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ABSTRACT In mobile networks, 5G Ultra-Dense Networks (UDNs) have emerged as they effectively
increase the network capacity due to cell splitting and densification. ABase Station (BS) is a fixed transceiver
that is the main communication point for one or more wireless mobile client devices. As UDNs are
densely deployed, the number of BSs and communication links is dense, raising concerns about resource
management with regard to energy efficiency, since BSs consume much of the total cost of energy in a
cellular network. It is expected that 6G next-generation mobile networks will include technologies such as
artificial intelligence as a service and focus on energy efficiency. Using machine learning it is possible to
optimize energy consumption with cognitive management of dormant, inactive and active states of network
elements. Reinforcement learning enables policies that allow sleep mode techniques to gradually deactivate
or activate components of BSs and decrease BS energy consumption. In this work, a sleep modemanagement
based on State Action Reward State Action (SARSA) is proposed, which allows the use of specific metrics
to find the best tradeoff between energy reduction and Quality of Service (QoS) constraints. The results of
the simulations show that, depending on the target of the 5G use case, in low traffic load scenarios and when
a reduction in energy consumption is preferred over QoS, it is possible to achieve energy savings up to 80%
with 50 ms latency, 75% with 20 ms and 10 ms latencies and 20% with 1 ms latency. If the QoS is preferred,
then the energy savings reach a maximum of 5% with minimal impact in terms of latency.

INDEX TERMS 5G, energy efficiency, sleep mode, reinforcement learning.

I. INTRODUCTION
Telecom as an industry is continuously growing to meet
customers’ requirements.Mobile applications generate a high
traffic volume with multiple connections and a high through-
put density with QoS concerns. According to [1], UDNs
have been considered one of the advanced technologies in
5th Generation (5G) and could be the key to meeting user
expectations. Compared to existing non-dense deployment in
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heterogeneous networks based on the Long-Term Evolution
(LTE) standard, with UDNs, small, femto and pico cells
can be densely deployed by network operators and or even
by users. In UDNs, the access nodes and/or the number of
communication links per unit area are dense. To consider a
network as ultra-dense, two measures can be considered, the
number of cells and the number of users. The density of a
network is mainly defined by the number of cells or users
in a given area. Quantitatively, the definition of UDN varies
from literature to literature, according to [1] there must exist
more than 103 cells/ km2, or more than 600 active users/ km2
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to consider a network as UDN. An UDN is defined in [2],
as a network in which the density of the BSs or access points
is potentially as high as or even higher than the density of
the users. In [3], an UDN is characterized by the fact that the
distance between the sites in the network is not greater than
a few meters. As indicated in [4] the key patterns of a UDN
are the User End (UE) density and the UE mobility. By 2027,
5G networks are expected to carry 62% of the total mobile
data traffic [5]. According to [6], between 2020 and 2030, the
compound annual growth rate will increase by 55% per year,
reaching 607 EBytes in 2025 and 5.016 EBytes in 2030.

The implementation of 5G wireless networks must provide
uninterrupted service to connected clients with strict QoS
requirements but, on the other hand, the network must be
energy efficient. Due to the demands of 5G services and
applications and the characteristics of UDN, the promotion
of energy efficiency is a constant challenge for network
operators.

Studies in [7], [8], and [9] highlight that BSs consume
about 60% to 80% of the energy used in cellular networks.
Next Generation Mobile Networks (NGMN) have docu-
mented 6G Use Cases and Analysis [10], where a variety of
usage scenarios have been forecasted in the 6th Generation
(6G) time horizon. One of them is related to the evolution of
the network, which describes aspects related to the evolution
of core technologies, including Artificial Intelligence (AI) as
a service, energy efficiency, and the delivery of ubiquitous
coverage. It is stated that by engaging the capabilities of
native AI/Machine Learning (ML) models in the intelligent
allocation of networking, computing and storage resources,
the optimization of energy consumption can be accomplished
in the network and devices. NGMN consider that optimiza-
tion of energy consumption can be achieved by cognitive
management of the dormant, inactive, and active states of
a network element or device and that the associated state
durations could be modulated elastically. To realize a 5G
network-wide energy efficiency, 3rd Generation Partnership
Project (3GPP) New Radio (NR) has redesigned operation
features [11] to support technologies that reduce energy con-
sumption, namely Massive Multiple-Input Multiple-Output
(mMIMO), Lean carrier design, Advanced Sleep Modes
(ASMs), and AI.

ML plays a very important role in the field of commu-
nications. Reinforcement Learning (RL), a subset of ML,
features an agent that learns using a trial-and-error approach
to map situations into actions. A reward or penalty is received
after each action, allowing action-based learning to improve
rewards. The agent will then pursue an objective by capturing
the most important aspects of the real problem, interact-
ing over time with the environment [12]. Thus, RL can be
deployed to explore the balance between energy consumption
and performance in 5G networks.

This paper presents a 5G BS sleep mode management
based on SARSA that balances a set of metrics to find the best
tradeoff between energy reduction and QoS constraints. This
tradeoff between energy consumption and end-to-end (E2E)

user latency is explored for three 5G main use cases require-
ments, respectively Enhanced Mobile Broadband (eMBB),
MassiveMachine Type Communications (mMTC) and Ultra-
Reliable Low Latency Communications (URLLC).

The remainder of this document is organized as follows.
Section II presents related work in the area. Section III
presents the background of the technologies and concepts
addressed in the system model designed in this work.
Section IV introduces the system model. Section V presents
a discussion relative to the results obtained; and in Section VI
conclusions are made.

II. RELATED WORK
Energy efficiency is a commonly studied subject in several
technological fields. Several approaches to green cellular
techniques have been proposed, such as hardware enhance-
ments, sleep mode techniques, optimization in radio trans-
mission, network planning and deployment, and adoption of
renewable energy resources. To address such problems and
challenges, RL has recently been used in the networking and
communication areas. RL has been also used in other real
life applications such as healthcare, robotics, gaming, image
processing, and manufacturing. As the level of complexity of
future networks increases, traditional approaches to network
planning and deployment, and operation will no longer be
adequate. With 5G, mobile network operators can enable
new services and experiences for enterprises and consumers.
Those services can be mapped with 5G use cases that have
different requirements to meet, thus different radio access
network architectures are also needed. Network slicing is a
potential solution to simplify network architectures and oper-
ations, as it enables customization of specific demands for
specific services or customers, using the same physical net-
work infrastructure. In [13], RL is used to enable a scheduling
solution for data traffic management. The scheduling frame-
work allows different scheduling rules to be selected as the
RL agent maps the rules to each state and learns when to
apply each. This framework allows minimizing packet delays
and packet drop rates for strict QoS requirement applications.
In [14] the authors propose a slice admission policy based
on RL for a 5G flexible Radio Access Network (RAN),
that splits the RAN functions to support diverse service
requirements. The authors considered a central office and a
remote regional data center to divide the processing tasks.
High-priority services with strict latency restrictions are
placed in the central office and low-priority services with
non-strict latency restrictions can be placed in both cen-
ters. The authors concluded that the proposed policy outper-
forms the benchmark heuristics, as the system manages the
slice requirements with different latency requirements. This
allows the maximization of accepted slices while minimiz-
ing the overall penalty paid by the infrastructure provider.
The authors of [15] refer that, to provide services with dif-
ferent QoS, mobile edge computing is a technology that
enables lower latencies with more flexible services. They
used Software-Defined Networks (SDNs) as a solution to
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decouple the data forwarding from the centralized control and
RL to define a QoS-aware adaptive routing in a multi-layer
hierarchical SDN. With this distributed hierarchical control
plane, used to minimize signalling delay, the authors high-
light that this framework enables adaptive, time-efficient,
and QoS-aware packet forwarding. Reducing 5G energy
consumption is still a challenge in cellular networks, and
RL has also been explored to improve energy efficiency.
To address the energy consumption problem of densely and
overlapped BSs used by vehicular social networks, in [16] a
joint mode-selection and power-control algorithm using RL
is proposed. The authors have used the SARSA algorithm
to obtain a RL policy that learns how to maximize energy
efficiency by adjusting the minimum signal-to-interference
plus noise ratio to guarantee the outage probability. In [17]
authors studied the joint access control and battery prediction
problems in a small-cell Internet of Things (IoT) system
that includes multiple energy harvesting user equipment and
one BS with limited uplink access channels. The authors
concluded that the battery prediction problem has been
solved using a fixed round-robin access control policy. The
RL-based algorithm allowed tominimize prediction loss error
without any model knowledge about the energy source and
the energy arrival process.

Sleep mode techniques and RL have received important
attention and are being used to achieve energy efficiency in
5G systems. In [18] the authors used the SARSA RL algo-
rithm to decide which sleep mode to choose at a given time
considering the BS load, the system dynamically hops from
active state to any sleep mode based on the instantaneous
traffic load.

In [19] the authors have studied scenarios with different
traffic profiles and periodicity of signalling bursts to quantify
the outcomes in terms of energy consumption reduction and
QoS serving elastic data traffic in the downlink direction.
The authors concluded that in scenarios with low traffic
load and with increased signalling periodicity, a considerable
energy consumption reduction is observed. In [20] the authors
design a RL system that aims to find the optimal duration for
each sleep mode level according to the requirements of the
network operator in terms of energy consumption reduction
and delay constraints. The Q-learning algorithm uses solely
local information to implement the energy savings policy.
Reference [21] is an extension of [19] and [20] where the
authors implement a Q-learning codebook to map the traffic
load to the possible actions to be performed by the RL agent,
using the same approach to maximize the number of times
that each sleep mode level is used, starting with the deepest
sleep level first. Besides sleep mode traffic-aware strategies,
sleep mode location awareness has also been studied. In [22],
a Q-Learning algorithm is proposed to control the state of
the BS depending on the geographical location and moving
velocity of neighbouring users. The objective is to learn
the best policy that maximizes the tradeoff between energy
savings and delay.

To the best of our knowledge, no studies have integrated the
wake-up delay of the sleep mode level with E2E user packet
latency for the uplink traffic, being aware of the type of traffic
and not only of the mobile user request to activate the BS.

III. REQUIREMENTS
This section presents the requirements and criteria related to
energy consumption and delay that have been evaluated in
this work. In a 5G network, the BSs have two power con-
sumption components: node power consumption and commu-
nication power consumption. The node power consumption
includes the power consumption of signal processing, cool-
ing, and backup batteries. Communication power includes
the power consumption to transmit a signal with a certain
coverage, which depends on the distance of eachUE: a distant
UE consumes more energy in data transmission than a closer
one [1].

The sleep mode strategy assumes the deactivation/
activation of the BS hardware components. These compo-
nents can be grouped by similar deactivation/activation time
and assigned to different sleep mode levels. As stated in [23],
the following sleep mode levels can be assumed:
• Sleep Mode (SM)1 level: the power amplifier and some
processing components of the digital baseband and ana-
logue front-end are disabled. This is the fastest level with
0.071 ms of (Orthogonal Frequency DivisionMultiplex-
ing (OFDM) symbol) deactivation/activation time.

• SM2 level: needs 1 ms (1 sub-frame of Transmission
Time Interval (TTI)) to deactivate/activate additional
components of the analogue front-end.

• SM3 level: the power amplifier, all the components
of the digital baseband, and almost all the parts of
the analogue front-end (except the clock generator) are
switched off. The deactivation/activation time is 10 ms
(a frame).

• SM4 level: is the standby mode where a large part of the
components of BS is deactivated. The wake-up function-
ality will take 1s, as this is the minimal sleep duration.

Different sets of hardware can be grouped by sleep mode,
being an example of the work in [23]. Table 1 presents the
power consumption measurements for 4 different types of
BSs where the authors have grouped the power consumption
and transition times by sleepmode. Both 2×2 and 4×4macro
BSs, radiate 49 dBm over 3 sectors with a bandwidth of
20 MHz, being the difference between them the amount of
Multiple-Input Multiple-Output (MIMO) streams. The pico
BS radiates 1 W over a bandwidth of 20 MHz. The femtocell
BS radiates 250 mW over a bandwidth of 10 MHz and the
LSAS BS radiate 41 dBm with 200 antennas. As depicted,
regardless of BS, in SM2, SM3 and SM4 the energy con-
sumption is below 10% compared to load mode zero where
all hardware is activated.

Table 2 presents the energy consumption, duration of
activation/deactivation, percentage of reduction in energy
consumption and energy savings, grouped by SMs for the
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TABLE 1. Base station power consumption by base station type as
defined in [23].

TABLE 2. 2 × 2 macro BS energy consumption, deactivation/activation
duration, energy consumption percentage reduction and energy saving in
watts, grouped by SMs.

2×2 macro BS defined in [23]. As the system enters a deeper
sleep mode, less energy is consumed, however, the transition
latency to activate the BS takes longer, which degrades the
end user QoS. In each sleep mode level, the activation and
deactivation times are equal. Theminimum time of each sleep
mode is the sum of the deactivation and activation times.
When the BS is awake in idle mode or serving users, it is
not possible to reduce energy consumption by deactivating
some hardware components, and when BS is idle, the energy
consumption ranges from 5.3 W to 114.5 W with activation
times from 0.035 ms to 500 ms.

According to the International Telecommunication Union
(ITU) nomenclature for IMT-2020 [24], 5G networks tar-
get the following three main use case families with dis-
tinct connectivity requirements: respectively eMBB, mMTC
and URLLC.

• eMBB: enables the transfer of large volumes of data at
extreme data rates. It is a human-centric use case, with
typical usage on mobile phones and mobile PC’s/tablets.

• mMTC: is a machine-centric use case that provides
access to a massive number of Low-Power Wide-Area
(LPWA) devices that occasionally send or receive small
volumes of data. Typical usage includes wearable, low-
cost sensors, actuators, meters, and trackers.

• URLLC: is a machine-centric use case with rigorous
requirements for reliability and latency. With typical
usage on AR/VR, autonomous vehicles, cloud robotics,
real-time coordination and control of machines and
processes, advanced wearables, and real-time human-
machine collaboration.

Table 3 summarizes the 5G use cases presenting for each
of the application categories, the general characteristics, and
the standard user plane latency requirements [24]. Services
within each use case may not have the same constraints, and

thus in certain scenarios, it is possible to relax latency require-
ments towards the long term. Table 3 also summarizes some
sub-use cases that havemore relaxed E2E latencies [25], [26].
eMBB applications such as online gaming or 4k downlink
video streaming are compatible with E2E latencies of 10 ms
and 20 ms respectively. In mMTC there are applications such
as autonomous vehicles sensor and video dynamic latency
of 5 ms and autonomous vehicles video fixed with 50 ms
latency. In URLLC some use cases are suitable with latencies
beyond 5 ms, 20 ms or even 50 ms. The automotive 5G
URLLC use cases can be divided into assisted, co-operative
and tele-operated driving. Their user plane requirements in
terms of E2E latency for both uplink and downlink are 5 ms
for assisted, 10ms for cooperative and 20ms for teleoperated.
In the context of Industry 4.0, the use cases motion control,
factory automation and process automation can be consid-
ered where the monitoring and control of industrial processes
are critical in terms of latency and resilience requirements.
Their E2E latency requirements are, respectively, of 1 ms,
10 ms and 50 ms.

This opens the opportunity to have systems built with a
tradeoff between acceptable latency and energy consumption
reduction. This work has not considered the SM4 level due to
its minimum sleep duration of 1 s, which is not compatible
with latency demands of eMBB, mMTC and URLLC 5G use
cases.

IV. SYSTEM MODEL
The design of the system model considers the tradeoff
between the energy consumption and the E2E user traffic
latency.When in a given sleepmode, the BS does not transmit
or receive traffic from the end user but listens to incoming
traffic from the core network intended for the end user. In case
the BS is sleeping, incoming traffic from the core network
is stored on a packet buffer and therefore latency increases,
however, this enables a reduction in energy consumption.
Figure 1 presents the system model.

The system model (see Fig 1) is defined with respect
to (1) traffic modulation, (2) energy consumption, and (3)
sleep mode policies. Each of these definitions is detailed in
the following subsections. The system model was coded in
Python to simulate the integration of the RL agent within the
BS in order to obtain a proper sleep mode policy. During sim-
ulations, the agent is trained to interact with the environment
by making observations, taking actions, and earning rewards.
The observations depend on the incoming traffic received
by the BS that feeds the packet buffer, and on the energy
consumption that depends on the sleep mode level that has
been chosen by the agent.

A. TRAFFIC MODULATION
The incoming traffic from the core network was modulated
using a stochastic process to match the behaviour of phys-
ical quantities of data traffic to be used during simulations.
A Poisson process was defined to obtain different traffic
models with a different arrival rate λ over time λ(t). The rate
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TABLE 3. 5G application categories and user plane latency requirements.

FIGURE 1. System model.

parameter λ is defined as the average number of arrivals per
time unit, as in (1).

λ =
#events
interval

× interval length. (1)

The value of interval value has been set to 20 ms and
#events represents the number of expected events at each
20 ms interval, the interval length represents the total time
used in each simulation that was defined with 1000 ms. The
system was simulated with loads ranging from 5% to 95% in
steps of 15% (i.e. 5%, 20%, 35%, 50%, 65%, 80% and 95%).
The number of #events per 20 ms interval varied as the load
increased. In the case of 5% traffic load, 1 #event is expected
at each 20 ms, so 50 events will be received by the BS during
1000 ms. Table 4 presents the variation of #events used per
traffic load.

TABLE 4. Variation of #events used per traffic load.

Each event is composed of one or more packets. Figure 2
presents on the left y-axis the number of events in each
traffic load. Each event consists of 1 up to 7 packets, and
this number of packets varies depending on the modulated
traffic load. This variation in the number of packets per event
can be observed on the x-axis. The line graph, with the
caption on the y-axis on the right, represents the total packets
received in each modulated traffic load. As the traffic load
increases, the number of events with more than one packet
also increases. To generate the number of packets received
in each event, a random function is used to return a random
element chosen from a population (number of packets). The
population ranges from 1 to 7 depending on the traffic load.
Relative weight is given to each element in order to influence
the random choice, weights were decreasingly assigned to
each element of the population.

B. ENERGY CONSUMPTION MODEL
The energy consumption model was defined with an approx-
imate energy saving estimation at the BS node level, which
can be set as the fraction of time that the BS spends in each
sleep mode, or awake mode over a certain period of time. The
energy consumption during a given state is given by (2) where
the Ts is the time in ms spent in the state s, and ECs is the
energy consumed per ms for the given state.

ECs = Ts × ECs, ∀s ∈ {awake, SM1, SM2, SM3}. (2)

The transition between the states awake, SM1 and SM2
takes less than 1 ms, where the specific energy consump-
tion for that transition period is not considered. When the
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FIGURE 2. Number of events in each traffic load.

transition is between SM3 and SM2, SM3 and SM1 or vice-
versa, a transaction duration of 4 ms, and a value of 5 ms
between SM3 and awake or vice-versa is considered. For
these transition periods, the average energy consumption
during the transition period with ECtr1 = 0.0303 W and
ECtr2 = 0.0514 W being defined for the two scenarios. The
energy consumption calculation during a transition process
between states is calculated as in (3) where Ttrx is the time
in ms spent in the transition x (i.e., 4 ms for transition 1,
and 5 ms for transition 2), and ECtrx is the energy consumed
per ms for the given state transition.

ECtr = Ttrx × ECtrx , x = 1, 2. (3)

The total energy consumption for an episode of 1000 ms is
then given by (4).

ECtotal =

n∑
i=1

ECs(i)+ ECtr(i). (4)

C. SLEEP MODE POLICY
The sleep mode policy is the outcome of the RL algorithm
that enables the system to learn the best policy to use in each
simulated environment.

This system model considers transitions from the
state–action pair to state–action pair, and learns the values
of state–action pairs using Markov decision process policy
with a rewarding process. The chosen algorithm is SARSA
an On-Policy Temporal-Difference Learning algorithm used

to find the best sleep mode policy. This method estimates
the state-value function denoted by qπ (s, a) for the current
behavior policy and for all states s and actions a. This update
is done after every transition from a non-terminal state St as
presented in Algorithm 1. A sleep mode strategy is proposed
that relies on the tradeoff between the energy consumption
and the wake-up delay added to the packet buffer latency,
where α is the learning rate, γ is the discount factor, S is the
state, S ′ is the state after the action A is set in state S, and R
is the reward received after the action is taken.

In order for the RL agent to find the best sleep mode policy,
actions are tested in the environment, and observations and
rewards are obtained.

1) STATES AND ACTIONS
At each timestep, t the state space of the BS is represented
by st and can take a value from the set S. The state s is part
of the environment and indicates the current sleep mode level
that is set in the BS and the status of the packet buffer load if
it is low or high as follows:

S = {awakelow, awakehigh, SM1,low, SM1,high,

SM2,low, SM2,high, SM3,low, SM3,high}.

The action space enables the possible decisions denoted
by a that the agent can set in the BS. The set A represents all
possible actions, as follows.

A =
{
awake, SM1, SM2, SM3

}
.
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Algorithm 1 SARSA (On-Policy TD Control) for Estimating
Q ≈ q∗
Require:

Algorithm parameters: step size α ∈ (0, 1], ε > 0
Initialize Q(s, a)∀s ∈ S+, a ∈ A(s), arbitrarily except that
Q(terminal, .) = 0
Loop for each episode do

Initialize S
Choose A from S using policy derived from ε− greedy
Loop for each step of episode do

Take action A, observe R,S ′

Choose A′ from S ′ using policy derived from ε −

greedy
Q(S,A)← Q(S,A)+α[R+γQ(S ′,A′)−Q(S,A)]
S ← S ′

A← A′

end for until S is terminal
end for

2) REWARD/PENALTY FUNCTION
The rewards and penalties depend on two main variables:
SMweight and Buflim. SMweight can be set between [0, 1]
where this normalized weight can prioritize QoS over energy
consumption reduction, or vice-versa. Buflim penalizes the
reward when the packet buffer load is high. The RL environ-
ment allows the agent to constantly monitor the binary status
of the buffer (low or high) and the variable Buflim defines the
threshold in terms of the latency of the packets that are in
the buffer while the BS is in sleep mode. When the BS is in
the awake state and not serving traffic, there is an opportunity
to save energy, thus there is no reward for saving energy, but
also no penalty for the delay introduced by a deeper sleep
mode level. The system is rewarded when energy is saved
and penalized in the following two situations:

• when a delay is introduced to wake up the BS;
• when the packet buffer load is high, as this increases the
E2E latency of packets.

The power-saving reward is calculated using (5), whereas
the deeper the sleep mode level, the greater the reward.

RPS =
ECawake − ECSMx

ECawake
,

x ∈ {awake, SM1, SM2, SM3}. (5)

The delay to wakeup penalty, whereas the deeper the sleep
mode level the greater the penalty, is obtained using (6).

PD = −
Delayx
Delaysm3

x ∈ {awake, SM1, SM2, SM3}. (6)

The reward function in (7) includes a term SMweight that
prioritizes the reduction of energy consumption or prioritizes
QoS with less delay to wake up. If the packet buffer load is
high and the action is different from sleep mode awake, then
the reward or penalty represented by BLreward or BLpenalty is

FIGURE 3. Convergence of the total reward function per episode.

used by the following reward function:

R =


(SMweight × RPS+ (1− SMweight)× PD),

if BufferLoad == 0{
BLreward, if action == 0
BLpenalty, otherwise

, otherwise.

(7)

V. RESULTS AND ANALYSIS
This section presents the performance of the event-based sim-
ulations implemented in Python. During the learning phase,
the consumption and delays values from the 2 × 2 macro
BS presented in Table 2, the different traffic loads presented
in Section IV-A and the following SARSA parameters were
considered: ϵ = 0.1 (exploration parameter), γ = 0.1
(discount factor), α = 0.1 (learning rate). To deduce the RL
policies, combinations with the parametersSMweight ∈ [0, 1],
Buflim ∈ {1 ms, 5 ms, 10 ms, 20 ms, 50 ms} and traffic loads
ranging from 5% to 95% in steps of 15% were simulated.
During the training process, the action selection is defined
using the ε − greedy policy. This mechanism aims to find a
tradeoff between the exploration-exploitationwhere the agent
performs random exploration occasionally with probability
ϵ and takes the optimal action most of the time with prob-
ability 1 − ϵ. In each simulated combination of parameters,
the training process took 1000 episodes with 1000 steps in
each episode, each step representing a ms. At each step, the
ε-greedy policy selects an action ai from the estimated
qi(s, ai). The agent sets the sleepmode level in the BS accord-
ingly with the chosen action, observes the immediate reward
defined in (7) and the next state S ′ and updates the state-value
function qi(s, ai). Each episode ends when the maximum
step of 1000 is reached and each total episode reward is
obtained by the accumulation of instantaneous rewards in
all steps. Figure 3 presents the convergence obtained with
the following parameters: SMweight = 1, Buflim = 50 ms
and traffic load = 5%. It can be seen that as the number
of episodes increases, the value of accumulated instanta-
neous rewards stabilizes after around 100 iterations. The
same behaviour occurred for the remaining combinations of
simulated parameters.
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FIGURE 4. States of the BS with a threshold of 50 ms.

FIGURE 5. SARSA Q-Table HeatMap reward function for different SMweights and traffic loads.

Figure 4 presents the distribution of the different sleep
mode states as a function of SMweight and the traffic load for
a Buflim of 50 ms using the exploited policy from the training
phase. This policy can accommodate the URLLC industry
4.0 use case for process automation that is compatible with
50 ms latencies.

Considering that with a SMweight ≈ 1, system maximizes
the energy consumption reduction and with SMweight ≈ 0 it
restricts latency. For a traffic load of 5%, the system adjusts
the policy to the chosen weight, where it is verified that for
a SMweight of 0, the system stays in the awake state during

94% of the time, 93% in SM1 with a SMweight of 0.3, 95% in
SM2 with a SMweight of 0.6 and 94% in SM3 with a SMweight
of 1. With a very low traffic load, sleep mode policies can
have a significant impact on energy reduction because the
system can choose the sleep mode level in function of the
SMweight without receiving penalties due to the packet buffer
load being high. As traffic load increases, it is verified that for
a SMweight of 0 the system continues to restrict the latency,
predominating in approximately 95% of the time the awake
state. For a traffic load range from 20% to 95% with a
SMweight greater than 0, there is a clear tendency to increase
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TABLE 5. Energy saving percentage per use case for a traffic load of 5%.

FIGURE 6. Energy saving percentage per Buflim and traffic load.

the use of the awake state as an alternative to the other states.
Even so, for a traffic load of 20% and 35%, the percentage of
use of the awake state is less than 50%, allowing a distribution
of the remaining time between the states of SM1, SM2 and
SM3 according to SMweight which enables the system to save
energy. From 50% to 95% traffic load, the choice of awake
state gradually increases between 55% and 85% of the time.
This tendency is expected, as the system tends to wake up the
BS so that it can remove packets from the buffer to guarantee
maximum Buflim latency times.
Figure 5 shows the Q-Table heatmap comparison in a

scenario with a traffic low of 5% and a slightly higher with
20%. Depending on the current state, the learned policy will
be more likely to choose the greener action. In both scenarios,
when the environment state has the packet buffer high, the
chosen actionwill be to awake the BS.When the packet buffer
is low, despite there being only a 15% traffic increase between
the two scenarios, it is possible to verify that the Q-table
allows an adaptation of the chosen actions through the traffic
increment. Given an SMweight of 1.0, in a scenario with 20%

of traffic load, the system tends to not choose the SM3 action
to avoid an increase in latency packets that are in the packet
buffer, unlike the 5% of traffic load scenario where the load
is more relaxed, the system tends to choose the SM3 action.

Regarding performance metrics, the outcome of this sys-
tem was quantified by analyzing the energy consumption and
latency. To test the dynamics of the different incoming traffic
loads with the 5G use cases presented in Section III, energy-
critical and latency-critical simulations have been carried out.

Table 5 summarizes the energy saving percentage per
SMweight for each use case in a scenario with a traffic load of
5%.When the system is configured to prefer QoS over energy
consumption reduction, the values obtained are around 3%.
When the traffic load is greater than 5% and depending on the
use case, it is possible to obtain energy-saving gains between
20% and 80%.

Figure 6 presents the energy saving percentage for each
Buflim among the simulated traffic loads.

Figure 7 presents the energy consumption reduction and
packet latency for each Buflim and the traffic load simulated.
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FIGURE 7. Energy consumption reduction and packet latency with thresholds of 1 ms, 5 ms, 10 ms, 20 ms, and 50 ms.

Figure 7 includes figures presenting the results for a Buflim
of 1 ms, 5 ms, 10 ms, 20 ms, and 50 ms. Figure 7a presents
the value of the energy saving percentage per Buflim for
1 ms which is suitable for more latency-restrictive use cases
such as mMTC and URLLC. Despite restrictions in terms
of latency, in environments with traffic load up to 50%, it is
possible to obtain energy gains between 3% and 20% within
the maximum limit of 1 ms latency accomplished. Figure 7b

presents a Buflim of 5 ms that meets the latency require-
ment for autonomous vehicles sensor and video dynamic
from mMTC use case and assisted automotive driving from
URLLC use case. Figure 7c presents a Buflim of 10 ms
that meets the latency requirement for factory automation in
industry 4.0 or cooperative automotive driving URLLC use
case. Figure 7d presents a Buflim of 20 ms that meets the
latency requirement for the 4K video streaming downlink
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eMBB use case and the teleoperated automotive driving
URLLC use case. Figure 7e presents a Buflim of 50 ms that
meets the latency requirement for mMTC autonomous vehi-
cles sensor and video fixed and URLLC process automation
in industry 4.0 use cases.

The highest energy consumption reduction of 80% is
obtained with a more relaxed latency threshold of 50 ms and a
low traffic load of 5%. As the latency threshold is decreased,
the energy consumption reduction also decreases, but still
achieving values of 75% for 20ms and 10ms thresholds.With
a threshold of 5 ms, a 56% of energy consumption reduction
is achieved.

As the traffic load increases, the energy saving decreases,
this is an expected behaviour considering that the packet
buffer receivesmore packets to deliver and the latency-related
constraints imply a more frequent BS awakening, thus reduc-
ing energy saving opportunities. Analyzing the packet buffer
latency, it is concluded that the latency threshold is respected
up to 80% traffic load. Above that, the latency value incre-
ments due to the throughput configured in the simulations
that allow sending only one packet per millisecond to the end
users.

VI. CONCLUSION
To enhance coverage and capacity, 5G networks can be
deployed as UDNs. In these networks, as the number of BSs
increases, challenges arise with respect to their power man-
agement and efficiency. As energy consumption increases
with the number of BSs, strategic SMs policies can have
a positive impact on reducing power consumption, thus
increasing energy efficiency.

In this proposal, the reduction of energy consumption with
latency restrictions in a 5GBS is presented. Unlike the revised
works in chapter II, this paper introduces the latest proposals
in 3GPP NR Relase 18 [27]. According to such proposals,
some information may be sent from the UE to the BS to
assist in setting the sleep modes and transmission parameters.
A latency requirement is one example of such information,
but it is not limited to it [28]. In this proposal, several 5G use
cases with different concerns in terms of maximum latency
combined with different traffic loads were tested, and it is
certain that the E2Emaximum user latency of each chosen 5G
use case has been respected. Therefore, power savings can be
maximized without negatively affecting the quality of service
of end-users. This work, proposes a sleepmode technique that
monitors the traffic that is arriving at the BS, this allows the
BS to fall asleep at times when there is no traffic to serve.
The periodwhen the BS is asleep is maximized bymonitoring
the latency of packets that arrive in the buffer. The proposal
was tested using a combination of several factors, namely a
weight that allows giving more importance to energy con-
sumption reduction or having a high constraint on the latency,
a buffer load state indicating whether the buffer is low or
high in terms of packet latency, all combined with various
traffic load scenarios. Testing various thresholds for the buffer
latency allows obtaining policies that can be mapped with the

different 5G eMBB, mMTC and URLLC use cases where
the constraints with latency can be more or less restricted.
The combination of these factors defines multiple sleep mode
policies, enabling the exploration of the tradeoff between
energy consumption reduction and latency. The results show
a significant gain in energy savings, particularly in low traffic
load and less restricted latency scenarios. Even with more
constraints in terms of latency control and higher traffic loads,
energy savings are possible. As management of the different
metrics is possible, the mobile operator can orchestrate a
tradeoff between energy reduction consumption and latency
constraints taking into account the different use case require-
ments of 5G.

ACRONYMS
3GPP 3rd Generation Partnership Project.
5G 5th Generation.
6G 6th Generation.
AI Artificial Intelligence.
ASM Advanced Sleep Mode.
BS Base Station.
E2E end-to-end.
eMBB Enhanced Mobile Broadband.
IoT Internet of Things.
ITU International Telecommunication Union.
LPWA Low-Power Wide-Area.
LTE Long-Term Evolution.
MIMO Multiple-Input Multiple-Output.
ML Machine Learning.
mMIMO Massive Multiple-Input Multiple-Output.
mMTC Massive Machine Type Communications.
NGMN Next Generation Mobile Networks.
NR New Radio.
OFDM Orthogonal Frequency Division Multiplexing.
QoS Quality of Service.
RAN Radio Access Network.
RL Reinforcement Learning.
SARSA State Action Reward State Action.
SDN Software-Defined Network.
SM Sleep Mode.
TTI Transmission Time Interval.
UDN Ultra-Dense Network.
UE User End.
URLLC Ultra-Reliable Low Latency Communications.
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