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ABSTRACT FPGA-based acceleration is considered a promising approach to improve the performance
and power efficiency of Deep Neural Network (DNN) inference tasks. However, mapping a DNN onto
an FPGA is not trivial. To make this easier, various automation frameworks have been proposed. Among
them, FINN and Vitis AI, both developed by Xilinx, are two key players. They represent two different
philosophies in designing FPGA-based DNN accelerators: dataflow-style and overlay-style architectures.
Dataflow architectures are generally expected to provide better performance and power efficiency but have
a major drawback in that they scale very poorly to the size of the target DNN. Advanced frameworks like
FINN alleviate this drawback by transforming the target DNN into operations that can be time-multiplexed on
fewer hardware resources. This approach, however, is challenging because of the difficulty in transforming
the target DNN and raises a question as to whether the generated dataflow architectures retain a significant
advantage over overlay architectures in terms of performance and power efficiency. This paper aims to
clarify it by conducting an in-depth exploration of FINN and Vitis AI. For this purpose, we extend the
FINN’s development flow to be able to use the same target hardware and DNN model to evaluate each
framework. We demonstrate the effectiveness of the FPGA-based acceleration by providing a comparison
with two reference platforms: an NVIDIA Jetson Nano Developer Kit with a similar power budget to our
target FPGA hardware, and a high-performance desktop computer with an Intel Core i7-11700K CPU. The
results show that despite the use of the time-multiplexing approach, the FINN-based accelerator can still
outperform the Vitis-AI-based accelerator by a significant margin, 8.4x in terms of latency, 3.0x in terms
of throughput, and 3.3x in terms of power efficiency. The outcome of the comparison with the NVIDIA
Jetson Nano Developer Kit and the desktop computer is also overwhelmingly favorable to the FINN-based
accelerator. This indicates that, even in the case of using automation frameworks, DNN accelerators on
FPGAs can still yield significant performance and power efficiency gains compared with GPUs and CPUs.

INDEX TERMS Deep neural network, FPGA-based acceleration, automation framework.

I. INTRODUCTION
Deep neural networks (DNNs) are rapidly improving and
making a significant impact in many fields such as language
translations, healthcare, and self driving cars. In this paper,
our area of interest is embedded systems, where various DNN
inference applications require low latency and high power
efficiency.

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

Prior works have shown that FPGAs offer attractive
performance and power efficiency for DNN inference
applications [1], [2], [3], [4]. For mapping a DNN model
to an FPGA, the quantization of weights and activations is
the key optimization. It reduces not only the computation
complexity but also the memory footprint requirement. Some
works [5], [6] have shown that quantized neural networks
(QNNs) can achieve comparable inference accuracy and
several times better performance than the original ones with
double precision floating point arithmetic.
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FIGURE 1. Left: a Kria-K26-SoM-based custom FPGA board that we use
for evaluating FINN and Vitis AI. Right: an NVIDIA Jetson Nano Developer
Kit that we use as a reference platform for evaluating the results of FINN
and Vitis AI.

FIGURE 2. A typical dataflow architecture for processing an N-layer DNN.
FINN employs this model.

FIGURE 3. A typical overlay architecture for DNN accelerators. Vitis AI
employs this model.

To make the mapping of a QNN onto an FPGA easier,
a number of automation frameworks such as FINN [7],
Vitis AI [8], hls4ml [9], and VTA [10] have been proposed.
These frameworks can be categorized into two groups based
on the types of accelerator architectures that they generate:
dataflow-style or overlay-style (Figure 2 and Figure 3).
With fixed-function pipelines, dataflow architectures are
expected to provide better performance and power efficiency.
However, realizing them is not easy. Our experiments show
that a straightforward mapping of even an extremely small
DNN of several tens of thousands of parameters to a
dataflow architecture can result in a large circuit that a
typical FPGA for embedded systems cannot accommodate.

To support larger and more useful DNNs, some frameworks
such as FINN propose transforming the target DNNs into
common operations like matrix-vector multiplications and
time-multiplexing these operations onto fewer hardware
resources. This approach, however, raises a question: with
the time-multiplexed operations, is the generated dataflow
architecture faster and more efficient than highly optimized
overlay architectures provided by frameworks like Vitis AI?
If the answer is yes, then how large is the gap? Given
the fact that the transformation task for generating dataflow
architectures is highly dependent on the target DNNs and
thus requires extensive trials and experiments, a detailed and
quantitative analysis would help users to determine which
type of framework is suitable for their needs.

In this paper, we aim to answer the above questions by
conducting an in-depth exploration of the performance and
power efficiency characteristics of DNN accelerators gener-
ated by FINN and Vitis AI, two prominent representatives
of the two automation framework groups. There have been
some efforts to evaluate FINN and Vitis AI individually,
with the comparison targets being the executions on CPUs
or GPUs [11], [12], [13]. Investigating the gap between
these two frameworks, however, is still an open question.
No conclusion can be drawn because different DNN models,
FPGA devices, and evaluation methodologies are used in
different studies. The closest to our work is the study of
Plagwitz et al. [14], where both FINN and Vitis AI are
present in their survey of different automation frameworks for
DNN acceleration on FPGAs. The analysis in [14], however,
is mainly qualitative. There are only limited quantitative
data regarding the inference latency of an extremely simple
neural network model with one convolution layer and one
fully connected layer on a PYNQ-Z1 board for FINN and a
ResNet-50 model on a ZCU106 board for Vitis AI. Different
architectural configurations are not investigated and no
throughput and power efficiency data are reported. Because
of these limitations, it is difficult to draw any conclusions
about the gap of performance and power efficiency between
using FINN and using Vitis AI.

A major obstacle for comparing FINN and Vitis AI
is that the FPGA boards and DNN models supported by
them are different. Different from Vitis AI, a commercial
product, FINN and other dataflow-style frameworks are still
research projects and have some usability limitations. Like
in [14], we find that it is extremely difficult to use FINN
for FPGA boards and DNN models that are different from
those provided by the authors.1 Therefore, in this work,
we extend the development flow of FINN to be able to provide
a comparison with Vitis AI using the same target hardware
and the same DNN model. This helps us to explore the
gap of performance and power efficiency between the DNN
accelerators generated by FINN and Vitis AI.

1 [14] ends up evaluating a simple 2-layer neural network on a PYNQ-Z1
board (an FPGA board supported by FINN) as mentioned earlier.
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By extending the development flow, we have successfully
ported FINN to our target FPGA hardware, a custom FPGA
board featuring a Xilinx Kria K26 System on Module (SoM)
(the left hand side of Figure 1). To interpret the significance
of the results of FINN and Vitis AI, we compare them to
the results obtained when using two reference platforms: an
NVIDIA Jetson Nano Developer Kit (the right hand side of
Figure 1) with a similar power budget to our FPGA board and
a desktop computer with an Intel Core i7-11700K CPU.

The main contributions of this paper are summarized as
follows:

• We extend the FINN’s development flow to support a
wide variety of FPGA boards and DNN models that
are not supported by the original FINN. This extended
version is named FINN-S.

• We conduct an exploration of the performance and
power efficiency of the accelerators generated by FINN-
S and Vitis AI using the same target FPGA board,
the same DNN model (a ResNet [15] model), and a
wide range of configurations. We compare the results
with those obtained when using an NVIDIA Jetson
Nano Developer Kit and a high-performance desktop
computer.

• We clarify the gap of performance and power efficiency
between the DNN accelerators generated by FINN-S
and Vitis AI. We show that the former outperforms the
latter by a significant margin, 8.4x in terms of latency,
3.0x in terms of throughput, and 3.3x in terms of power
efficiency.We also provide our insights into these results
based on the characteristics of the accelerators.

• We show that with regard to the comparison with the
NVIDIA Jetson Nano Developer Kit and the desktop
computer, though the NVIDIA Jetson Nano Developer
Kit outperforms the accelerator generated by Vitis
AI, the outcome is overwhelmingly favorable to the
accelerator generated by FINN-S. These mixed results
show that FPGA-based DNN accelerators generated by
automation frameworks can still outperform both CPUs
and GPUs but the use of an appropriate framework is
necessary.

Throughout the paper, we use the term FINN-based
accelerator to refer to an accelerator generated by FINN
or FINN-S and Vitis-AI-based accelerator to refer to an
accelerator generated by Vitis AI.

II. BACKGROUND AND RELATED WORKS
A. DNN INFERENCE ACCELERATORS ON FPGAs
FPGA-based DNN inference accelerators can be classified
into two types of architectures: dataflow-style and overlay-
style.

Figure 2 shows the organization of a typical dataflow
architecture for processing an N-layer DNNwhere each layer
is processed by a computation unit. In this architecture, all
weights and biases of the DNN model are stored in FPGA
on-chip memories (weight buffers in Figure 2). In general,
they can also be hard-wired into the circuit. Typical

automation frameworks generating dataflow architectures
include FINN [7], [16] and hls4ml [9].

A straightforward implementation of dataflow architec-
tures is to spatially unroll all operations of the target
DNN model on the FPGA. While this approach can give
superior performance, it comes at the cost of excessive
FPGA resource usage even when the DNN model is small.
Advanced frameworks such as FINN deal with this problem
by transforming their target DNN models into common
operations that can be time-multiplexed onto fewer FPGA
resources. For example, in FINN, a convolutional layer is
performed by using two operations, sliding window and
matrix-vector multiplication, which can be processed with
different parallelism degrees depending on the available
FPGA resources.

Figure 3 shows the organization of a typical overlay
architecture. In this architecture, the operations for an
inference task are processed by an array of processing
elements (PEs). The weights and biases of the target DNN
model are stored in off-chip DRAMand cached in the on-chip
weight buffer during the inference process. Input and output
data of the PE array are also cached in on-chip memory units,
namely input and output buffers. The main controller controls
the PEs and the reads/writes from/to the buffers using a series
of instructions. Typical automation frameworks generating
overlay architectures include Vitis AI [8] and VTA [10].

In summary, dataflow architectures offer great flexibility
in customizing the processing datapaths but do not scale
well as overlay architectures which utilize off-chip DRAM
during the inference process. With the time-multiplexing
approach, dataflow architectures can support larger DNN
models. However, the strict constraint of on-chip memory
capacity is still a concern. It makes it difficult to set a high
parallelism degree because a large number of resources need
to be allocated for storing or hard-wiring the weights and
biases on-chip. The flexibility in quantization helps but only
to a certain extent. Therefore, it is not as obvious as it
may seem that dataflow architectures always significantly
outperform overlay architectures in terms of performance and
power efficiency. We aim to clarify it in this paper.

B. DNN INFERENCE ACCELERATORS GENERATED BY FINN
FINN provides three main computation units: the Matrix-
Vector-Threshold Unit (MVTU), the Sliding Window Unit
(SWU), and the Pooling Unit (PU) [7], [16]. It maps
convolutional layers to the SWU and MVTU and fully
connected layers to the MVTU.

The MVTU contains a processing element (PE) array, and
each PE has some SIMD lanes. Each PE performs the same
number of multiplications in parallel as the number of SIMD
lanes. Users can determine the folding factors, which are the
number of PEs and the number of SIMD lanes per PE, for
each convolutional and fully connected layer.

The SWU generates an input feature map matrix from
incoming feature maps. It gives the MVTU one column of
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the input feature map matrix at a time for multiplication with
the convolution kernels that have been packed into the form
of a matrix.

C. DNN INFERENCE ACCELERATORS GENERATED
BY VITIS AI
The accelerator core for Vitis AI is called the Deep
Learning Processor Unit (DPU). It consists of a high
performance scheduler module, a hybrid computing array
module, an instruction fetch unit module, and a global
memory pool module [17]. The DPU executes the microcode
of the target DNN model, which is called xmodel.
DPUCZDX8G [17], which is used for Vitis AI, is available

in eight different levels of parallelism. The architecture names
for the eight levels of parallelism are B512, B800, B1024,
B1152, B1600, B2304, B3136, and B4096. The numbers
in the architecture names refer to the peak numbers of
operations per cycle. For example, with the B512 DPU core,
256 multiply operations and 256 accumulate operations can
be performed in one cycle.

D. RELATED WORKS
There have been some attempts to study FINN and Vitis AI
individually. We summarize them in this section.

Ducasse et al. [18] study FINN using a multilayer percep-
tron trained on two datasets, MNIST and Fashion MNIST.
In the evaluation, several parallelization configurations are
used. Su et al. [19] also study FINN using a multilayer
perceptron and two CNN models trained on three datasets,
MNIST, CIFAR-10, and ImageNet. They propose estimation
models to show how the quantization affects the hardware
cost and throughput. Jentzsch et al. [11] compare the
performance of FINN-based accelerators with GPUs on the
RadioML modulation classification task. They extend FINN
to support additional parallelism. With this, they report that
the FINN-based accelerator achieves >100x lower latency
and >10x higher throughput compared with an NVIDIA
Jetson Xavier NX Developer Kit.

Some works [12], [13] evaluate the accelerators generated
by Vitis AI. Ushiroyama et al. [12] evaluate the performance
and power consumption using three different CNN models
trained on the CIFAR-10 dataset. This work shows that
fully connected layers become a performance bottleneck
due to low DPU utilization. Verucchi et al. [13] compare
the performance of an FPGA-based accelerator generated
by Vitis AI with CPUs and GPUs. Their evaluation results
show that the GPU platforms achieve the best performance.
Two reasons for the inferior performance of the FPGA-based
accelerator over GPUs have been shown. The first is that the
bottleneck is not the inference process performed in the DPU,
but the pre-processing and post-processing performed in the
processing system. Second, the processing system performs
operations not supported by the DPU instead.

We are aware of two studies that compare dataflow and
overlay architectures generated by automation

FIGURE 4. The original FINN development flow and our extension
(FINN-S).

frameworks [14], [20]. Both FINN and Vitis AI are featured
in these studies. However, it is difficult to draw any firm
conclusions from them because of the reasons described
below. In [14], the analysis is mainly qualitative. Only limited
quantitative data regarding inference latency are reported
but a different DNN model and a different FPGA board are
used for each automation framework. In [20], Blott et al.
provide a more detailed analysis with quantitative data on the
inference accuracy, latency, throughput, power consumption,
and power efficiency. However, similar to in [14], different
DNN models are used for different automation frameworks,
making it difficult to assess the comparison results.

The obstacle that prevents [14] and [20] from using the
same target DNN model and FPGA board for comparing
FINN and Vitis AI is that it is challenging to use FINN for
DNNmodels and FPGA boards different from those provided
by its authors, which are very limited. In this work, by solving
this problem, we provide a detailed and quantitative analysis
of the performance and power efficiency of the FINN-based
and Vitis-AI-based accelerators using the same target DNN
model and FPGA board.

III. FINN-S: OUR EXTENSION OF FINN
A. A NEW DEVELOPMENT FLOW
The primary factor that motivates us to develop FINN-S is
that FINN supports only several FPGA boards, and for each
board provides only one or several simple or application-
specific DNN models mostly without the training scripts.
This makes it difficult for practitioners to draw a comparison
between FINN and other automation frameworks using
FPGA boards and DNN models that suit their objectives.
As shown in the left part of Figure 4, the target of FINN
is PYNQ-enabled boards. Specifically, FINN generates IP-
based designs and provides Python drivers to run them on
PYNQ. While this approach helps to greatly reduce the effort
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FIGURE 5. The block diagram of our FINN-S-based accelerator system on
a Zynq SoC FPGA board.

needed when using PYNQ-enabled boards, extending it to
support other platforms is not trivial. A possible solution is
to exclude the PYNQ-related parts and extract only the DNN
IP core. However, integrating this IP core into designs for
other FPGA boards is difficult due to three problems. First,
the IP core is device-specific in the sense that it is necessary
to recreate the IP for each target device, and FINN allows
only a limited number of Zynq SoCs. Second, even though
the target device is supported, the IP core is highly dependent
on the original FINN development environment where it was
generated. Third, there is no framework for operating the
IP core on general FPGA boards. The FINN-S extension
allows us to generate Verilog code once and use it for
any device.

The right part of Figure 4 shows our solution for the above
problems. There are three steps to extend FINN into FINN-S:
(1) extract the Verilog code of the IPs generated by FINN, (2)
solve the problem that this Verilog code contains the file paths
(e.g., of memory initialization files) that are valid only inside
the FINN development environment (a docker container), and
(3) add AXI-Stream interface, accelerator wrapper code, and
controller program in the processing system (in the case of
using Zynq SoCs).

FINN-S supports both general and Zynq SoC FPGA
boards. Below we will focus on the latter since our target
board in this study is Kria K26 SoM, which is based on a
Zynq SoC.

In FINN-S, we follow the standard Vivado design flow
to create a custom PetaLinux image file that contains the
DNN accelerator core. We develop a controller program
to communicate with the accelerator core running on the
programmable logic (PL) side from the processing system
(PS) side.We do not use Vitis but instead use a cross compiler
to compile the program and send the generated executable file
to the board to run on Linux.

Figure 5 shows the block diagram of our FINN-S-based
accelerator system on a Zynq SoC FPGA board. The data
exchange between the accelerator core on the PL and the
controller program on the PS is via an AXI-Stream bus using
DMA. We create a dedicated region on the DDR memory for
this DMA transfer.

B. DNN MODEL TRAINING
An indispensable part of creating DNN accelerators is
training DNN models. In FINN, how a DNN is trained
not only affects the inference accuracy, performance, and
efficiency of the resulting accelerator but also determines
whether and how it can be transformed into hardware.

A major problem of FINN is the difficulty of DNN model
training and transformation. When the transformation of a
DNN model into hardware fails, it is hard to determine
whether this is due to the training code, the lack of some
essential transformation steps, or some operations in theDNN
that have not been supported yet. FINN does provide some
pre-trained DNN models and their transformation scripts.
However, the training code is available in only several cases.
For example, though there is a ResNet-50 sample design
targetting an Alveo U250 board, no training code is provided.
Therefore, even though our target DNN model in this work is
a variation of ResNet, we have to develop almost everything
from scratch. Even in the cases where the training code is
made available, we find that modifying it to create a custom
DNNmodel that can also be transformed into hardware is not
trivial.

With FINN-S, we have developed a list of hardware-
transformable operations, how to integrate them into a com-
plete DNN, and what transformation steps are required. The
currently supported operations include convolutions (nor-
mal/pointwise/depthwise), fully connected (linear), batch
normalization, activation function ReLU, max/average pool-
ing, dropout, and skip connection. The training code is written
using PyTorch and Brevitas [21], a library for quantization-
aware training.

IV. EVALUATION
A. TARGET DNN MODEL, TRAINING, AND EVALUATION
METRICS
Our target DNN model is ResNet-8 (Figure 6) from the
MLPerf Tiny benchmark [22]. We choose this model because
of two main reasons. First, it features the most important
and popular operations of modern DNN architectures:
convolution, batch normalization, activation function ReLU,
skip connection, average pooling, and fully connected.
Second, it is a reasonably good model, achieving a TOP1
accuracy of over 85% on CIFAR-10 [23] even with coarse
quantization, while being small enough for us to be able to
investigate a wide range of different levels of parallelism of
the accelerators generated by the automation frameworks,
especially the FINN-based one. Since our area of interest
is embedded systems, using a very large FPGA is not
appropriate. However, when the target FPGA is not large,
as mentioned in Section II-A, it is difficult for FINN to
support a large DNNmodel due to the fact that all the weights
and biases of the model are assumed to be hard-wired or
stored entirely on-chip, and this requires a large number of
FPGA resources. Extending FINN to provide the option of
using off-chip DRAM for storing all or a part of the weights
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FIGURE 6. The structure of ResNet-8, our target DNN model.

and biases, thereby making it possible to implement large
DNN models on small FPGAs, is an interesting problem but
beyond the scope of this work.

We train the ResNet-8 models for evaluating the automa-
tion frameworks and the reference platforms using PyTorch.
In all cases, the training batch size and the number of
training epochs are set to 32 and 500, respectively. We use
the Stochastic Gradient Descent (SGD) optimizer with the
weight decay of 10−4 and the momentum of 0.9. The initial
learning rate is 0.075, and we use cosine annealing as the
learning rate scheduler.

Our evaluation metrics include the TOP1 inference accu-
racy, latency, throughput, power consumption, and power
efficiency. The inference accuracy is measured on the test set
of the CIFAR-10 dataset. The latency is the time from the
start to the end of inference for a single image, as the MLPerf
Tiny benchmark defines. Thus, the latency is measured with
a batch size of 1, an input stream size of 1, and the number of
threads of 1. On the other hand, for throughput evaluation,
we vary these parameters and observe the convergence
point. We use FPS (frames per second) as the measure of
throughput. FPS can also be interpreted as the number of
inferences per second. The power efficiency is the throughput
per power consumption.

B. REFERENCE PLATFORM 1: NVIDIA JETSON NANO
DEVELOPER KIT
1) EXPERIMENTAL SETUP
We use an NVIDIA Jetson Nano Developer Kit equipped
with a quad-core Arm Cortex-A57 processor, a 128-core
Maxwell GPU running at 921 MHz, and 4 GB memory.
As the optimization method of the inference task, we convert
our FP32 trained PyTorch model to the TensorRT model
with FP16 precision using torch2trt [24]. For throughput
evaluation, the batch size is varied from 1 to 256.

2) RESULT
We achieve a TOP1 inference accuracy of 89.58%. The
other evaluation results are summarized in Table 1. The first
column is the batch size, which is varied from 1 to 256.
The second column is the inference latency. The third
column is the throughput obtained by dividing the number
of inferences by the elapsed time. The fourth column is

TABLE 1. Performance and power efficiency results on reference
platform 1: NVIDIA Jetson Nano Developer Kit.

the power consumption measured by using the tegrastats
command. We sample 120 points for around 30 seconds
and take the average of them. The last column is the power
efficiency measured in FPS/W.

We can see that the inference latency is 0.940 ms. The
throughput increases with increasing the batch size until 64.
The peak throughput of 7,091 FPS is obtained when the batch
size is set to 64. At this configuration, the average power
consumption is 6.43W, and thus the power efficiency is 1,103
FPS/W.

C. REFERENCE PLATFORM 2: HIGH-PERFORMANCE
DESKTOP COMPUTER
1) EXPERIMENTAL SETUP
We use a computer with an 8-core Intel Core i7-11700K CPU
and 128 GB memory. We conduct the evaluation using an
FP32 trained model since the CPU does not support lower
precisions. For throughput evaluation, we vary the batch size
from 1 to 256.

2) RESULT
We achieve a TOP1 inference accuracy of 89.59%. The other
evaluation results are summarized in Table 2, which has a
structure similar to Table 1. The power consumption of the
whole computer is measured using a TAP-TST8N power
meter during an approximately 10-second execution of the
inference program.

We can see that the inference latency is 0.428 ms. The
throughput increases with increasing the batch size until 64.
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TABLE 2. Performance and power efficiency results on reference
platform 2: high-performance desktop computer.

The peak throughput of 11,119 FPS is obtained when the
batch size is set to 64. At this configuration, the average
power consumption is 172 W, and thus the power efficiency
is 64.6 FPS/W.

D. FINN-BASED ACCELERATOR
1) EXPERIMENTAL SETUP
We train a quantized ResNet-8 model using Brevitas [21],
a library for quantization-aware training on PyTorch. For
simplicity, the inputs, weights, biases, and activations are all
quantized using a common 4-bit fixed-point format. However,
note that a mixed-precision quantization scheme where
the inputs, weights, biases, and activations are quantized
differently (each layer can also have a different quantization
scheme) is also possible. Our model is trained to satisfy the
condition of theMLPerf Tiny benchmark: the TOP1 inference
accuracy of the trained model should be more than 85% on
the CIFAR-10 dataset.

The trained PyTorch model is first converted to the ONNX
format and then input into the FINN compiler where it is
translated to the corresponding HLS layers in C++ with
the folding factors (number of PEs and number of SIMD
lanes per PE) for processing each layer set as in Table 3.
Then, the FINN compiler converts the HLS layers to Verilog
code. We use the Verilog code to create a Vivado project and
generate an XSA file. A PetaLinux image is created using the
XSA file.

The parameters that we vary while evaluating FINN-S are
the number of PEs, the number of SIMD lanes per PE, and the
stream size which is the number of images continuously input
into the accelerator. We evaluate six configurations (from
C1 to C6) of the number of PEs and the number of SIMD
lanes per PE for the nine convolutional layers of ResNet-8
as shown in Table 3. We do not include configurations with
different numbers of PEs and numbers of SIMD lanes per
PE for the FC (fully connected) layer because we find that
varying the number of PEs and the number of SIMD lanes per
PE for the FC layer has only a minor impact on the overall
performance. This is because the FC layer is small and the
number of operations required to execute it accounts for only
0.005% of the total number of operations. For DNNs with
a significantly large FC layer, it is necessary to take into

TABLE 3. The folding configurations to explore the performance of our
FINN-based accelerator.

TABLE 4. The hardware utilization and performance results of six
configurations of our FINN-based accelerator. The input stream size is set
to 1 when measuring the inference latency.

account the number of PEs and the number of SIMD lanes for
the FC layer while designing the configurations. In Table 3,
C1 is the configuration of the minimal hardware where all
folding factors are set to 1. C6 is the configuration of the
maximum hardware where large folding factors are carefully
chosen considering the target FPGA hardware budget. C2 to
C5 are set as their intermediate configurations. The stream
size is varied from 1 to 256.

The version of the FINN compiler used is v0.7. We use
Vivado 2021.2 to create the accelerator core of the PL part
of the system, and PetaLinux 2021.2 to create the PetaLinux
image for the PS part. The target device is Xilinx Kria K26
SoMwith 117,120 LUTs, 234,240 FFs, and 144 BRAMs. The
PS part features a quad-core Arm Cortex-A53 processor.

2) RESULT
Table 4 shows the hardware utilization, the latency in
milliseconds, and the throughput in FPS for the six con-
figurations running at 225 MHz, which is the maximum
clock frequency of the accelerator of the largest configuration
C6. Other configurations may operate at slightly higher
clock frequencies but it does not fundamentally change our
comparison result here. We use Verilog simulation to obtain
the number of elapsed cycles and calculate the values in
Table 4.
In Table 4, the second, third, and fourth columns show the

number of occupied LUTs, FFs, and 36Kb BRAMs with the
numbers in the brackets being the utilization ratios. We can
see that the smallest configuration C1 consumes an almost
similar number of hardware resources compared to the larger
configurations C2, C3, and C4. This indicates that too small
configurations may lead to inefficiency in utilizing the FPGA
resources. In terms of performance, we can see that the
largest configuration, C6 is the best. It provides over 4x better
latency and throughput results compared with configuration
C5. Therefore, we use C6 in the following evaluations.
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TABLE 5. The performance and power efficiency results of our
FINN-based accelerator which is generated using configuration C6 and
operates at 225 MHz.

FIGURE 7. The throughput and power efficiency of our FINN-based
accelerator with configuration C6.

Table 5 shows the evaluation results of our FINN-based
accelerator using C6. The maximum operating frequency of
the accelerator is 225 MHz, and the inference latency is
calculated to be 0.154 ms. The inference accuracy measured
on the FPGA is 85.88%. We vary the input stream size
from 1 to 256 images. We measure the power consumption
using a CT-3 power meter.We sample 1,000 points for around
10 seconds and take the average of them.

Figure 7 shows the throughput and power efficiency of
our FINN-based accelerator with configuration C6. We can
see that both throughput and power efficiency improve with
increasing the stream size from 1 to 64 but almost plateau
after that. The peak throughput and power efficiency of
13,475 FPS and 2,287 FPS/W are achieved when the input
stream size is 256.

The left part of Figure 8 shows the place and route
result of our FINN-based accelerator. The slices occupied
by the modules that implement the nine convolution layers
(conv0–8) and the fully connected layer (FC) are highlighted
using the same colors as in Figure 6. The remaining occupied
slices are highlighted in red.

E. VITIS-AI-BASED ACCELERATOR
1) EXPERIMETAL SETUP
Table 6 shows the configuration of the DPU used in our
evaluation. Based on the number of available hardware
resources and the performance trend, we vary the number of
DPU cores from 1 to 4 and explore all eight different DPU

FIGURE 8. The place and route results of our FINN-based and
Vitis-AI-based accelerators.

TABLE 6. Configuration parameters of the DPU used in our evaluation of
Vitis AI.

architectures (B512, B800, B1024, B1152, B1600, B2304,
B3136, and B4096) only for the 1-core configuration. For the
other configurations, only the B512 architecture is used. All
of the remaining parameters are set to default values except
that the Ultra-RAM (URAM) Use per DPU is set to 64, the
number of URAMs available on a Kria K26 SoM, so that
there is enough on-chip memory.

We follow the standard Vivado flow to create a PetaLinux
image with the DPU. The versions of Vivado and PetaLinux
and the target device are the same as in the evaluation of
FINN-S.

For the evaluation of the DPU, we first train an FP32
ResNet-8model using PyTorch.We next use Vitis AI (version
2.0) to quantize and compile this model into an xmodel file
containing instructions for execution on the DPU. We set
the quantization bitwidth to 8 for all weights, biases, and
activations, which is the only configuration available for Kria
K26 SoM devices. The number of running threads is varied
from 1 to 10.

2) RESULT
The TOP1 inference accuracy measured on the FPGA is
89.23%, which is almost the same as that of the original
FP32 model. The results for the other evaluation metrics are
described below.

First, we set both the number of DPU cores and the
number of threads to 1 and observe the inference latency
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TABLE 7. FPGA resource usage, performance, and power efficiency results of our Vitis-AI-based accelerator obtained when varying the DPU architecture
from B512 to B4096 and fixing both the number of DPU cores and the number of threads to 1. All designs operate at the same clock frequency of 300 MHz.

FIGURE 9. The power efficiency of our Vitis-AI-based accelerator with
different numbers of DPU cores and threads.

and the trends of the other metrics obtained when varying
the DPU architecture from B512 to B4096. Table 7 shows
the results. In every case, the design operates at a clock
frequency of 300 MHz. As same as in the evaluation of
FINN-S, we measure the power consumption of the FPGA
board using a CT-3 power meter. We sample 1,000 points
for around 10 seconds and take the average of them. From
Table 7, we can see that increasing the parallelism of the DPU
architecture does not improve the latency, throughput, and
power efficiency.

Next, we investigate how the throughput and power
efficiency change with increasing the number of threads and
the number of DPU cores. Based on the observation that they
do not change much with the DPU architecture when both the
number of threads and the number of DPU cores are fixed
to 1, we focus on only B512 and B4096, the smallest and
largest ones. In the first experiment, we increase the number
of threads while keeping the number of DPU cores fixed to
1. The clock frequency is also kept at 300 MHz. As shown
in Figure 9, the peak power efficiency is achieved when the
number of threads is increased to 2 for the B512 architecture
and 3 for the B4096 architecture. However, no improvement
is obtained when the number of threads is increased further.
Since there is no significant difference in the results of the
two architectures, in the experiment of varying the number
of DPU cores, we focus on only the B512 architecture.
We are able to keep the design operating at 300 MHz when
the number of DPU cores is increased to 3. However, the

TABLE 8. Performance and power efficiency results of our Vitis-AI-based
accelerator with different numbers of B512 DPU cores and clock
frequencies.

frequency drops to 270 MHz when the number of DPU cores
is 4. Figure 9 shows that the three multicore configurations
scale better with the number of threads than the single
core configuration. The 2-core configuration achieves a peak
power efficiency that is 1.5x better than that of the single core
configuration when the number of threads is 8. The 3- and 4-
core configurations exhibit almost similar trends, achieving
their peak power efficiencies when the number of threads
is 9.

Finally, we explore how the results change when reducing
the clock frequency. We evaluate the 3- and 4-core (B512)
configurations running at 200 MHz with varying the number
of threads. Table 8 shows the evaluation results. Here,
latency is measured when the number of threads is 1, while
throughput and power efficiency are measured at their peak
when the number of threads is 9. For both configurations,
reducing the clock frequency to 200 MHz leads to lower
power consumption while retaining the throughput. As a
result, the power efficiency is improved.

In summary, with the TOP1 inference accuracy of 89.23%,
Vitis AI achieves a peak throughput and power efficiency
of 4,458 FPS and 695 FPS/W, respectively, when the DPU
architecture is B512, the number of DPU cores is 4, the clock
frequency is 200 MHz, and the number of threads is 9. The
latency, which is measured when the number of threads is set
to 1, is 1.293 ms.

The right side of Figure 8 shows the place and route
result of our Vitis-AI-based accelerator with the above
configuration. We use four colors, namely red, yellow,
green, and blue, to highlight the occupied slices. Each color
indicates a DPU core.

F. COMPARISON OF DNN ACCELERATORS
In this section, using the results presented in the previous
sections, we explore the gap between the FINN-based
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FIGURE 10. Illustration of the comparison results in Table 9.

and Vitis-AI-based accelerators and make a comparison
with the NVIDIA Jetson Nano Developer Kit and the
high-performance desktop computer. For the FINN-based
accelerator, we use the configuration C6 (see Table 3); the
latency is measured with the stream size set to 1, while
the throughput and power efficiency are measured with the
stream size set to 256. For the Vitis-AI-based accelerator,
we use the configuration of four B512 DPU cores running
at 200 MHz; the latency is measured with the number of
threads set to 1, while the throughput and power efficiency are
measuredwith the number of threads set to 9. The comparison
results are summarized in Table 9.

Figure 10 depicts the data shown in Table 9 to clarify the
differences between the four platforms. In terms of TOP1
inference accuracy, with the FP32 DNN model, the desktop
computer (CPU-based) platform is the highest as expected.
The FP16 and INT8 models running on the NVIDIA Jetson
Nano Developer Kit (GPU-based) platform and the Vitis-
AI-based accelerator have similar qualities with a decrease
of only 0.01% and 0.36%, respectively. The INT4 model
running on the FINN-based accelerator achieves a 3.71%
lower TOP1 accuracy than the FP32model. However, it is still
higher than 85%, the quality target set by the MLPerf Tiny
benchmark [22], [25]. Because of this, we do not fine-tune the
training further to close the gap with the FP32 model despite
there is still room for improvement. In terms of latency, the
FINN-based accelerator is the best, which is 8.4x, 6.1x, and
2.8x better than the Vitis-AI-based accelerator, the GPU-
based platform, and the CPU-based platform, respectively.
In terms of throughput and power efficiency, the FINN-based
accelerator also outperforms the others. With a throughput
of 13,475 FPS and power consumption of just 5.89 W, its
power efficiency is 3.3x, 2.1x, and 35.4x higher than theVitis-
AI-based accelerator, the GPU-based platform, and the CPU-
based platform, respectively.

From the above results, we can see that both of the
FPGA-based accelerators are much more efficient than
the CPU-based platform. However, when compared with
the GPU-based platform, only the FINN-based accelerator

TABLE 9. Comparison of FINN-S and Vitis AI with reference to the results
obtained when using an NVIDIA Jetson Nano Developer Kit and a desktop
computer with a Core i7-11700K CPU.

is better. This means that the selection of an automation
framework suitable for the target DNN model and FPGA
device is an important issue. For the case in our experiment,
the advantage obtained when using Vitis AI is limited.
Nevertheless, with the promising results of FINN-S, we con-
clude that even in the case of using automation frameworks,
DNN accelerators on FPGAs can still yield significant
performance, and power efficiency gains compared with both
CPUs and GPUs.

V. DISCUSSION
A. INSIGHTS INTO THE COMPARISON RESULTS OF
FINN-S AND VITIS AI
Our experimental results show that the FINN-based accel-
erator outperforms the Vitis-AI-based accelerator by a
significant margin (8.4x, 3.0x, and 3.3x in terms of latency,
throughput, and power efficiency, respectively). We also
found that increasing the level of parallelism of the
architecture helped to improve the FINN-based accelerator
significantly but it was not the case for the Vitis-AI-based
accelerator.

Our first insight is that these results reflect the architectural
differences between the two accelerators. The FINN-based
accelerator does not require access to off-chip DRAM during
the inference process (see Figure 2), and therefore, as long
as the DRAM bandwidth is enough for transferring input
and output data of the accelerator, increasing the level
of parallelism by n times would lead to a performance
improvement of roughly n times. This is the case in our
experiment (see Tables 3 and 4). We can see that the
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largest configuration C6 provides 134x better latency and
148x better throughput than the smallest configuration C1.
On the other hand, the Vitis-AI-based accelerator has a
different characteristic because it requires access to off-
chip DRAM during the inference process (see Figure 3).
Specifically, different from the FINN-based accelerator, the
inference process is controlled by a series of instructions
stored in DRAM. The weights and biases also need to be
fetched from DRAM. The other sources incurring DRAM
traffic are the store and load of intermediate feature maps
and output meta-data. Depending on the adopted processing
dataflow (e.g., weight-stationary, output-stationary, etc.) and
the on-chip buffer capacity, a feature map or a weight/bias
may need to be fetched from DRAM multiple times. For
all of these reasons, the inference process of the Vitis-AI-
based accelerator involves excessive off-chip DRAM access
overhead. Therefore, due to limited DRAM bandwidth,
we could not improve the performance of the Vitis-AI-
based accelerator by increasing the level of parallelism
of the architecture like in the case of the FINN-based
accelerator. As shown in Table 7, the performance results
of the architectures with the highest and lowest level of
parallelism (B4096 and B512) are not significantly different
from each other. On the other hand, whenmultiple DPU cores
and multiple threads are used, data loaded from DRAM are
reused more efficiently. As a result, the DRAM bandwidth
requirement is reduced and we observe an improvement in
the throughput and thus the power efficiency, as shown in
Figure 9.
Our second insight is about how the comparison result of

the two automation frameworks may change when a different
target FPGA board is used. In our current experiment with
the FINN-based accelerator, DRAM bandwidth is still not
the performance bottleneck even for the largest configuration.
Therefore, for the FINN-based accelerator, in the case of
a larger target FPGA, the ability to increase the level of
parallelism makes it possible to achieve better performance,
and thus also better power efficiency; on the contrary, in the
case of a smaller target FPGA, since the level of parallelism
must be reduced to be able to fit the design onto the FPGA,
lower performance and power efficiency results would be
expected. The Vitis-AI-based accelerator has a different
trend. We can see from the experimental results that further
increasing the level of parallelism of the DPU architecture as
well as the number of DPU cores would not help to improve
the performance and power efficiency. Also, reducing the
configuration to two B512 DPU cores results in only a small
negative impact. Therefore, the size of the target FPGA has
less influence on the performance and power efficiency than
in the case of the FINN-based accelerator. In summary, using
a larger target FPGA would sway the comparison result in
favor of the FINN-based accelerator; and using a smaller
target FPGA would sway the comparison result in favor of
the Vitis-AI-based accelerator. Now let us consider what
may occur if a DRAM with better or worse bandwidth is
used. In our current experiment, DRAM bandwidth is the

bottleneck of the Vitis-AI-based accelerator, but not of the
FINN-based accelerator. Therefore, using a DRAM with
better bandwidth would narrow the gap between the two
accelerators; and using a DRAM with worse bandwidth
would widen the gap between them.

B. ANALYSIS OF VITIS AI’s RESULTS
Our experimental results show that the Vitis-AI-based
accelerator is outperformed by the NVIDIA Jetson Nano
Developer Kit. Our analysis reveals that this is due to the
low utilization rate of the available computational resources
of the DPU. For a system containing four B512 DPU cores
running at 200 MHz, which is similar to the configuration
used in our experiment, the peak performance is 409.6 GOPS.
On the other hand, our measured throughput is 4,458 FPS.
We estimate that, with the ResNet-8 DNN model, 25.0M
operations are necessary for each frame inference. Therefore,
by multiplying these two values, we have an effective
performance of 111.5 GOPS. Thus, the computational
efficiency is only 27.2% of the peak performance. This
can be explained by the DRAM bandwidth bottleneck of
the Vitis-AI-based accelerator. As we have described in
Section V-A, the overlay architecture of the Vitis-AI-based
accelerator requires frequent access to DRAM during the
inference process. Therefore, if the DRAM bandwidth is not
high enough, the computation units will frequently have to
wait for accessing DRAM. This leads to the low utilization
rate of the computation units, which limits the performance
and power efficiency of the accelerator. By using an FPGA
board with higher DRAM bandwidth, better performance and
power efficiency results would be achieved.

C. TRENDS FOR LARGE DNN MODELS
We project the trends for a large DNN model as follows.
If the target FPGA is large enough to be able to increase the
level of parallelism (the number of PEs and the number of
SIMD lanes per PE) of the accelerator generated by FINN-
S, then FINN-S will still outperform Vitis AI in terms of
latency, throughput, and power efficiency. However, if the
target FPGA is small, then either it will be impossible
for FINN-S to fit the DNN model onto the FPGA or the
resulting accelerator will have a low level of parallelism
and be worse than that generated by Vitis AI. This is
because like the original FINN, FINN-S assumes that all the
weights and biases of the model are hard-wired or stored
entirely on-chip, which requires a vast amount of FPGA
resources.

Note that our area of interest is in embedded systems, and
therefore, it is undesirable to use a very large FPGA. To make
it possible to implement large DNN models on small FPGAs
using FINN-S, some fundamental changes to the framework
(for example, by storing all or a part of the weights and biases
in DRAM) is required. Exploring this is a promising direction
to extend our work.

VOLUME 11, 2023 5711



F. Hamanaka et al.: Exploration of State-of-the-Art Automation Frameworks for FPGA-Based DNN Acceleration

D. COMPARISON BETWEEN FPGA AND ASIC
IMPLEMENTATIONS
It has been known that an ASIC implementation is typically
about an order of magnitude faster and more efficient than
an FPGA counterpart. For example, Nurvitadhi et al. [26]
have quantitatively explored this in the case of accelerating
binarized neural networks. They showed that with the same
microarchitecture, a 14nm ASIC implementation was 4.5x
faster and 11x more power efficient than an Aria 10 FPGA
implementation. While FPGA-based accelerators generated
by automation frameworks like FINN and Vitis AI may be
less competitive than manual RTL designs, the difference
is expected to be reasonable so that the gap with ASIC
implementations is not significantly changed.

In addition to algorithm- and architecture-level innova-
tions, which mostly can be applied to both ASIC and FPGA
implementations, state-of-the-art ASIC studies have been
investigating how to incorporate emerging technologies like
digital-analog hybrid computing and processing in memory
for better performance and power efficiency. PUMA [27] and
ISAAC [28] are two representative examples in this cate-
gory. The introduction of highly efficient memristor-based
analog processing units enables these ASIC accelerators to
outperform conventional designs by a significant margin. For
example, up to 2.27× improvement in inference throughput
and 1.65× improvement in power efficiency over Google
TPU, a conventional ASIC accelerator, are reported in the
study of PUMA.

On the other hand, FPGA vendors have also been adapting
their FPGA architectures to better support DNN inference
processing. For example, Intel has recently incorporated
hardened AI Tensor Blocks that can perform matrix and
vector operations into their Stratix 10 NX architecture [29].
AMD Xilinx has done a similar attempt with their VERSAL
architecture [30]. With this trend, the gap of performance
and power efficiency between FPGAs and ASICs in DNN
inference processing may be narrowed in the future. There-
fore, given the fact that FPGAs have two unique advantages
over ASICs, the reconfigurability that is highly desirable in
fast-moving fields like designing DNN models and the lower
development effort and unit cost when the manufacturing
volume is not so high, it can be expected that FPGA-based
accelerators would become an even more attractive solution.

VI. CONCLUSION
In this paper, we conducted a fair and quantitative comparison
of two representative automation frameworks for generating
FPGA-based DNN inference accelerators: FINN and Vitis
AI. First, we extended the development flow of FINN to
provide a comparison with Vitis AI using the same target
hardware and the same DNN model. With our extensions,
a wide variety of FPGA devices and DNN models can
now be supported. Then, we used the CIFAR-10 ResNet-8
model from the MLPerf Tiny benchmark and compared the
FINN-based and Vitis-AI-based accelerators with reference

to the results obtained when using an NVIDIA Jetson Nano
Developer Kit with a similar power budget and a high-
performance desktop computer with a Core i7-11700K CPU.
In the comparison, we searched for the configuration where
each platform performed best.We adjusted the folding factors
and stream size for FINN, the DPU architecture, the numbers
of DPU cores and threads, and the clock frequency for Vitis
AI, and the batch size for both the Jetson Nano Developer Kit
and the desktop computer.

Our results showed that the accelerator generated by FINN
was the best in terms of latency, throughput, and power
efficiency. This indicates the high potential of automation
frameworks for DNN inference acceleration on FPGAs.
We also discussed the gap between FINN and Vitis AI and
provided our insights into it.
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