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ABSTRACT Fault-freeness is one of the necessary guarantees for healthy and stable operations of discrete
event systems. Traditional diagnostic models may fail since sensors may suffer electronic component
failures, communication failures, or atmospheric electromagnetic interference. Robust diagnosis problem
has attracted more and more attention since it improves reliability of the diagnosis technology. When
generating the Petri net reachability graph necessary for constructing a reachability diagnoser, one may
face the state explosion problem. As a Petri net gets more complicated, the complexity of its reachability
graph also increases exponentially. With the basis reachability graph, a lightweight diagnoser named a basis
reachability diagnoser is developed, together with a robust basis reachability diagnoser obtained by dilating
the basis reachability graph. Compared with reachability graphs, the advantages of basis reachability graphs
in construction complexity are confirmed and the efficiency in robust diagnosability analysis is improved.

INDEX TERMS Discrete event system, diagnosability, basis reachability graph, robust diagnosability.

I. INTRODUCTION
Fault-freeness is necessary for the healthy and stable
operation of systems, and is the goal of all system designers
and producers. With the rapid development of information
technology and industrial automation control, human-made
control systems such as automatic manufacturing systems
[1], [2], [3], power grids [4], transportation systems [5],
and communication networks [6] are becoming more
sophisticated. Due to their meticulous structures, a tiny
failure in these systems may cause immeasurable losses.
Under this circumstance, fault diagnosis of discrete event
systems (DESs) [7], [8] as a hot research area has received
much attention from researchers and practitioners in recent
years [9], [10], [11], [12], [13], [14], [15].

Within the framework of nondeterministic finite-state
automata (NFA), a fault diagnosis method is proposed
in [16], [17], where faults are assumed to be unobservable
events. The authors introduce a diagnoser, which is an
individual procedure, to detect and isolate a fault event. The
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diagnoser can provide diagnostics using on-line observations
of the system behavior. The methods presented in [16] are
applicable for any DES without being modified. An inte-
grated approach is presented in [18] to control and diagnose
the occurrence of failures.

Petri nets are a kind of precise semantic representation
of DESs with powerful expression capabilities [19]. These
advantages motivate more and more DES researchers to
study Petri nets [20], [21], [22], [23], [24], [25]. In [20], the
author briefly reviews the history and the application areas
of Petri nets, introducing behaviors, structural properties and
some subclasses of Petri nets. Among them, labeled Petri
nets (LPNs) are extensively employed to deal with fault
diagnosis [22], [26], [27], deadlock prevention [28], [29],
opacity verification [24], [30], [31], [32], etc., in DES
owing to their outstanding modeling ability, particularly their
categorization in different transitions.

The work in [26] provides an LPN-based DES fault
detection method, which assumes that part of transitions
are unobservable in a mesh system, including those that
represent faults. Basis markings and justifications are intro-
duced to characterize markings that consistent with given
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observations. The authors also implement their work off-line
if the net system is bounded, which optimizes the complexity.
Later in [22], the authors develop a MATLAB diagnostics
toolbox and verify the new approach’s effectiveness in [26].

In [33], the diagnosability problem is presented in the
form of an example from the automotive industry. Since
exhaust gas does not burn, recirculation reduces the peak
combustion temperatures. Thus, the valve may fail. A series
of control sequences is designed to diagnose the valve
malfunction, which can be abstracted as an off-line diagnosis
procedure, i.e., a diagnosability analysis procedure. In [34],
a problem from the automotive industry of a vehicle braking
system equipped with an antilock brake system is solved by
diagnosability analysis using Petri nets.

To improve the efficiency of diagnosability analysis using
LPNs [35], [36], the authors introduce a compact way to
represent the reachability graph using basis markings, i.e.,
a subset of a system’s reachable markings [37]. It can be
confirmed that employing basis markings in diagnosability
analysis rather than reachable markings offers a sizable
complexity advantage since the number of basis markings is
typically smaller than that of reachable markings.

Sensors are used to provide data in conventional diagnosis.
However, in practice, the sensors themselves may be
faulty, which will prevent the system from obtaining valid
observations. There are also many other external issues that
can invalidate the diagnosis model. Therefore, the notion of
robust diagnosis [38], [39], [40], [41] is introduced to deal
with this complexity.

In [42], supervisory control in the DES framework with
sensor failures as partial observations is discussed. All
sensors are initialized to observe occurrences of events
and transmit them to the controller. However, if a sensor
fails, it will not be able to transmit its information any
longer. Under this circumstance, observability is redefined,
which tolerates the existence of faulty sensors. Note that the
author assumes that the faulty sensor never recovers from a
malfunction in this work.

Robust co-diagnosability is introduced in [38]. It is
assumed that all partial observers are subject to failures.
The way to solve the diagnosability problem with these
broken observers is discussed. The authors also present two
different tests, one utilizing verifier automata and the other
with diagnoser automata.

The authors in [40] and [41] respectively consider
the robust diagnosability problem with intermittent sensor
failures and intermittent observations loss. The former
presupposes that the sensors could malfunction at any time
while gathering data, but that they could also recover
from the malfunction at any time. The latter takes into
account the more complicated scenario in which the sensors
are operational but communication between them and the
controller can break down at any point. Similarly, the
communication channel may restore. This problem gives rise
to the definition of robust diagnosability. Meanwhile, the
authors extend the conclusions to robust co-diagnosability.

This work is dedicated to the study of robust diagnosability
problemwithin the framework of LPNs. The rest of this paper
is organized as follows. Section II reviews the primary notions
and definitions of automata and Petri nets. Section III recalls
the definitions of language diagnosability, indeterminate
cycles, reachability diagnosers, and language robust diagnos-
ability. Section IV focuses on the computational complexity
of constructing a reachability graph. We try to reconstruct
our diagnosis model in a more compact way. We give
the generation algorithm of a (robust) basis reachability
diagnoser combined with the proposed dilation operation.We
propose a novel and more refined necessary and sufficient
condition for language robust diagnosability in combination
with robust basis reachability diagnosers. Section V provides
a numerical experiment in which we compare the efficiency
of two diagnosis models. Section VI summarizes the theme,
method, and result of this work. The possible direction in
which this work may continue in the future is also proposed.

II. PRELIMINARIES
A. AUTOMATA
A deterministic finite-state automaton (DFA), denoted by G,
is a five-tuple

G = (Q, 6, f , q0,Qm), (1)

where Q denotes a set of states, 6 = {a, b, c, · · · } indicates
a set of events, f : Q × 6 → Q is called partial transition
function, q0 is the initial state and Qm ⊆ Q is a set of
marked states. Set6∗ is the Kleene-closure of6. A language
defined over 6 is a set of finite-length strings formed from
events in 6, i.e., a subset of 6∗. The transition function f
can be extended to Q × 6∗ → Q by defining f (q, se) =
f (f (q, s), e), where s ∈ 6∗ and e ∈ 6. Generally, we write
f (q, e)! if f (q, e) is defined. A transition function is also
recorded as (q1, e, q2) in some scenarios, which is equivalent
to f (q1, e) = q2.

We define projection Po : 6∗→ 6∗o , and it satisfies:

Po(ε) = ε,

Po(e) =

{
e, if e ∈ 6o,

ε, if e ∈ 6uo,

Po(se) = Po(s)Po(e), for s ∈ 6∗, e ∈ 6, (2)

where the alphabet 6 is partitioned into the set of observable
events 6o and the set of unobservable events 6uo, i.e.,
6o ∪ 6uo = 6 and 6o ∩ 6uo = ∅. The inverse projection
operation P−1o is defined as

P−1o (u) = {s ∈ 6∗ : Po(s) = u}. (3)

Let G1 = (Q1, 61, f1, q0,1,Qm,1) and G2 = (Q2, 62,
f2, q0,2, Qm,2). The synchronous (or parallel) composition is
defined as:

Gsync =G1 ∥ G2

=Ac(Q1 × Q2, 61 ∪62,

f1∥2, (q0,1, q0,2),Qm,1 × Qm,2), (4)
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where Ac(·) is the accessible part of an automaton. Any state
or transition that cannot be reached from the initial state will
be trimmed by Ac(·) operation. Let 0 : Q → 26 denote the
feasible event set in a state, i.e., 0(q) = {e ∈ 6|f (q, e)!}. The
transition function denoted as f1∥2 satisfies:

f1∥2((q1, q2), e) =



(f1(q1, e), f2(q2, e)),
if e ∈ 01(q1) ∩ 02(q2),

(f1(q1, e), q2),
if e ∈ 01(q1) \62,

(q1, f2( q2, e)),
if e ∈ 02(q2) \61.

(5)

Let 6f ⊆ 6uo denote the set of fault events. For ease of
understanding, we only consider one fault event in this paper,
i.e., 6f = {ef }. Let sf represent the ending event of s. Let s̄
denote the prefix-closure of s, i.e., the set of all sequences that
are prefixes of s. Similarly, L̄ =

⋃
s∈L s̄ defines the prefix-

closure of language L. The length of s is ∥ s ∥. Let 9(6f )
denote the set of strings in a language L that end with a fault
event, i.e., 9(6f ) = {s ∈ L|sf ∈ 6f }. Let 6f ∈ s denote
s̄∩9(6f ) ̸= ∅ by a slight abuse of notation, i.e., s includes at
least one fault event from 6f . Set L/s = {u ∈ 6∗ : su ∈ L}
is the post-language of L after trace s ∈ L.

B. PETRI NETS
A Petri net, denoted by N , is a four-tuple

N = (P,T ,Pre,Post), (6)

where P = {p1, p2, . . . , pm} denotes the set of m places
depicted with circles and T = {t1, t2, . . . , tn} is the set of n
transitions depicted with bars, respectively. Pre : P×T → N
and Post : P × T → N are the pre- and post-incidence
functions. Let C = Post − Pre be the incidence matrix.
Given a transition t ∈ T , the preset of t is defined as

•t = {p ∈ P|Pre(p, t) > 0}. (7)

A marking is a vector M : P → N that assigns a
non-negative integer number to each place. This number
represents the amount of tokens, which is generally depicted
as black dots (or recorded directly) in a place. We use an
m-dimensional vector indexed by P to denote a marking M
with M = 6p∈PM (p). An initial marking describes the very
first status of a net, i.e., ⟨N ,M0⟩ means a Petri net initialized
with M0.

A transition tj ∈ T is enabled at M if for all p ∈ •tj,
M (p) ≥ Pre(p, tj), denoted byM [tj⟩. An enabled transition tj
can fire at markingM and yields a new markingM ′, denoted
by M [tj⟩M ′. And we have

M ′ = M + C(·, tj) = M + C · t⃗j, (8)

where t⃗j is the n-dimensional canonical basis vector whose
j-th entry is one.

A transition sequence σ = t1t2 . . . tk is feasible at
markingM if there exist amarking sequenceM1,M2, . . . ,Mk

such that M [t1⟩M1[t2⟩ . . . [tk ⟩Mk holds, simply denoted as
M [σ ⟩Mk or M [σ ⟩.

A reachable marking M is a marking that satisfies
M0[σ ⟩M , where σ is an arbitrary transition sequence feasible
at M0. The reachability set of (N ,M0) contains all reachable
markings from M0. The relation within the collection
R(N ,M0) can be represented graphically by a reachability
graph. It is a directed graph whose nodes are markings in
R(N ,M0) and arcs are labeled with transitions of N .
A Petri net ⟨N ,M0⟩ is ‘‘safe’’ if for all markings M ∈

R(N ,M0) and all places p ∈ P such that M (p) ≤ 1 is true.
It is ‘‘bounded’’ if there exists k ∈ N+, for all markings
M ∈ R(N ,M0) and all places p ∈ P such that M (p) ≤ k ,
otherwise it is ‘‘unbounded’’. In other words, a net N is said
to be structurally bounded if it is bounded for any initial
marking.

A labeled Petri net (LPN), denoted by N , is a four-tuple

N = (N ,M0,E, ℓ), (9)

where ⟨N ,M0⟩ is a Petri net system, E is an alphabet (a set
of labels), and ℓ : T → E ∪ {ε} is the labeling function that
assigns to each transition t ∈ T a symbol from E or the empty
word ε. The transition set can be partitioned into T = To∪̇Tu,
where To is the set of observable transitions and Tu denote the
set of unobservable transitions. The labeling function can be
extended to firing sequences, i.e., ℓ(σ t) = ℓ(σ )ℓ(t), where
σ ∈ T ∗ and t ∈ T .
Given a transition sequence σ ∈ T ∗ and a labeling function

ℓ, w = ℓ(σ ) is an ‘‘observed word’’ (or ‘‘observation’’). All
observed words fromM0 is denoted by:

L(N ,M0) = {w ∈ E∗|∃σ ∈ T ∗,M0[σ ⟩, ℓ(σ ) = w}, (10)

where L(N ,M0) is also called the language generated from
M0. In this work, we also use L(N ,M0) to equivalently
denote LN .

Consider an observation w of an LPN N = (N ,M0,E, ℓ),
we use

S(w) = {σ ∈ L(N ,M0)|ℓ(σ ) = w}

to indicate the set of firing sequences who are consistent with
w ∈ E∗. Then,

C(w) = {M ∈ R(N ,M0)|(∃σ : ℓ(σ ) = w),M0[σ ⟩M} (11)

is the set of reachable markings consistent with w ∈ E∗.
In plain words, given an observation w, S(w) is the set of
sequences that may have fired, while C(w) is the set of
markings indicating where the system may have been.

III. ROBUST DIAGNOSABILITY
A. DIAGNOSABILITY ANALYSIS
We use Tf , Tu, and To to denote faulty transition set,
unobservable transition set, and observable transition set,
respectively. The set�(Tf ) contains all finite firing sequences
that ending with the transition in Tf . Language diagnosability
in LPNs is defined as follows:
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FIGURE 1. Label automaton Gl .

Definition 1 (Language DiagnosabilityUsing LPNs [43]):
Let N = (N ,Mo,E, ℓ) be a Petri net system ⟨N ,M0⟩ with
labeling function ℓ : T → E ∪ {ε}. Transition set T can be
partitioned into T = To ∪ Tu with To ∩ Tu = ∅. Let Tf ⊆ Tu
be a set of fault events. The prefix-closed language LN is
diagnosable if

(∀n ∈ N)(∀s ∈ �(Tf ))(∀u ∈ T ∗/s)

(ℓ(su) := wf )(∥ u ∥≥ n⇒ CLPND), (12)

where the diagnosability condition CLPND is

(∄w ∈ LN )[(wf = w) ∧ (S(w) ∩�(Tf ) = ∅)]. (13)
Language diagnosability of a system can be simply verified

using diagnosers. Let GN denote the reachability graph of
N . The reachability diagnoser GNd can be calculated as
GNd = Obs(GN ||Gl, 6o), where Obs(·) and Gl denote the
observer automaton and the label automaton, respectively.
The label automaton Gl is shown in Fig. 1.
Technically, the reachability graph of N is necessary for

building a reachability diagnoser. Then, we can construct an
automaton G who has the same space scale as the reacha-
bility graph. These two models are obviously isomorphic,
which ensures the efficiency of conversions. After that,
we generate an observer on G ∥ Gl with regard to 6o to
obtain GNd .
Definition 2 (Indeterminate Cycles Using LPNs [43]): A

set of uncertain states qd1 , qd2 , . . . , qdn ∈ Qd is said to form
an indeterminate cycle if:
1) states qd1 , qd2 , . . . , qdn form a cycle in GNd with

fd (qdj , σj) = qdj+1 , j = 1, 2, . . . , n − 1, fd (qdn , σn) =
qd1 , where for all j ∈ {1, 2, . . . , n}, σj ∈ 6o;

2) there exist (M k
j ,Y ), (M̃ r

j ,N ) ∈ qdl , M k
j is not

necessarily distinct from M̃ r
j for j = 1, 2, . . . , n, k =

1, 2, . . . ,m, and r = 1, 2, . . . ,m′ in such a way
that the sequence of states {M k

j |j = 1, 2, . . . , n, k =
1, 2, . . . ,m} and {M̃ r

j |j = 1, 2, . . . , n, r = 1, 2, . . . ,m′}
form their corresponding cycles in the generator of GN ,
where

M k
j [tj⟩M

k
j+1, j = 1, 2, . . . , n− 1,

k = 1, 2, . . . ,m,

M k
n [tn⟩M

k+1
1 , k = 1, 2, . . . ,m− 1,

Mm
n [tn⟩M

1
1 , (14)

and

M̃ r
j [tj⟩M̃

r
j+1, j = 1, 2, . . . , n− 1,

r = 1, 2, . . . ,m′,

M̃ r
n [tn⟩M̃

r+1
1 , r = 1, 2, . . . ,m′ − 1,

M̃m′
n [tn⟩M̃1

1 . (15)

FIGURE 2. An LPN N .

With the definition of indeterminate cycles ofGNd , the nec-
essary and sufficient condition for language diagnosability in
a LPN can be obtained.
Lemma 1 [43]: A live language LN generated by an LPN

N = (N ,Mo,E, ℓ) whose unobservable subnet is acyclic is
diagnosable with respect to Tf = {tf |ℓ(tf ) = ε} if and only if
its reachability diagnoser GNd has no indeterminate cycle.

Lemma 1 is a different version illustrated with LPNs, who
is actually consistent with that in [16]. Thus, we omit the
proof here.

B. ROBUST DIAGNOSABILITY ANALYSIS
Although in most cases, all sensors and communications can
work normally such that the occurrence of any event in a
system can be captured and the corresponding information
can be transmitted to the diagnoser automaton, disturbances
to the system do occur occasionally. Sensor malfunctions,
weak circuit soldering, even extreme weather conditions
or communication failure can cause loss of observations,
making some events temporarily unobservable.

This loss of observations may be temporary or permanent,
depending on whether the failure can be recovered to normal
at some time by itself. When loss of observations occurs,
traditional diagnosers will get stuck or report information
incorrectly. This problem and its influence are illustrated
by an example in both temporary and permanent situations.
For sake of convenience, the presentation ‘‘intermittent loss
of x’’ is equivalent to ‘‘intermittent loss of observations of
transitions labeled with x’’.
Example 1: Consider the LPN in Fig. 2 and the firing

sequence σ1 = t1t2t3t4t5 t12tn10, where wf1 = ℓ(σ1) =
zaεaedn.
Consider the possibility that, at a particular time, the

transitions labeled with a cannot be recorded as usual, i.e.,
the transitions t2 and t4 are impacted by an intermittent loss
of observations. Assume that the diagnoser cannot obtain the
firing information of t2 and communication restores before t4
fires.
For GNd , event z, generated by t1, is first identified,

which makes GNd evolves to (M1N ). Since a generated by
t2 lost and transition t3 is unobservable, a, generated by
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FIGURE 3. Reachability graph GN of N in Fig. 2.

FIGURE 4. Reachability diagnoser GN
d of N in Fig. 2.

t4, is the following letter received by GNd . It makes G
N
d

evolves to (M2N ,M3Y ). Note that the next letter of GNd
should be processed is e; however, e is not a legal successor to
(M2N ,M3Y ) in GNd . That is, G

N
d is stuck by the intermittent

loss of letter a.
Now consider another sequence σ2 = t1t2t3t6t7t12tn10,

where wf2 = ℓ(σ2) = zaεbcdn. Similarly, assume the
transition labeled with a is fired but not recorded for any
reason. After identifying z, GNd enters (M1N ). Then, bcdn

should be the next sequence that GNd got. In this case, GNd
properly recognizes each letter individually, and it ultimately
remains in (M8N ), proving that the fault transition is never
fired, and GNd presents utterly false information regarding
the occurrence of fault transitions.

A robust diagnosis system needs to be able to withstand
various unknown risks. Apparently, the traditional diagnoser
automata cannot cope with the random loss of observations.
The model of diagnoser automata needs to be modified by
taking the loss into consideration. Fortunately, an operation
proposed in [41] named dilation helps.
Definition 3 (Language Dilation): Let6ilo∪6nilo∪6uo be

partitions of6, where6ilo is the set of transitions influenced
by intermittent loss of observations, 6nilo is the set of other
observable transitions not influenced by intermittent loss of
observations and 6uo is the set unobservable transitions. Let
6′ilo = {σ

′
: σ ∈ 6ilo} and 6dil = 6 ∪ 6′ilo. The dilation

operation is defined as:

D : 6∗→ 2(6dil )∗ , (16)

where

D(ε) = {ε},

D(σ ) =

{
{σ }, if σ ∈ 6 \6ilo,

{σ, σ ′}, if σ ∈ 6ilo,

D(sσ ) = D(s)D(σ ), for s ∈ 6∗, σ ∈ 6. (17)
The dilation operationD can be also executed in languages,

i.e.,

D(L) =
⋃
s∈L

D(s). (18)

Definition 4 (Dilated Automata): A dilated automaton
Gdil is a five-tuple

Gdil = (Q, 6dil, fdil, q0,Qm) (19)

obtained from G, where 6dil = 6 ∪ 6′ilo and fdil(q, σdil) =
f (q, σ ).
Remark 1: Let Gdil be the dilated automaton obtained

from G. We have

D(L) = Ldil = L(Gdil). (20)
Similaryly, we give the definition of a dilated LPN as

follows.
Definition 5 (Dilated LPNs): A dilated LPN is a four-

tuple

Ndil = (Ndil,M0,Edil, ℓdil), (21)

where ⟨Ndil,M0⟩ is a dilated Petri net, Edil = E∪ℓ(T ′ilo), and
ℓdil is a mapping: Tdil → Edil ∪ {ε}.

A dilated LPN has basically the same structure as the
original LPN. Unobservable transitions are added into the
set of transitions, which represent the transitions subject to
intermittent loss of observations. The alphabet set is expanded
with letters on those unobservable transitions and so is the
labeling function. In a word, a dilation operation on an LPN
makes pairs of transitions appear, thus taking into account
intermittent observation losses.

With Definition 5, the language robust diagnosability in
LPNs can be defined as follows:
Definition 6 (Language Robust Diagnosability Using

LPNs): Given an LPNN = (N ,Mo,E, ℓ), ⟨N ,M0⟩ satisfying
T = To ∪ Tu and Tf ⊆ Tu, the prefix-closed language LN
generated by N is robustly diagnosable if

(∀n ∈ N)(∀s ∈ �(Tf ))(∀u ∈ T ∗/s)

×(wf := ℓ(su))(∥ u ∥≥ n⇒ CRD), (22)

where the robust diagnosability condition CRD is

(∄w ∈ LN )[(ℓ(S(D(wf ))) = ℓ(S(D(w))))
∧(S(w) ∩�(Tf ) = ∅)]. (23)

Remark 2: If Tilo = ∅, then D(wf ) = {wf } and D(w) =
{w}. In this case, Definition 6 becomes the same as that of the
traditional language diagnosability in Definition 1.

The identical diagnoser known as a robust reachability
diagnoser, represented as GNdil,d , can likewise be used to
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verify linguistic robust diagnosability using LPNs. We start
by outlining what a comprehensive diagnoser is.
Definition 7 (Robust Diagnoser Automata): A robust

diagnoser automaton is a DFA

Gdil,d = Obs(Gdil ∥ Gl, 6o). (24)
If a system is modeled with an LPN, we can easily obtain

its robust reachability diagnoser if we dilate its reachability
graph and apply (24). The construction process of robust
reachability diagnoser GNdil,d is almost the same as that
of traditional reachability diagnoser GNd as we mentioned
previously. The only difference is that the input of the former
is a dilated LPN Ndil .

Due to the dilation operation, unobservable transitions may
be added to an LPN and its reachability graph, which may
make the observable indeterminate cycle in a reachability
diagnoser become unobservable. The indeterminate cycle
formedwith unobservable events between uncertain states are
called implicit indeterminate cycle. Note that implicit cycles
are not necessary to be indeterminate, e.g., cycles on certain
states cannot be counted as they do not give any ambiguity to
robust diagnosability.

Furthermore, indeterminate cycles that satisfy only Def-
inition 2 are called explicit indeterminate cycles, whose
existence makes the language not diagnosable. The term
‘‘explicit’’ emphasizes the observable nature of indeterminate
cycles.

With the definitions of robust reachability diagnosers and
implicit indeterminate cycles, similarly to Lemma 1, we now
present a method to verify language robust diagnosability,
which is also a necessary and sufficient condition for
language robust diagnosability.
Lemma 2 [43]: A live language LN generated by an LPN

N = (N ,M0,E, ℓ) with respect to D : T ∗ → 2(Tdil )
∗

and Tf ⊆ Tu is robustly diagnosable if and only if its
robust reachability diagnoserGNdil,d has no explicit or implicit
indeterminate cycle.

The proof of Lemma 2 is similar to the proof of
Theorem 2 in [43]. Thus, it is omitted here.

IV. ROBUST DIAGNOSABILITY ANALYSIS USING BRG
A. BASIS REACHABILITY GRAPHS
We have introduced the robust diagnosability analysis of
LPN models by their reachability graphs. However, man-
made systems are more sophiscated in practice. As the
complexity of the system model increases, the spatial scale
of the reachability graph tends to increase exponentially.
Enumerating all markings to perform language diagnosability
analysis consumes a lot of time and computing power.
We now try to use a more compact reachability graph
to provide a more efficent method for language robust
diagnosability analysis.
Definition 8 (Explanations and e-vectors): Given a mark-

ing M and an observable transition t ∈ To, the set of

FIGURE 5. An LPN N .

explanations of t at M is defined as

6(M , t) = {σ ∈ T ∗u |M [σ ⟩M ′,M ′ ≥ Pre(·, t)}, (25)

and the set of e-vectors (or explanation vectors) is defined as

Y (M , t) = π(6(M , t)). (26)

Elements in Y (M , t) are the firing vectors that are associated
with the explanations.

In plain words, 6(M , t) is the set of transition sequences
who are unobservable and enable t atM . To construct a BRG,
we only concern about the transition sequences that have the
minimal firing vector. Firing vectors of these sequences are
called minimal e-vectors.
Definition 9 (Minimal Explanations and Minimal e-

Vectors): Given a marking M and an observable transition
t ∈ To, the set of minimal explanations of t at M is defined as

6min(M , t)={σ ∈ 6(M , t)| ∄σ ′ ∈ 6(M , t) : π(σ ′)≨π (σ )},

(27)

and the set of minimal e-vectors (or explanation vectors) is
defined as

Ymin(M , t) = π (6min(M , t)). (28)
With the help of the notions of minimal explanations and

minimal e-vectors, we can now define the basis marking.
Definition 10 (Basis Markings): Given an LPN N =

(N ,Mo,E, ℓ). The set of basis markingsMB is a subset of
R(N ,M0) satisfying
1) M0 ∈MB,
2) ∀M ∈ MB,∀t ∈ To,∀yu ∈ Ymin(M , t), it holds

M ′ ∈MB, where

M ′ = M + Cu · yu + C(·, t). (29)

In simple words, the set of basis markings have two kinds
of elements: initial markingM0 and markings reachable from
M0 by firing each observable transition together with its
minimal explanation. All the basis markings can be iteratively
computed from M0. In the intermediate process, markings
obtained by firing unobservable transitions are no longer
considered.
Example 2: Consider the LPN N in Fig. 5, where M0 =

p1 + p2. Transitions t2 and t4 are observable, labeled with a
and b, respectively. The faulty transition set is Tf = {t5}. The
reachability graph GN is shown in Fig. 6. By Definitions 8
and 9, we have 6(M0, t2) = {ε, t1, t1t3}, 6min(M0, t2) = {ε},
and Ymin = {0⃗}. Let M = p2 + p4. We have 6(M , t2) =
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FIGURE 6. Reachability graph of N in Fig. 5.

FIGURE 7. BRG of N in Fig. 5.

{t1t3, t5t1t3}, 6min(M , t2) = {t1t3}, and Ymin = {[1 1 0]T }.
The basis markings of N are M0, M2, M5, M7, and M9. For
sake of a clear presentation, we depict the non-basis markings
in circles with dashed lines.

Based on Definition 10, an iterative algorithm is designed
to compute basis markings and construct a BRG, witch can
be found in [24].
Example 3: Fig. 7 shows the BRG of LPN N in Exam-

ple 2. Apparently, the number of states has been reduced
from 10 to 5. Note that the transitions appended after the
event labels are not generated by the construction of the BRG.
They appear here only to show the source of each event label
clearly, which does not affect the deterministic property of the
BRG.
Definition 11 (Unobservable Reach of M): Given an LPN

N = (N ,Mo,E, ℓ) and a marking M ∈ R(N ,M0), we define
the unobservable reach of M as

U(M ) = {M ′ ∈ Nm
|∃σu ∈ T ∗u : M [σu⟩M ′}. (30)

Corollary 1: Let N = (N ,Mo,E, ℓ) be an LPN whose
unobservable subnet is acyclic. For all w ∈ L(N ,M0),
we have

C(w) =
⋃

Mb∈Mb(w)

U(Mb)

=

⋃
Mb∈Mb(w)

{M ∈ Nm
|∃yu ∈ Nnu :

M = Mb + Cu · yu}. (31)
In plain words, given a marking M and a basis marking

Mb consistent with w, marking M is also consistent with
w if and only if M belongs to the unobservable reach of

TABLE 1. Unobservable reaches of the basis markings in Fig. 7.

Mb. Meanwhile, marking M belonging to U(M ) means that
M = Mb + Cu · yu has a non-negative integer solution yu.
Example 4: Consider the LPN in Fig. 5. Unobservable

reaches of basis markings in Fig. 7 are shown in TABLE 1
below.

B. BASIS REACHABILITY DIAGNOSERS
It has been verified that a BRG can significantly reduce
the scale of a reachability graph. We introduce a new
diagnosis model, i.e., basis reachability diagnosers that only
consider basis markings and the notion of unobservable
reach. Based on the intuitive definition of language diagnosis,
a reachability diagnoser can be constructed following the
steps below:

STEP 1. Start from the initial markingM0 and sign it as ‘‘N ’’.
STEP 2. Traverse the whole BRG. Find an unmarked

marking and sign it with the help of a signing
procedure (which will be stated later). If there
already exists the same signed marking, go to STEP
3.

STEP 3. Draw a directed arc from the precursor node to the
current node and label it with a corresponding letter
in the BRG.

The subject of these steps is to check whether a fault
event has occurred while traversing each transition in the
BRG. Corresponding marks are made and a new graph with
diagnosis information is drawn. Due to the existence of the
BRG, the complexity of traversing the entire state space is
much lower than the case of using the reachability graph.
To present the diagnosis information, we need a signing
procedure as follows:

STEP i. Sign the current node as ‘‘Y ’’ if its precursor node
is signed as ‘‘Y ’’. Terminate the procedure.

STEP ii. Sign the current node as ‘‘U ’’ if its precursor node
is signed as ‘‘U ’’ or there exist some specific
markings in U(M ) that can be reached by firing
any faulty transition sequence, i.e.,M [σf ⟩ holds.

STEP iii. If one of the necessary conditions for reaching the
current marking from its direct precursor node is
the firing of any fault transition, sign the current
marking as ‘‘Y ’’ regardless of whether or how the
current marking has been signed. Terminate the
procedure.

STEP iv. If the current marking is still unsigned, sign
it as ‘‘N ’’.
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FIGURE 8. Basis reachability diagnoser of N in Fig. 5.

There are three kinds of signs in total: ‘‘Y ’’ stands for
‘‘YES’’ representing the occurrence of faulty transitions,
‘‘N ’’ stands for ‘‘NO’’ representing that none of faulty tran-
sitions has been fired, and ‘‘U ’’ stands for ‘‘UNKNOWN’’
representing that it is not clear yet.
Example 5: Fig. 8 shows the basis reachability diagnoser

of the BRG in Fig. 7.
Consider a transition sequence σ1 = t2t1t3t1t2 with w1 =

ℓ(σ1) = aεεεa. We observe string aa in the basis reachability
diagnoser and the system is at marking M2. No marking
is reachable from M2 by firing any unobservable transition
sequence containing faulty transition t5, which indicates that
no faulty transition has happened currently.
Now consider σ2 = t1t4t2t1t3t2t1t4 with w2 = ℓ(σ2) =

εbaεεaεb. The system will be at marking M9. Since there
exist markings such as M7,M8, · · · ∈ U(M9) reachable from
M9 by firing unobservable transition sequences containing
fault transition t5, we cannot infer whether t5 has fired by
observing baab only.
Consider another transition sequence σ3 = t1t4t5t1t4 with

w3 = ℓ(σ3) = εbεεb. Marking (M5Y ) reached by observing
bb in the basis reachability diagnoser means that the fault
transition t5 has necessarily fired.

Now we try to re-examine the three transition sequences
from the perspective of the signing procedure to verify the
proposed conclusions. The detailed steps are as follows:
• M0[σ1⟩M2, where σ1 = t2t1t3t1t2:
i. The precursor nodeM0 is not signed as ‘‘Y ’’.
ii. The precursor nodeM0 is not signed as ‘‘U ’’. We have
U(M2) = {M0 – M4,M6} and none of them is
reachable by firing any faulty transition sequence.

iii. M2 is not reachable by firing any fault transition.
iv. Still unsigned. Sign it with ‘‘N ’’.
• M0[σ2⟩M9, where σ2 = t1t4t2t1t3t2t1t4:
i. The precursor nodeM7 is not signed as ‘‘Y ’’.
ii. The precursor node M7 is signed as ‘‘U ’’. Sign

it as ‘‘U ’’.
iii. M9 is not reachable by firing any fault transition.
iv. Keep the sign ‘‘U ’’ unchanged.
• M0[σ3⟩M5, where σ3 = t1t4t5t1t4:
i. The precursor nodeM5 is not signed as ‘‘Y ’’.
ii. The precursor node M5 is signed as ‘‘U ’’. Sign it as

‘‘U ’’.
iii. M5 is reachable from M5 via t5 definitely. Re-sign it

with ‘‘Y ’’ and terminate the procedure.

FIGURE 9. Dilated LPN Ndil of N in Fig. 5.

The sign obtained with the help of the signing procedure
is exactly the same with that of our speculation previously.
Therefore, the validity of the signing procedure is confirmed.

Different from the reachability diagnoser, the states in a
basis reachability diagnoser seem to be quite simple, i.e.,
no states are merged during the construction of the basis
reachability diagnoser. However, situations are not always
like this, depending on two conditions. First is whether there
exist unobservable transitions in the graph structure used to
construct the diagnosis automaton. Apparently, unobservable
transitions can be found in a reachability graph rather than
in a BRG. That is the exact reason why compound states
exist in a reachability diagnoser. Secondly, the deterministic
property of the graph structure used to construct the diagnosis
automaton also matters. For instance, consider the BRG in
Fig. 7 and assume that all the transitions are labeled with
a. Correspondingly, the first state after (M0N ) should be
a compound state made up of (M2N ) and (M5U ) via a.
However, regardless of whether the BRG is deterministic
or not, the deterministic property will be imparted during
the construction process of a basis reachability diagnoser,
since the construction of an observer itself is a standard
determinization procedure to convert an NFA into a DFA [8].

Note that there exists a cycle on (M7U ) in Fig. 7. According
to the previous experience, this kind of cycles should be
noticed, since it may cause indeterminacy and make the
language lose its diagnosability. We will discuss it together
with robust diagnosability in the next section.

C. ROBUST BASIS REACHABILITY DIAGNOSERS
We have successfully established a brand-new diagnosis
model called basis reachability diagnosers. Usually, we have
to reconsidere the robustness of this newmodel if intermittent
loss of observations occurs.

For instance, there exists a transition sequence
σ = t2t1t4t4 such that w = ℓ(σ ) = aεbb. Suppose that the
firing of transition t2 cannot be observed successfully. In the
basis reachability diagnoser of N , by observing bb we infer
that the system is now in (M5Y ), which means that the fault
transition has been fired. However, t5 is not fired, or at least it
cannot be made certain by observing abb only. We now give
the solution by the dilation operation.
Example 6: Assume that intermittent observation loss

influences all transitions labeled with a. By dilation opera-
tion, N in Fig. 5 can be dilated and depicted in Fig. 9.
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TABLE 2. Numbers of markings and basis markings.

FIGURE 10. Dilated BRG BN
dil of N in Fig. 5.

FIGURE 11. Robust basis reachability diagnoser BN
dil,d of N in Fig. 5.

Different from a reachability graph, the BRG generated
from Ndil is exactly the same as that from the original
LPN, since the unobservable transitions from the dilation
do not change the minimal explanation and e-vector of each
observable transition. Consider 6(M0, t2) and 6(M7, t2) in
Example 2 again. We have 6min(M0, t2) = {ε}, Ymin = {0⃗},
6min(M7, t2) = {t1t3}, and Ymin = {[1 1 0]T }. Meanwhile,
no unobservable transitions are allowed to show up in a
BRG. Under this circumstance, to construct a robust basis
reachability diagnoser from aBRGmeans that the BRGneeds
to be modified slightly to accommodate the intermittent loss
of observations.
Example 7: By dilation operation, a dilated BRG denoted

as BNdil is shown in Fig. 10. Note that there should not have
unobservable transitions in a BRG. We here name the BNdil
a ‘‘dilated BRG’’ with a slight abuse of notion only for the
sake of simplicity. Fig. 11 shows the diagnoser constructed
with BNdil called a robust basis reachability diagnoser, denoted
as BNdil,d .

It is not difficult to find that unobservable transitions occur
in BNdil,d and some markings are merged due to the existence
of unobservable transitions in BNdil , which confirms our point
of view earlier. We now give the construction algorithm of
a robust basis reachability diagnoser together with that of

a basis reachability diagnoser as mentioned previously. The
output of the algorithm depends entirely on the type of the
BRG input.

Algorithm 1 Construction of a (Robust) Basis Reachability
Diagnoser BNd (or BNdil,d )

Input: A (dilated) BRG BN (or BNdil).
Output: A (robust) basis reachability diagnoser BNd (or

BNdil,d ).
1: define a DFA G = (Q, 6, f , q0,Qm) and initialize
Q := ∅, 6 := ∅, f := ∅, and Qm := ∅;
/* G is essentially BNd or BNdil,d , depending on which
diagnosis model is desired */

2: define a one-way marking queue MQ shaped like
Mi← Mj← · · · ← Mn;
/* new markings can only be entered from the end of the
queue */

3: initializeMQ := M0;
4: sign M0 with N ;
5: while MQ is not empty do
6: pop the head marking from MQ and define it as
Mtemp;

7: for all transitions ti in BN (or BNdil) such that
Mtemp[ti⟩, do

8: push Mki such thatMtemp[ti⟩Mki into MQ;
9: execute the signing procedure on each Mki and

obtain (Mki , Ski ), where Ski is the diagnostic sign ofMki ;
10: if Mki ∈ U(Mtemp), then
11: merge (Mtemp, Stemp) and (Mki , Ski );
12: end if
13: if Mki /∈ U(Mtemp), then
14: draw an arc from (Mtemp, Stemp) to (Mki , Ski )

and label it with ℓ(ti);
15: if the arc already exists then
16: deleteMki from MQ;
17: end if
18: let Q = Q ∪ (Mtemp, Stemp);
19: let 6 = 6 ∪ ℓ(ti);
20: end if
21: let f = f ∪ {[(Mtemp, Stemp), ℓ(ti), (Mki , Ski )]};
22: end for
23: end while
24: let the state containing ‘‘M0N ’’ be q0;
25: return BNd (or BNdil,d ).

We now explain how Algorithm 1 works. To construct a
basis reachability diagnoser (or a robust basis reachability
diagnoser), we need to prepare a BRG (or dilated BRG) as the
input. Initialize a plain DFA as the expected output. Define a
queue composed of markings. The queue needs to meet the
following conditions: 1) elements can be popped from the
head of the queue; 2) elements at any position can be deleted
by a certain index without affecting the relative order of the
remaining elements; 3) new elements can only be inserted
from the end of the queue. Initialize the queue with the initial
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TABLE 3. Comparison of four diagnosis models.

marking in the input graph structure. Next, we traverse the
entire BRG by pushing the unchecked markings into the
queue and popping the checked markings out of the queue.

As shown in lines 5 to 23 of Algorithm 1, a marking is
popped up and set as Mtemp. We first push each marking
Mki reachable from Mtemp via a single transition ti into the
queue. By executing the signing procedure on Mki , we can
obtain (Mki , Ski ). Note that ti can be unobservable if the input
graph is a dilated BRG. Thus, check if Mki belongs to the
unobservable reach of Mtemp. If so, merge the two states
into a new one. Otherwise, establish a transition arc from
(Mtemp, Stemp) to (Mki , Ski ) if it does not exist yet. Label it
with the letter corresponding to ti from the input graph. If the
transition already exists, delete Mki from the queue just in
case that the transition is depicted repeatedly, which will
make the algorithm fall into an infinite loop. Meanwhile, add
the signed state and transition letter to their corresponding
sets of the output DFA. Repeat the entire process until the
queue is emptied, and we eventually obtain a reachability
diagnoser (or robust basis reachability diagnoser).

Remember we have observed an explicit cycle on an
unknown state in the basis reachability diagnoser in Fig. 8.
As shown in Fig. 11, not only explicit cycles but also implicit
cycles appear. For instance, there exist cycles labeled with a′

on (M5U ,M7U ) and (M7U ).
Theorem 1: Let LN denote a live language that is

generated by an LPN N . For given dilation function D :
6∗ → 2(6dil )∗ and fault enent tf ∈ Tu, LN is robustly
diagnosable if and only if there is no explicit or implicit cycles
on markings signed as ‘‘U’’ in the robust basis reachability
diagnoser BNdil,d .

Proof (Necessity): Assume by contrapositive that there
exists an explicit or implicit cycle on a ‘‘U ’’ marking in
a robust basis reachability diagnoser BNdil,d . According to
Definition 6, the language is not robustly diagnosable as
long as there exists one normal word w such that the set of
markings consistent with Po(D(w)) is the same with that of
Po(D(wf )), where S(wf ) contains a fault transition. Suppose
that there exists an explicit or implicit cycle in the BRG. It is
possible for both the normal sequence and faulty sequence to
loop endlessly in the cycle eventually.

From the perspective of BNdil,d , two words lead to the same
marking signed with ‘‘U ’’ either explicitly or implicitly. That
is to say, we have found at least a normal word w, whose
firing sequence satisfies the previous condition, i.e., CRD in
Definition 6. Hence, LN is not robustly diagnosable.

(Sufficiency) Assume that, there exists no explicit or
implicit cycle on ‘‘U ’’ markings in a robust basis reachability
diagnoser BNdil,d . In other words, it is not possible anymore
to satisfy the arbitrary length requirement in CRD due to the
existence of the cycle in BNdil,d . Both the normal sequence
and faulty sequence must provide letters continuously.
Meanwhile, a dilated BRG is always live and bounded.
To avoid forming cycles on ‘‘U ’’ markings and satisfy the
requirement of CRD, two transitions will eventually lead the
system to two markings, i.e., ‘‘N ’’ and ‘‘Y ’’ via two paths.
In this approach, the firing of a fault transition can be always
inferred, which means that LN is robustly diagnosable.

By Algorithm 1, BNd or BNdil,d can be easily constructed.
Compared with a traditional diagnosis model generated from
a reachability graph, basis reachability diagnosers and robust
reachability basis diagnosers have states no more than the
former. In general, since only basis markings are considered,
the scale of diagnosers generated from a BRG is much
smaller than that of traditional diagnosers. In other words,
using a BRG instead of a reachability graph in practice can
significantly reduce the scale and complexity of diagnosis
models.

V. A NUMERICAL EXPERIMENT
Example 8: Consider again the LPNN in Fig. 5. Suppose

that M ′0 = k1p1 + p2 and M ′′0 = p1 + k2p2, i.e.,
we parameterize the number of tokens in p1 and p2. The
numbers of markings and basis markings can be computed
with the MATLAB toolbox provided in [44] as TABLE 2
shows.
Fig. 12 shows the growth of |R(N ,M0)| and |MB|

along with the changes of k. Obviously, using a BRG can
tremendously reduce the number of markings compared with
a reachability graph, at least an order of magnitude.

So far, to analyze language robust diagnosability, we have
introduced four diagnosis models — reachability diagnosers,
robust reachability diagnosers, basis reachability diagnosers,
and robust basis reachability diagnosers. Four diagnosis
models have similar functions but different characteristics,
which are summarized in TABLE 3.

It is worth noting that O(n) in TABLE 3 represents the
complexity of generating the graph necessary for constructing
a diagnosis model, which often depends on some parameters
in a system that determine the scale of its state space. For
instance, we must first generate the reachability graph of an
LPN to build a reachability diagnoser. In the worst case, the
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FIGURE 12. The growth of |R(N, M0)| and |MB| with (a) k1 and (b) k2.

system size is exponentially related to the number of states in
the reachability graph.

VI. CONCLUSION
We look into the problem of diagnosability analysis of DESs
in this paper. A solution is provided for the problem of robust
diagnosability against intermittent loss of observations.

First we review the definition of language diagnosability
and robust diagnosability using LPNs. To verify language
diagnosability using LPNs, we establish (robust) reachability
diagnosers with the help of reachability graphs (and the
dilation operation). We explain the notion of (implicit)
indeterminate cycles and introduce a necessary and sufficient
condition for language (robust) diagnosability.

The construction complexity of (robust) reachability
diagnosers to verify the diagnosability of LPNs is not
computationally competitive. A BRG, which is a condensed
manner to express reachable markings and their relationship,
is presented to increase the effectiveness of diagnosabil-
ity analysis. We introduce the principle and construction
algorithm of a BRG. A few steps are given, through
which a basis reachability diagnoser or a robust basis
reachability diagnoser can be established. The condition of
language robust diagnosability is modified with the help
of a robust basis reachability diagnoser. Finally, we give a
numerical example to demonstrate the advantage of robust
diagnosability analysis using a BRG instead of a reachability
graph.

All of the work is performed on the basis of a centralized
diagnoser. Future research will focus on decentralized
architecture. Additionally, we assume that the intermittent

observation losses of specific kinds of transitions are already
known before the analysis in this paper. Whether it is possible
to infer in real time that which transition is subject to
intermittent loss of observations by observing the behavior
of a system is worthy of consideration.
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