
Received 31 December 2022, accepted 9 January 2023, date of publication 16 January 2023, date of current version 20 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237079

Multi-Mode SpMV Accelerator for Transprecision
PageRank With Real-World Graphs
WHIJIN KIM , (Graduate Student Member, IEEE),
HANA KIM , (Graduate Student Member, IEEE),
JIHYE LEE, (Graduate Student Member, IEEE), HYUNJI KIM, (Graduate Student Member, IEEE),
AND JI-HOON KIM , (Senior Member, IEEE)
Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, South Korea
Smart Factory Multidisciplinary Program, Ewha Womans University, Seoul 03760, South Korea

Corresponding author: Ji-Hoon Kim (jihoonkim@ewha.ac.kr)

This work was supported by IITP grant funded by the Korea Government (MSIT) (No. 2022-0-00441, Memory-Centric Architecture Using
the Reconfigurable PIM Devices). This work was supported by the Ewha Womans University Research Grant of 2020. The EDA tool was
supported by the IC Design Education Center (IDEC), Korea.

ABSTRACT With the development of Internet networks, the PageRank algorithm, which was initially
developed to recommend important pages in Google’s web search systems, is widely used as the basis of
various ranking systems in graph processing fields. However, PageRank algorithm requires Sparse Matrix-
Vector Multiplication (SpMV) repeatedly which becomes main bottleneck for the calculation. In this study,
we present the multi-mode SpMV accelerator for half-to-single transprecision PageRank with real-world
graphs. To support transprecision, where the operation performs in half-precision (FP16) initially and
changes its precision to single-precision (FP32), the proposed multi-mode SpMV accelerator can perform
both dual FP16 mode and single FP32 mode. In dual FP16 mode, the proposed accelerator performs two
FP16 SpMV in parallel, and in single FP32 mode, it performs one FP32 SpMV with the same hardware
resources. Also, for the reduction of memory footprint, the proposed accelerator supports the Compressed
Sparse Row (CSR) format. In addition, dual-issue accumulator and multi-mode transprecision multiplier
are presented to support both FP16 and FP32 modes. Validation of the proposed transprecision PageRank
algorithm is performed with four real-world graph datasets, resulting in a low 0-4% error rate and 1.3×-1.9×
speedup compared to single-precision PageRank computation without transprecision.

INDEX TERMS Transprecision, sparsematrix vector multiplication (SpMV), PageRank (PR), floating-point
multiplier, single-precision (FP32), half-precision (FP16), graph processing.

I. INTRODUCTION
With the development of Internet communication and social
networks, large amounts of data are pouring into users.
To deal with this big data, many algorithms have been
developed to analyze and provide useful information to
users. Particularly, web search engines should quickly extract
the information that users want and display it in order
of importance. The most basic algorithm for web search,
named PageRank, was developed by Larry Page in 1998 for
Google’s search engine and is still widely used [1]. It was
initially developed for search engines working with web-
scale datasets but is now being utilized in various fields to

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Crippa .

rank target data from different types of datasets. PageRank
algorithm uses a dataset that displays web pages and their
relationships with connection information. With a graph
theory notation, each page is represented as a node or vertex,
and the connection of pages is represented as an edge or
link. In PageRank, nodes with many links to other nodes
would have high PageRank values. In addition, if the node
is connected to the other node with a high PageRank value,
the PageRank value of this node also would be high. The
PageRank vector is generated as the output of PageRank
calculation, representing the importance of each page. With
this output vector, the search engine can recommend the most
weighted result to the user. To this day, several algorithms
such as personalized PageRank are being developed using the
basic concept of PageRank [2], [3].

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 6261

https://orcid.org/0000-0003-2102-4442
https://orcid.org/0000-0003-2082-1298
https://orcid.org/0000-0002-9809-1339
https://orcid.org/0000-0003-4504-7550

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

FIGURE 1. Overall PageRank calculation flow with the proposed
multi-mode SpMV accelerator for transprecision PageRank.

Fig. 1 shows the overall calculation flow of PageRank
which can be utilized for various applications. Most rep-
resentatively, PageRank can be used for web search using
large web-scale graphs [4], [5]. Social networks are used to
analyze trends by extracting the key resources or calculating
a ranking of users [6], [7], [8]. PageRank in e-commerce
system allows users to get the appropriate recommendation of
products [9]. To analyze humanmovement, motor sensors are
used to identify the movement path based on the importance
ranking of sensors calculated by PageRank [10]. TextRank
algorithm was developed to extract keywords by obtaining
ranking for a text array based on PageRank algorithm [11].

In PageRank calculation, hyperlink matrix H is generated
to indicate the connection of each node in the network
datasets. In hyperlink matrix, a nonzero element shows that
there is a connection between the two nodes, while a zero
element indicates that there is no connection. Real-world
graphs are represented as a sparse hyperlink matrix mostly
filled with zero elements because it has very few connections
compared to a large number of nodes. During the calculation,
the sparse matrix is repeatedly multiplied with the vector, and
this process is known as Sparse Matrix-Vector Multiplication
(SpMV). Since SpMV is themain bottleneck of the PageRank
operation, it becomes an important challenge to accelerate
this operation without losing accuracy.

Recent studies suggest dedicated accelerators to optimize
SpMV operation. To reduce the memory overhead, [12]
divided the SpMV algorithm into two steps and used parallel
floating-point multipliers, focusing on high-performance
computing for large and hyper-sparse datasets. Matrix
partitioning scheme was also proposed to accelerate SpMV
operation [13]. Partitioning of the sparse matrix using
Compressed Sparse Row (CSR) format enabled parallel
computation. Changing the general precision scheme of
PageRank was effective to implement the SpMV accelerator

TABLE 1. Details of datasets from SNAP used in the evaluation.

on FPGA platform [14]. For high accuracy, PageRank is
generally calculated in a 32-bit single-precision floating-
point (FP32). To reduce the hardware overhead incurred by
FP32 operation, 20- to 26-bit fixed-point calculation scheme
was proposed, showing its efficiency on top-10 to top-50
rankings.

Also, there have been several software approaches sug-
gesting a new precision scheme for PageRank calculations.
In general, dedicated hardware accelerators are superior to
software approaches on programmable computing units, such
as CPUs and GPUs, both in terms of performance and
power consumption which leads to their wide adoption in
many digital signal processing (DSP) applications and recent
Neural Networks (NNs) [15], [16], [17]. The customized 16-
bit half-precision type with the requirement of additional
encoding and decoding process was presented and simulated
in [18]. In [19] and [20], the double-precision number
system with mantissa segmentation was proposed. The
transprecision scheme with the double-precision was applied
to PageRank for the CUDA GPU environment, which
requires more iterations to reach the target threshold. In this
work, we present FP16 to FP32 transprecision PageRank
algorithm and also provide its optimal hardware architecture
based on multi-mode SpMV accelerator with FPU resource
sharing and memory system architecture.

In our previous work, the transprecision SpMV enginewith
Coordinate (COO) format was presented, without any anal-
ysis of speedup and hardware implementation results [21].
In this work, we present the low-complexity transprecision
scheme for PageRank to support the sparse matrix efficiently
with a compressed storage format. As illustrated in Fig. 1,
the proposed transprecision scheme starts its operation with
a 16-bit half-precision floating-point (FP16) and changes to
a 32-bit single-precision floating-point (FP32) at the optimal
point. For reduced memory requirement in main memory,
the multi-mode SpMV accelerator supports executing the
transprecision algorithm with data in CSR format, with
comparison to COO format. Also, the proposed SpMV
accelerator supports two operation modes where it can
compute two FP16 SpMVs in dual FP16 mode and one FP32
SpMV in single FP32 mode. Since the proposed accelerator
can execute two FP16 multiplications in parallel, we can
achieve the speedup compared to the baseline approach
in single-precision operations saving hardware resources.

6262 VOLUME 11, 2023

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

As denoted in Table 1, we use four real-world graph datasets
with various node and edge sizes from Stanford Large
Network Datasets Collections (SNAP) [22] which is widely
used to simulate graph processing algorithms [14], [23].

The rest of this paper is organized as follows. Section II
explains the backgrounds of PageRank equations and sparse
matrix storage format, with the concept of transprecision.
In Section III, we present the data storage requirements for
transprecision PageRank. The hardware architecture of the
multi-mode SpMV accelerator is described in Section IV.
The experimental results are explained in Section V. Finally,
Section VI contains the conclusions from this work.

II. BACKGROUNDS
This section provides the fundamentals of PageRank algo-
rithm, sparse matrix storage format, and transprecision
scheme which should be considered together for the opti-
mized transprecision PageRank operation.

A. OVERVIEW OF PageRank ALGORITHM
Since the development of PageRank in 1998, it has been used
as an early basis for Google and is still applied in various
ranking algorithms. The basic concept of PageRank is that
the importance of each node is determined by the other nodes
which have an association with it. PageRank value can be
calculated as the sum of the linked nodes [24]. Based on this
concept, PageRank can be expressed in vector and matrix
notation with the power iteration method. Consider a directed
graph G = (V ,E) which has n = |V | number of vertices
and |E| number of edges. Hyperlink matrix, or weighted
adjacency matrix H ∈ Rn×n can be expressed as follows:

H [i, j] =

{
1/Oi if (vi, vj) ∈ E
0 otherwise

(1)

where Oi indicates the number of outgoing links from the
node i, vi to node j, vj. Since hyperlink matrix, H only has
the nonzero value when the node is linked to the other nodes,
it becomes the matrix with high sparsity. The PageRank
equation in each iteration can be written as follows:

PR{k+1} =
(1− α)

n
e+

α

n
ewTPR{k} +

SpMV︷ ︸︸ ︷
αHTPR{k} (2)

where PR{k} denotes the PageRank column vector in k-
th iteration [25]. At each iteration, the entire graph data
is read and calculated through (2), and these iterations are
repeated until the whole PageRank calculation is finished.
α is the damping factor, which models the situation where
the user stops clicking, generally set to 0.85 experimentally
[26]. e is a column vector whose element is all 1, while
dangling vector w is a column vector that has an element
of 0 if the node has an outgoing link and 1 if not.
In (2), the first and second terms indicate constant additions
with simple computation. However, the last term consists
of multiplication with hyperlink matrix H and PageRank
vector PR. This multiplication becomes SpMV operation

FIGURE 2. Examples of ELL, DIA, COO, and CSR formats.

and is widely known as the biggest challenge for PageRank
calculation [27].

B. SPARSE MATRIX STORAGE FORMATS
Sparse matrix is a matrix that mostly has 0 as its element.
When the sparse matrix becomes very large, it requires a
significant amount of memory to store whole data although
only a portion is non-zero values. In PageRank calculation,
if the total number of nodes in the graph is given as |V |,
a memory with a size of |V |2 is required to store all data.
Memory waste due to a huge amount of sparse memory is a
fatal problem in big data applications, which generally deal
with large datasets.

To overcome this problem, various compression formats
for the sparsematrix, such as Coordinate (COO), Compressed
Sparse Row (CSR), Compressed Sparse Column (CSC),
Ellpack (ELL), and Diagonal (DIA), are suggested [28].
Fig. 2 shows examples of four sparse matrix storage
formats. ELL format compresses the matrix in data and
column indices. It is suitable for matrices obtained from
semi-structured meshes and unstructured meshes, while the
maximum number of non-zero elements in the row needs
to be known. DIA format stores data with the offset of
each diagonal from the main diagonal, only applied to
matrices with diagonal structure usually from the application
of stencils to regular grids. COO is the most intuitive format,
storing row and column indices for all elements with nonzero
values. This format has a reduced memory requirement that
can store three times of the number of nonzero values. CSR
format contains column indices and data like COO format,
but the row indices are replaced with the pointer (ptr). The
first element of ptr contains the index of the start row. The
following elements indicate the number of data accumulated
up to the corresponding row. CSC format is the column-major

VOLUME 11, 2023 6263

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

FIGURE 3. Floating-point format and precision level of FP64, FP32, and
FP16.

version of CSR format. COO and CSR formats are widely
used since they can be applied to various types of datasets.

C. TRANSPRECISION PARADIGM
Transpresicion is a paradigm that selects an appropriate
precision type depending on the situation to reduce hardware
resources and energy consumption [29]. Even if the precision
level required as a result of a specific operation is deter-
mined already, it can be advantageous to change precision
appropriately in the middle of the operation without accuracy
degradation. Fig. 3 shows the most widely used floating-point
types, double-precision (FP64), single-precision (FP32), and
half-precision (FP16) defined in IEEE 754 standard [30].

The precision level of a floating-point value is a very
important issue for hardware complexity and accuracy where
a higher precision level can achieve better accuracy at the
cost of hardware complexity. Accordingly, it is necessary to
choose the appropriate precision level for energy-efficient
operation without resource waste. With transprecision
paradigm, since the precision changes depending on the target
operation at run-time, PageRank is a good target to apply
transprecision where the relative ranking is more important
than each exact value andwe can start the calculationwith low
precision and change to high precision at the optimal point.

III. DATA STORAGE REQUIREMENTS FOR
TRANSPRECISION PageRank
In the proposed multi-mode SpMV accelerator for transpre-
cision PageRank, the sparse matrix for SpMV operation is
stored in the main memory, usually off-chip DRAM, and
the portion of matrix data is loaded into the local buffer,
usually implemented as an on-chip SRAM. This section
compares sparse matrix storage formats for reduced memory
requirements of the main memory. Also, we analyze the
length of row index x, stored in the local buffer for the
proposed accelerator.

A. SPARSE MATRIX STORAGE FORMAT IN MAIN MEMORY
For the sparse matrix, a compressed storage format can
dramatically reduce memory requirements. Since memory-
bounded algorithms such as PageRank have the bottleneck
on memory bandwidth, a well-defined compressed storage

TABLE 2. Memory requirement comparison between COO and CSR
format.

FIGURE 4. Comparison of COO and CSR format for transprecision
PageRank.

format is an effective solution to decrease total clock cycles
for PageRank calculations as well. Among sparse matrix
storage formats introduced in Section II-B, COO and CSR
formats are widely used due to their flexibility compared to
ELL and DIA formats for specifically structured matrices.
Based on the real-world graph datasets, we analyze the
memory requirements of COO and CSR for the proposed
transprecision PageRank operation.

Fig. 4 shows the process of compressing an example raw
network dataset to COO and CSR format for transprecision
PageRank. The raw network can be expressed in hyperlink
matrix H , indicating a link between a node to node with
information of outdegrees, as explained in Section II-A.

6264 VOLUME 11, 2023

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

FIGURE 5. Histogram for the length of x index on Amazon, Twitter,
Stanford, and Pokec datasets.

HT can be compressed through COO and CSR formats as
illustrated in Fig. 4 where x, y, and val each represent the
row, column, and data of the matrix. x and y are 32-bit integer
values that indicate each index number of nodes, while val is
stored in memory with a 16-bit half-precision floating-point
number.

Table 2 shows information about the required memory
size of COO and CSR format for real-world graph datasets.
COO format requires three times the number of nonzero data
entries, known as the number of edges, for a list of three
elements: x, y, and val. In CSR format, it has the same y
and val entries as COO format, while x is replaced by ptr .
The maximum number of entries in ptr is the one more
entry to indicate the start row in addition to the number
of nodes of the graph, which leads to a reduced memory
requirement compared to COO format [31]. COO format is
only advantageous for datasets with hyper-sparsity when the
number of nodes is larger than the number of edges [32].
Since general real-world datasets have more edges than
nodes, CSR format can reduce up to 38.2% of memory size
compared to COO format. Accordingly, in this work, CSR
format is selected to reduce memory efficiently for the data
layout in the main memory.

B. ANALYSIS OF DATA IN LOCAL BUFFER
For the PageRank calculation, the portion of matrix data is
loaded from the main memory into the local buffer where
the double-buffering scheme is applied. Although the size of
the local buffer affects the overall hardware complexity, too
small-sized local buffer leads to frequent access to the main
memory, usually off-chip DRAM, incurring increased latency
and power consumption. In this work, the local buffer is
determined to have 64 entries with 32-bit width and can store
up to 128 entries for dual FP16 mode, two FP16 numbers per
single 32-bit entry. After multiplication, the results with the
same x index should be accumulated together and written to
write buffer, which can be identified from ptr values in CSR
format.

Algorithm 1 Operation Flow of Multi-Mode SpMV
With CSR Format
1 Function SpMV (ITERFP16, ITERFP32,

newPR,oldPR,CSR_graph):
2 ptr← CSR_graph.ptr; y← CSR_graph.y; val← CSR_graph.val
3 iter = 0
4 do
5 for i = 0, 2, 4, . . . to |V | − 1 do
6 newPR[ptr.x[i]] + = val[i] · oldPRy[i]
7 newPR[ptr.x[i + 1]]+ = val[i + 1] · oldPRy[i+ 1]
8 end
9 iter ++
10 iter < ITERFP16;while
11 iter = 0
12 do
13 for j = 0, 1, . . . to |V | − 1 do
14 newPR[ptr.x[j]]+ = val[j] · oldPRy[j]
15 end
16 iter ++
17 iter < ITERFP32;while

Fig. 5 shows the distribution of the length of x index where
the length of x index indicates the number of data to be
accumulated together with the same x value. As illustrated
in Fig. 5, the histogram shows a left-leaning distribution
and almost data have short x index lengths nearby 1 or 2.
Accordingly, the local buffer with 64 entries has the data
values with the different x values, that is from different
rows, for both dual FP16 mode and single FP32 mode. The
multi-mode SpMV accelerator should carefully handle the
accumulation of multiplied data with different x indices while
processing the data in the local buffer.

IV. PROPOSED MULTI-MODE SpMV ACCELERATOR
The multi-mode SpMV accelerator is proposed for transpre-
cision PageRank in that it has a huge impact on the overall
latency and hardware complexity. To operate both in dual
FP16 mode and single FP32 mode, transprecision multiplier
and dual-issue accumulator are proposed. In this section,
we explain the architecture of the proposed accelerator and
its operation for multi-mode support.

A. MULTI-MODE SpMV ARCHITECTURE FOR
TRANSPRECISION PageRank
For the transprecision PageRank calculation, both half-
precision (FP16) and single-precision (FP32) are used as
described in Algorithm 1. The last term of (2) in Section II-
A indicates SpMV operation, which aims to be accelerated
through hardware. The graph HT is stored in CSR format as
denoted in Fig. 4. The optimal number of iterations of FP16
and FP32 that minimize the number of errors and operation
cycles for each dataset, ITERFP16 and ITERFP32, can be
determined through software profiling. At first, the proposed
SpMV accelerator operates in dual FP16 mode, calculating
two FP16 multiplications at the same time. When the number
of iterations reaches ITERFP16, the operationmode changes to
single FP32 mode where one FP32 multiplication is executed
at a time during the following ITERFP32 iterations.

VOLUME 11, 2023 6265

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

FIGURE 6. Architecture of multi-mode SpMV accelerator operating (a) in dual FP16 mode and (b) in single FP32 mode.

FIGURE 7. Datapath of FP16 to FP32 converter.

Fig. 6 shows the overall architecture of the proposed
multi-mode SpMV accelerator which supports two operation
modes, dual FP16 mode and single FP32 mode. Initially,
in the main memory, data is stored in FP16 based on CSR
format. Local buffer is prepared to load data from main
memory for the next computation steps, considering the
general System-on-Chip environments with various DRAMs
such as HBM, DDR2/3/4 with different specifications and
bandwidths. With the graph data, val and previous PageRank
values, oldPR from the local buffer, themulti-modemultiplier
operates in dual FP16 or single FP32. The multiplication
results are accumulated according to the x values obtained
from ptr values, then updated as newPR to the main memory
with the write buffer.

FIGURE 8. Local buffer types. (a) Cache. (b) Double buffer (FIFO).

In dual FP16 mode, as illustrated in Fig. 6(a), data used for
the multiplier is represented in 16-bit half-precision. Since
the local buffer has 32-bit bitwidth, two 16-bit numbers in
half-precision can be stored in one write buffer entry for
multiplication. After multiplication, up to two results can be
stored in one 32-bit entry of the write buffer. When the update
of newPR ends for the given iteration, two regions for oldPR
and newPR change their roles for the next iteration. Also,
when the proposed SpMV accelerator changes its operation

6266 VOLUME 11, 2023

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

mode from dual FP16 mode to single FP32 mode, 16-bit
half-precision val and oldPR from the main memory should
be converted into 32-bit single-precision with the simple
conversion unit as shown in Fig. 7. In single FP32 mode as
illustrated in Fig. 6(b), one result frommultiplication is stored
into write buffer.

Local buffer can be implemented both in cache and double
buffer in First-In, First-Out (FIFO) types as illustrated in
Fig. 8. Cache is suitable when the same data is repeatedly
requested, so-called temporal/spatial localities, at the cost
of additional memory requirement for tag. In the proposed
architecture, data in main memory is arranged in the order
of x index of ptr and PageRank values in local buffer
corresponding to y index have little temporal/spatial localities
with the practical cache size. In the proposed architec-
ture, since data is loaded in local buffer and sequentially
transmitted to the computing unit, FIFO is preferred over
cache and implemented in the form of double buffer to
hide the long latency of data transfer from main memory
while providing the data to computing unit at the same
time.

B. MULTI-MODE TRANSPRECISION MULTIPLIER
In the proposed multi-mode SpMV accelerator, the multiplier
which can execute two FP16 multiplications in dual FP16
mode and one FP32 multiplication in single FP32 mode is
required. In a floating-point multiplier, the sign bit is gained
with XOR operation, and the exponent bit can be easily
calculated with simple addition or subtraction. However,
since the mantissa bit should be multiplied, this multiplier
becomes the biggest overhead of the floating-point multiplier.
To minimize hardware resources, we present the dual-mode
multiplier which can share the hardware resource for FP16
and FP32 as indicated in (3).

xSig = xSigH · 2
n
2 + xSigL

ySig = ySigH · 2
n
2 + ySigL

xSig · ySig = (xSigH · 2
n
2 + xSigL) · (ySigH · 2

n
2 + ySigL)

= xSigH · ySigH · 2n + xSigH · ySigL · 2
n
2

+ xSigL · ySigH · 2
n
2 + xSigL · ySigL (3)

where xSig and ySig are significands from 32-bit single-
precision floating-point numbers and the method to multiply
xSig and ySig by dividing them into higher and lower
parts is presented [33]. Significand is the extended form of
mantissa bits with 1-bit 1. In floating-point multiplication,
the significand number is multiplied instead of mantissa bits
to control overflow and underflow. Since xSig and ySig can
be expressed as the sum of higher parts and lower parts, the
multiplication of significands can be rewritten by adding the
products of divided parts.

Fig. 9 shows the datapath of the Type I and Type II
multiplier. Type I multiplier consists of one FP32 multiplier
and two FP16 multipliers. The multipliers contain status flag
logic although not indicated in Fig. 9 for simplicity. Since
the operands of the multipliers, oldPR and val are always

FIGURE 9. Datapath of Type I and Type II multiplier. (a) Type I multiplier:
two FP16 multipliers and one FP32 multiplier. (b) Type II multiplier:
multi-mode transprecision multiplier for dual FP16 mode and single FP32
mode by sharing two 12-bit multipliers.

within 0 to 1, overflow does not occur [34]. In the case of
underflow, the underflowed value is treated as 0. Since the
proposed multi-mode SpMV accelerator should be capable
of performing two FP16 multiplications at the same time,
or one FP32 multiplication, this Type I multiplier proposes
the simple method using one FP32 multiplier and two FP16
multipliers without considering hardware overhead. Type II
is a multi-mode transprecision multiplier designed according
to (3), sharing multipliers between two modes. Since the
significand of FP32 has 24-bit and FP16 has 11-bit, Type I
requires one 24-bit multiplier and two 11-bit multipliers.
In Type II, the 24-bit multiplier can be replaced by two
12-bit multipliers, while these are enough to calculate 11-bit
significands of FP16. Added multiplexers enable control
of operation modes of the multiplier, and multiplication of
2n can be easily implemented with concatenation. Type II
multiplier is finally applied in multi-mode SpMV accelerator
for transprecision multiplication, reducing hardware resource
compared to general Type I multiplier.

C. DUAL-ISSUE ACCUMULATOR
Since dual FP16 mode executes two multiplications in
parallel, the accumulator should treat results from multi-
mode transprecision multiplier at the same time. Dual results
of transprecision multiplier are named A and B, from FP16
multipliers MUL A and MUL B. The x indices of A and B

VOLUME 11, 2023 6267

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

FIGURE 10. Architecture of dual-issue accumulator. (a) x index and
length of x index of multiplier A, B output decoded from ptr in dual
FP16 mode. (b) Datapath of dual-issue accumulator per cycle in example
of (a). (c) Datapath of dual-issue accumulator in single FP32 mode.

should be different according to the analysis of data in the
local buffer as shown in Section III-B. To treat data with
different indices, dual-issue accumulator is designed to cover
all possible situations.

Fig. 10 explains the architecture of dual-issue accumulator
with some examples. Fig. 10(a) shows the example of
information prepared in CSR format. Since CSR format
consists of ptr instead of storing entire x indices, the length
of each x index can be known with subtraction of nearby
ptr value. In dual FP16 mode, two multiplier outputs, A
and B enter into the accumulator per one cycle. With this
information, x indices of A and B can be decoded in Aidx and
Bidx . In cycle 7, A and B change their value to accumulate
data with index 7 at the same position as the last cycle 6.

Fig. 10(b) shows the datapath of the dual-issue accumula-
tor using the example of Fig. 10(a). The accumulator consists
of two FP16 adders and two 16-bit registers. Inputs of adders
and registers can be selected by multiplexers. In cycles 0, 3,
4, and 5, since x indices of A and B, Aidx and Bidx are the
same, they should be added to each other. After adding A and
B, the result will be stored in the register or passed to write
buffer according to the length of the x index. If the x index
has length 2 like in cycle 0, the added result can be updated to
write buffer immediately. However, when the length is more
than 2, the accumulator should check the end of the same x
index, then store the result in the register or update to write
buffer.

In cycles 1, 2, 6, and 7, since Aidx and Bidx are different,
they should be treated separately. When the length of Aidx
and Bidx are all 1, they can directly dual-issued to write
buffer like in cycle 1. If the length is more than 1, the
value stored in the register should be added to the input
value. Added results can be updated to write buffer when the
calculation of the same index is finished. In cycle 7, values
of A and B are exchanged to accumulate value with a lower
register. Example of Fig. 10(b) covers all possible modes of
accumulator in dual FP16 mode.

Fig. 10(c) depicts the datapath of dual-issue accumulator
in single FP32 mode, reusing datapath of dual FP16 mode.
Since multiplier output of single FP32 mode has one result
per cycle, there is no need to consider various operation
modes as in FP16 mode. Two 16-bit registers can be reused to
store 32-bit single-precision numbers, while two FP16 adders
can also be reused for the FP32 adder. Since the floating-
point adder consists of exponent logic and mantissa adder
with shifter, the adder and shifter can easily work in dual
mode [35]. The results of the FP32 adder can be stored in
two registers separately or dual-issued in two 16-bit values to
write buffer.

V. EXPERIMENTAL RESULTS
For real-world graph datasets selected from SNAP as denoted
in Table 1, the proposed transprecision PageRank algorithm
is analyzed with in-house simulator in C++ language.
To support transprecision, transpoint is newly defined which
determines the time to change the precision level of operation
from FP16 to FP32. Then, threshold determines when the
iterative PageRank calculation can stop. Euclidean distance
between oldPR and newPR is used as the difference of
PageRank operation, while transpoint and threshold work

6268 VOLUME 11, 2023

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

FIGURE 11. The number of errors of top-100 ranking in single calculation.

as the control point of operation. This FP16 to FP32
transprecision PageRank is verified with a simulator in the
aspects of accuracy and speed, comparing the results of
transprecision (trans) with FP16 half-precision (half) and
FP32 single-precision (single).

Fig. 11 shows the graph of the number of errors in
the top-100 ranking in single calculation according to the
change of threshold from 1E-3 to 1E-6. The number of
errors is determined by counting the number of different
rankings compared to the top-100 rank result of calculated
in double, which is the most precise calculation result. Then,
we selected the threshold point which has the lowest number
of errors for each dataset to analyze transpoint. For Twitter
and Pokec datasets, since threshold has a large effect on the
number of errors, the lowest threshold 1E-6 point is selected.
Stanford and Amazon datasets have similar numbers of errors
according to the threshold, with 1E-04 and 1E-05 showing the
lowest error for each.

To evaluate the throughput in PageRank calculation,
operation cycles are newly defined as the sum of the number
of iterations in single and halved value of the number of
iterations in half since two FP16 operations can be processed
at once in the proposed multi-mode SpMV accelerator. The
graphs in Fig. 12 show the number of errors, the number
of iterations in FP16 and FP32, and operation cycles with
the change of transpoint in the selected threshold point from
Fig. 11. The number of iterations is depicted in the bar graph,
indicating the proportion of half and single according to
transpoint. The optimal point is indicated with the number of
half and single iterations in ITERFP16 and ITERFP32. When
the transpoint is set nearby the threshold, the proportion of
iterations calculated in half increases. In contrast, when the
transpoint is set to 1E+0, the entire PageRank is calculated in
single.

Table 3 summarizes the number of errors in half and trans.
trans shows an extremely low number of errors compared to
half . When the entire PageRank computation is executed in
half , it can lead to convergence failure with a large number of
errors due to the low precision level of FP16. However, when
the appropriate transpoint is set near the thresholdwithout any

FIGURE 12. The number of errors, operation cycles, and half , single
portion in the number of iterations according to transpoint.

convergence failure, it maintains a similar number of errors
in single.

In PageRank calculation, the required number of floating-
point operations (FLOPs) is given by the product of the

VOLUME 11, 2023 6269

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

TABLE 3. The number of errors in half and trans.

FIGURE 13. Operation cycles comparison of trans and single.

number of iterations and twice the number of edges in
each dataset since it requires one multiplication and one
accumulation for an edge. For general-purpose CPUs and
GPUs, overall throughput for PageRank calculation depends
on the floating-point calculation capability of the computing
units. Due to the multi-mode SpMV architecture where two
FP16 operations can be processed at once, the proposed
transprecision architecture can improve the throughput of
the PageRank calculation. Fig. 13 shows the comparison
between operation cycles of trans and single. In trans, since
the operation cycles in half iterations can be halved, it shows
the result of speedup up to 1.9× compared to single. The
proposed multi-mode SpMV accelerator enables the speedup
of trans, supporting two FP16 multiplications at the same
time in dual FP16 mode.

FIGURE 14. Gate count comparison of FP64 multiplier, FP32 multiplier,
Type I and Type II multiplier.

FIGURE 15. Area-time product comparison of single and trans.

Multipliers introduced in Section IV-B are synthesized
in 28nm CMOS process at 1GHz clock frequency with
FP64 double-precision multiplier and FP32 single-precision
multiplier for comparison. As illustrated in Fig. 14, FP64
multiplier has the largest gate count of 18.1kGE (NAND2
Gate Equivalent) mainly due to a 53-bit significand number
to be multiplied. Type I multiplier consists of one FP32
multiplier and two FP16 multipliers, while Type II is multi-
mode transprecision multiplier used for the proposed SpMV
accelerator sharing 12-bit multipliers. Type II multiplier has
the lowest gate count of 3.02kGE compared to others, even
lower than the FP32 multiplier. Splitting the multiplier by
dividing the mantissa part of the floating-point number is
effective to reduce hardware resources.

The area-time product of single and trans is illustrated in
Fig. 15 where the proposed transprecision PageRank shows
the area-time product reduction of 36.7-45.7% compared to

6270 VOLUME 11, 2023

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

TABLE 4. Comparison with prior works.

the uniform single-precision system. For combinational logic,
since the power consumption is proportional to the number
of logic gates, the area-time product is a good measure of
the energy savings of the proposed architecture. Additionally,
regarding the number ofmemory accesses, which is one of the
major contributions to energy dissipation, a reduced amount
of memory accesses is required in the proposed architecture
since FP16 operations require half of the data amount from
main memory compared to FP32.

Table 4 summarizes the comparison of prior works which
designed SpMV accelerator. COO format is applied to [12]
and [14], which has an intuitive format to utilize. CSR format
is selected in this work and [13] to reduce memory size
compared to COO format for common datasets which are not
hyper-sparse. The SpMV accelerator in [14] selects 20-bit to
26-bit fixed-point precision for PageRank acceleration, while
working on the newly proposed FP16 to FP32 transprecision
scheme has shown higher accuracy.

VI. CONCLUSION
The multi-mode SpMV accelerator for transprecision PageR-
ank is proposed, operating in dual FP16 mode and single
FP32 mode. Four real-world datasets are used in CSR
sparse matrix compression format, with up to 38% memory
reduction compared to COO format. To perform two FP16
SpMV at the same time, a dual-issue accumulator and
multi-mode transprecision multiplier are designed. Hardware
resources can be reused between two operation modes to
reduce overhead. The proposed FP16 to FP32 transprecision
PageRank algorithm is verified for aspects of accuracy and
speed. Transprecision shows an extremely low number of
errors compared to FP16 half-precision, with an error rate
of 0-4%. Compared to single-precision PageRank without
transprecision, the proposed transprecision PageRank shows
1.3×-1.9× speedup.

REFERENCES
[1] L. Page, S. Brin, R. Motwani, and T. Winograd, ‘‘The pagerank

citation ranking: Bringing order to the web,’’ Stanford InfoLab,
Tech. Rep. 1999-66, Nov. 1999. [Online]. Available: http://ilpubs.stanford.
edu:8090/422/

[2] B. Bahmani, K. Chakrabarti, and D. Xin, ‘‘Fast personalized PageRank on
MapReduce,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2011,
pp. 973–984.

[3] W. Lin, ‘‘Distributed algorithms for fully personalized PageRank on large
graphs,’’ in Proc. World Wide Web Conf., May 2019, pp. 1084–1094.

[4] H. Eedi, S. Peri, N. Ranabothu, and R. Utkoor, ‘‘An efficient practical
non-blocking PageRank algorithm for large scale graphs,’’ in Proc. 29th
Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP),
Mar. 2021, pp. 35–43.

[5] T. H. Haveliwala, ‘‘Topic-sensitive PageRank,’’ in Proc. 11th Int. Conf.
World Wide Web, May 2002, pp. 517–526.

[6] I. M. Kamal, H. Bae, L. Liu, and Y. Choi, ‘‘Identifying key resources in a
social network using f-PageRank,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 397–403.

[7] H. Zhao, X. Xu, Y. Song, D. L. Lee, Z. Chen, and H. Gao, ‘‘Ranking users
in social networks with motif-based PageRank,’’ IEEE Trans. Knowl. Data
Eng., vol. 33, no. 5, pp. 2179–2192, May 2021.

[8] S. Bo, G.Wenfeng, and L. Yan, ‘‘Discovery of key nodes in social networks
premised on PageRank algorithm,’’ in Proc. Asia–Pacific Conf. Image
Process., Electron. Comput. (IPEC), Apr. 2020, pp. 26–28.

[9] H. S. Sint and K. K. Oo, ‘‘Consumer trust recommendation in online social
commerce,’’ in Proc. IEEE 8th Global Conf. Consum. Electron. (GCCE),
Oct. 2019, pp. 436–438.

[10] S. Payandeh and E. Chiu, ‘‘Application of modified PageRank algorithm
for anomaly detection inmovements of older adults,’’ Int. J. Telemed. Appl.,
vol. 2019, pp. 1–9, Mar. 2019.

[11] R. Mihalcea and P. Tarau, ‘‘Textrank: Bringing order into text,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process., 2004, pp. 404–411.

[12] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
‘‘Efficient SpMV operation for large and highly sparse matrices using
scalablemulti-waymerge parallelization,’’ inProc. 52nd Annu. IEEE/ACM
Int. Symp. Microarchitecture, Oct. 2019, pp. 347–358.

[13] B. Sigurbergsson, T. Hogervorst, T. D. Qiu, and R. Nane, ‘‘Sparstition:
A partitioning scheme for large-scale sparse matrix vector multiplication
on FPGA,’’ in Proc. IEEE 30th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2019, pp. 51–58.

[14] A. Parravicini, F. Sgherzi, and M. D. Santambrogio, ‘‘A reduced-precision
streaming SpMV architecture for personalized PageRank on FPGA,’’
in Proc. 26th Asia South Pacific Design Autom. Conf., Jan. 2021,
pp. 378–383.

[15] J.-H. Kim and I.-C. Park, ‘‘A unified parallel radix-4 turbo decoder for
mobile Wimax and 3GPP-LTE,’’ in Proc. IEEE Custom Integr. Circuits
Conf., Sep. 2009, pp. 487–490.

[16] D. Kim, W. Byun, Y. Ku, and J.-H. Kim, ‘‘High-speed visual target
identification for low-cost wearable brain-computer interfaces,’’ IEEE
Access, vol. 7, pp. 55169–55179, 2019.

[17] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and
I. Kang, ‘‘7.1 An 11.5TOPS/W 1024-MAC butterfly structure dual-core
sparsity-aware neural processing unit in 8nm flagship mobile SoC,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019,
pp. 130–132.

[18] A. S.Molahosseini and H. Vandierendonck, ‘‘Half-precision floating-point
formats for PageRank: Opportunities and challenges,’’ in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), Sep. 2020, pp. 1–7.

[19] T. Grützmacher and H. Anzt, ‘‘A modular precision format for decoupling
arithmetic format and storage format,’’ inProc. Eur. Conf. Parallel Process.
Cham, Switzerland: Springer, 2018, pp. 434–443.

[20] T. Grutzmacher, H. Anzt, F. Scheidegger, and E. S. Quintana-Orti, ‘‘High-
performance GPU implementation of PageRank with reduced precision
based on mantissa segmentation,’’ in Proc. IEEE/ACM 8th Workshop
Irregular Appl., Archit. Algorithms (IA3), Nov. 2018, pp. 61–68.

[21] W. Kim, J. Lee, S. Kim, and J.-H. Kim, ‘‘Multi-mode transprecision sparse
matrix-vector multiplication engine for PageRank,’’ in Proc. Int. Conf.
Electron., Inf., Commun. (ICEIC), Feb. 2022, pp. 1–3.

[22] J. Leskovec and A. Krevl, ‘‘SNap datasets: Stanford large network dataset
collection,’’ Jun. 2014. [Online]. Available: http://snap.stanford.edu/data

[23] B. Rozemberczki, O. Kiss, and R. Sarkar, ‘‘Karate club: An API oriented
open-source Python framework for unsupervised learning on graphs,’’ in
Proc. 29th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2020, pp. 3125–3132.

[24] N. Perra, V. Zlatić, A. Chessa, C. Conti, D. Donato, and G. Caldarelli,
‘‘PageRank equation and localization in the WWW,’’ EPL Europhys. Lett.,
vol. 88, no. 4, Nov. 2009, Art. no. 48002.

[25] M. Franceschet, ‘‘PageRank: Standing on the shoulders of giants,’’
Commun. ACM, vol. 54, no. 6, pp. 92–101, Jun. 2011.

VOLUME 11, 2023 6271

W. Kim et al.: Multi-Mode SpMV Accelerator for Transprecision PageRank With Real-World Graphs

[26] S. Brin and L. Page, ‘‘The anatomy of a large-scale hypertextual web
search engine,’’ Comput. Netw. ISDN Syst., vol. 30, nos. 1–7, pp. 107–117,
Apr. 1998.

[27] T.Wu, B.Wang, Y. Shan, F. Yan, Y.Wang, and N. Xu, ‘‘Efficient PageRank
and SpMV computation on AMD GPUs,’’ in Proc. 39th Int. Conf. Parallel
Process., Sep. 2010, pp. 81–89.

[28] N. Bell and M. Garland, ‘‘Efficient sparse matrix-vector multiplication on
CUDA,’’ NVIDIA Corp., Tech. Rep. NVR-2008-004, Dec. 2008.

[29] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagliavini,
A. Emerson, A. Tomas, D. S. Nikolopoulos, E. Flamand, and
N. Wehn, ‘‘The transprecision computing paradigm: Concept, design, and
applications,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 1105–1110.

[30] W. Kahan, ‘‘IEEE standard 754 for binary floating-point arithmetic,’’ Lect.
Notes Status IEEE, vol. 754, no. 1776, p. 11, May 1996.

[31] T. Kelly, ‘‘Programming workbench: Compressed sparse row format for
representing graphs,’’ Login Usenix Mag., vol. 45, no. 4, pp. 77–79, 2020.

[32] A. Buluc and J. R. Gilbert, ‘‘On the representation and multiplication of
hypersparse matrices,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Apr. 2008, pp. 1–11.

[33] K. Manolopoulos, D. Reisis, and V. A. Chouliaras, ‘‘An efficient multiple
precision floating-point multiplier,’’ in Proc. 18th IEEE Int. Conf.
Electron., Circuits, Syst., Dec. 2011, pp. 153–156.

[34] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, ‘‘Exploiting
the block structure of the web for computing pagerank,’’
Stanford InfoLab, Tech. Rep. 2003-17, 2003. [Online]. Available:
http://ilpubs.stanford.edu:8090/579/

[35] M. K. Jaiswal, B. S. C. Varma, and H. K. H. So, ‘‘Architecture for dual-
mode quadruple precision floating point adder,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. (VLSI), Jul. 2015, pp. 249–254.

WHIJIN KIM (Graduate Student Member,
IEEE) received the B.S. degree in electronic
and electrical engineering from Ewha Womans
University, Seoul, South Korea, in 2021, where
she is currently pursuing the M.S. degree with
the Digital System Architecture Laboratory.
Her current research interests include graph
processing, high-performance computing, neural
network processing, processing-in-memory, and
near-memory processing.

HANA KIM (Graduate Student Member, IEEE)
received the B.S. degree in electronic engineering
and the M.S. degree in electronic and electrical
engineering fromEwhaWomansUniversity, South
Korea, in 2020 and 2022, respectively, where
she is currently pursuing the Ph.D. degree with
the Digital System Architecture Laboratory. Her
current research interests include data type, deep
neural network (DNN) accelerator, system-on-
chip, and digital system architecture design.

JIHYE LEE (Graduate Student Member, IEEE)
received the B.S. degree in electronic and electrical
engineering from Ewha Womans University,
Seoul, SouthKorea, in 2021, where she is currently
pursuing the M.S. degree with the Digital System
Architecture Laboratory. Her current research
interests include domain-specific processor,
system-on-chip, secure microarchitecture, near-
memory processing, and processing-in-memory.

HYUNJI KIM (Graduate Student Member, IEEE)
received the B.S. degree in electronic engineering
and the M.S. degree in electronic and electrical
engineering fromEwhaWomansUniversity, South
Korea, in 2019 and 2021, respectively, where
she is currently pursuing the Ph.D. degree with
the Digital System Architecture Laboratory. Her
current research interests include programmable
scalable deep neural processing unit.

JI-HOON KIM (Senior Member, IEEE) received
the B.S. (summa cum laude) and Ph.D. degrees in
electrical engineering and computer science from
KAIST, Daejeon, South Korea, in 2004 and 2009,
respectively.

In 2009, he joined Samsung Electronics, Suwon,
South Korea, as a Senior Engineer, and worked
on next-generation architecture for 4G commu-
nication modem system-on-chip (SoC). He was
an Associate Professor with the Department

of Electronics Engineering, Chungnam National University, Daejeon,
from 2010 to 2016. In 2018, he joined the Department of Electronic and
Electrical Engineering, Ewha Womans University, Seoul, South Korea, as a
Faculty Member, where he is currently a Professor. His current research
interests include CPU microarchitecture, domain-specific SoC, and deep
neural network accelerators.

Dr. Kim has served on the Technical Program Committee and Organizing
Committee for various international conferences, including the IEEE
International Conference on Computer Design (ICCD), IEEE Asian Solid-
State Circuits Conference (A-SSCC), and IEEE International Solid-State
Circuits Conference (ISSCC). He was a recipient of the Best Design Award
at Dongbu HiTek IP Design Contest, in 2007, and the First Place Award at
the International SoC Design Conference Chip Design Contest, in 2008.

6272 VOLUME 11, 2023

