-
tion than the other methods. In the following simulations,
we choose the case of regression imputation of illustration
2 referred to ‘‘Regression imputation 2’’ in Fig.18 to compare
it with the reconstruction error of benchmark methods.

In Fig.19, we present the reconstruction error for the dif-
ferent adaptive sampling rate methods evaluated as the mean
of the formula presented in Equation (34) over nodes. The
three methods, AAS, STCSTA and our proposed STASRE,
have an acceptable recovery error around 0.1 while our pro-
posed STASRE allows a longer network lifetime as proved
earlier. Fig.20 represents the percentage of missing samples
through periods which is the complementary percentage with
%Samplesp given by Equation (32). The curve increases
when the nodes die. Fig.21 illustrates the reconstructed signal
of our proposed method during 4 successive periods. The
linear regression imputation used to reconstruct the signal is
able to exploit spatial correlation and achieve a satisfactory
reconstructed signal where the error signal is near to zero.

In conclusion, according to the last simulation, sensor
nodes can reduce their sampling rate without losing signifi-
cant data while the gateway reconstructs the missing samples.
The integrity of the data will be recuperated in the gateway.

VII. CONCLUSION
In this paper, we propose an adaptive sampling rate algo-
rithm for data acquisition reduction in periodic WSN. This
algorithm is performed in the gateway using the spatio-
temporal correlation of sampled data and residual energy of
sensor nodes. After a number of periods, a reconstruction
method based on linear regression is performed to reconstruct
missing data. We compare our proposed method with recent
benchmark methods in different scenarios of temporal corre-
lation. First, we prove that our proposed method outperforms
benchmark methods in maximizing the network lifetime by
evaluating the sum of residual energy of sensor nodes and the
number of remaining alive nodes. Then, to more emphasize
the performance of our proposed method, we evaluate the
quality of recovered data at the gateway using the regression
imputation. We prove that the integrity of data is recuperated
at the gateway.

In future work, we aim to introduce compressive sampling
(CS) for spatial domain compression which allows to deacti-
vate the sensing for some nodes until the active nodes attain a
residual energy threshold. In this way, the sampling rate will
be adaptive not only in time but also in space, and CS also
allows the recovery of missing spatial data.
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