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ABSTRACT Geophysical data is a form of spatial data that suffers from various limitations when applying
conventional machine learning algorithms and evaluation techniques. A key limitation facing models trained
on geophysical data is their inability to generalize well when deployed to predict from new unseen
data. We address the problem of inaccurate performance assessments of machine learning models, that
stems from violating independence assumptions during the feature selection and evaluation phases of the
learning process. Our proposed spatially-aware and model-agnostic (SAMA) framework provides a suite of
spatially-aware feature generation, feature selection, and model validation algorithms that account for spatial
characteristics of geophysical data. The framework is model agnostic, as it tackles data-related challenges
that are not affected by the specific machine learning algorithm used to fit the data. To demonstrate the
effectiveness of the proposed approach, it is applied to the water saturation mapping problem using a novel
geophysical dataset to train a prediction model. The proposed spatially-aware models obtains an R2 of 0.620,
an RMSE of 0.220 for predicting water saturation for the Whole Region of the reservoir model box and an
R2 of 0.161, an RMSE of 0.263 for the Interwell Region. Extensive experiments on 5 additional unseen
datasets show that the model maintains stable performance across different datasets, which demonstrates the
ability of the SAMA framework to produce robust models that are transferable to new datasets.

INDEX TERMS Bias-variance trade-off, cross-fold validation, feature engineering, feature selection,
geophysical data, random forest, regression, reservoir characterization, spatial autocorrelation, machine
learning, model validation, water saturation mapping.

I. INTRODUCTION
The geophysical domain involves a wide range of problems
that can benefit from machine learning based approaches.
Geophysical data is typically represented in the form of spa-
tial data. It provides information on the physical properties of
the Earth’s surface and subsurface that is essential in analyt-
ical approaches for groundwater, mineral, and hydrocarbon
discovery [1]. One of the applications that benefit from geo-
physical data is water saturation distribution mapping, which
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holds key information for reservoir engineers to maximize oil
recovery and reduce costs [2]. Due to it’s unique properties
inherited from spatial data, geophysical data introduces sev-
eral challenges for Machine Learning (ML) modeling using
conventional methods and evaluation techniques [3].

Developing a machine learning based prediction model for
a given problem seeks to search the hypothesis space, using
the given dataset, to find a function (hypothesis) with high-
est prediction power compared to other models, i.e. lowest
bias, while performing equally well when used to predict
from new unseen datasets, i.e. lowest variance. Bias occurs
when the model is underfitted to the training dataset due
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to inaccurate assumptions regarding the data or the model
during the learning process. Variance occurs when a model
is overfitted to the training data which is commonly caused
by an inaccurate assessment of the model performance during
the validation process. Failing to address model bias results
in a model that produces highly erroneous predictions, which
makes a machine learning solution to the problem entirely
futile. On the other hand, not accounting for variance leads
to a model that cannot generalize, in other words, one that
is not transferable to datasets different than the one used
for training. Therefore, the objective of the learning process
is to find a model that balances the bias-variance trade-off.
Although this study aims to address overfitting in spatial
data, the proposed approach implicitly addresses underfitting,
as we demonstrate in following sections.

Generalizabilty of a model requires addressing the prob-
lem of overfitting through data-based methods, model-based
methods, or both. Model-based methods include techniques
such as regularization if the model is overly complex, or in
the case of neural networks overfitting can be reduced using
dropout techniques. However, if the overfitting is caused
fully, or even partly, by data-related sources, the data-based
approaches are applied to address inconsistencies such as
noise or missing data using data augmentation and denoising
techniques. Spatial data has certain characteristics that can
cause overfitting, such as spatial dependency, spatial hetero-
geneity, and scale [3].

Spatial dependency causes spatial auto-correlations in the
data, restraining the application of ML and statistical models
that are designed with the independence and identical dis-
tribution assumption for features, i.e. the i.i.d assumption.
It also leads to over-promising performance when following
conventional evaluation methods. Another property, spatial
heterogeneity, introduces obstacles related to the evaluation
of the model, which can severely degrade the generalizability
of ML models [4], [5]. Spatial evaluation strategies in the lit-
erature [5], [6] focus on cross-validation methods, which can
be fairly expensive when hyperparameter tuning ML models
or performing spatial feature selection, as spatial evaluation
is performed instead of a random train-test split [7]. Also,
a majority of these studies focus only on interpolation tasks.

In addition to the challenges resulting from spatial data
properties described above, the reservoir water saturation
mapping problem is challenging in itself. A main challenge is
that the data required for the mapping is not always available,
especially the area between two well locations, referred to
as the interwell region, since information about the different
characteristics is mostly available only in near-well locations.
Crosswell electromagnetic (EM) surveys are introduced with
the goal to bridge this gap of information in the interwell area
and provide resistivity mapping to regions extending to over
1km between the emitting and receiving boreholes [8].

Although Machine learning techniques have been used
as early as 2002 [9] to predict water saturation for near-
well locations, recent studies addressing the reservoir water
saturation mapping problem mostly follow data assimilation

and modeling approaches. These methods require knowledge
of either extra parameters, such as permeability, or the pres-
ence of a physical or numerical model. Other studies use
history matching techniques that require several snapshots in
time to make the predictions [10], [11]. To the best of our
knowledge, there are no studies that rely only on machine
learning techniques for water saturation distribution mapping
from a single snapshot of Crosswell EM surveys and porosity
distribution.

This work aims to provide an approach that will provide a
more accurate evaluation of geophysical models built using
conventional machine learning approaches. The main contri-
butions of this work are summarized as follows:

1) Spatially-aware model-agnostic (SAMA) learning
framework to develop robust ML models for geophys-
ical data that generalize well.

2) Spatial masking algorithm for the evaluation of ML
models built on 3D geophysical data cubes to obtain
a realistic performance estimate of the model, and this
avoiding over-promising models.

3) Spatial Masking-Random Forest model for perform-
ing water saturation mapping utilizing only the resis-
tivity and porosity of a reservoir data cube.

4) Evaluation of the proposed approach based on thewater
saturation mapping problem requirements.

The rest of this paper is structured as follows: In section II,
we introduce background related to the problem and dis-
cusses some related work. In section III, we describe the
components comprised the proposed Spatially-aware model-
agnostic (SAMA) framework. In Section IV, we present our
experimental setup and results. In section V, significant find-
ings and observations are discussed. Finally, in section VI,
we conclude.

II. BACKGROUND
A. PROBLEM FORMULATION
Water Saturation (Sw) per Schlumberger oilfield’s glossary is
defined as ‘‘The fraction of water in a given pore space’’, and
is measured in percent of saturation units [12]. Water satu-
ration is the most significant parameter to compute hydro-
carbon volume in oil-water fields to optimize oil production.
It it is imperative for the oil production process to assess the
availability of hydrocarbon reserves [2]. Ideally, core analysis
is performed in order to determine water saturation in the sub-
surface. However, core data is not always available for most
wells in a given field due to the borehole condition or the high
cost of obtaining cores. Core data also requires lab analysis,
which is typically time-consuming and expensive [13].

To overcome challenges with obtaining core data, Archie’s
equation [14] for computing water saturation was proposed.
To calculate water saturation levels, Archie’s equation relies
on the resistivity and rock porosity, whose values are obtained
from resistivity well-logs and porosity logs, respectively.
In ideal situations, specifically clean sandstone formations,
this calculation yields accurate results. However, it tends to
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make simplifications that can cause erroneous results when
dealing with shaly and heterogeneous formations where clay
and other minerals can be the source of the conductivity
instead of the hydrocarbons [15].

Several machine learning techniques have been used since
2002 [9] to predict water saturation for near-well locations.
Methods including Artificial Neural Networks (ANNs) [9],
[16], [17], [18], [19], [20], Support Vector Machine (SVM)
[18], [19], and Decision Trees (DT) [19] have been used to
predict saturation from well log data. As predictions based
on well-logs can extend only a few meters surrounding the
borehole, seismic data [21], [22], [23], and crosswell elec-
tromagnetic surveys [10], [11], [23] are used for the esti-
mates to extend to a few kilometers surrounding the borehole.
These approaches allow the engineers to obtain information
about the interwell region and provide estimates for the water
saturation. At the same time, they are either proposed in
the context of history matching or data assimilation, which
requires a physical model. Therefore, in this work we aim
to develop a water saturation mapping model that does not
require any physical model and relies only on the resistivity
and porosity at a single snapshot in time.

B. RELATED WORK
1) REGRESSION FOR GEOPHYSICAL DATA
Machine learning algorithms such as support vector
machines, decision trees, and random forests have gained
considerable attention in the field of spatial data applica-
tions [3]. While recent studies focus on evaluation strategies
for ML models built for spatial data, early studies focused on
modifyingML algorithms to be used for spatial data. In 2005,
a study proposed an extension to Support Vector Machine
(SVM), in an algorithm named Support Vector Random
Fields (SVRF) [24]. Unlike SVMs, that make the ‘‘ndepen-
dent and identically distributed’’ assumption, SVRFs allow
for spatial dependencies to be modeled using Conditional
Random Fields (CRF). CRF is a statistical model that lever-
ages the contextual information in the data. To capture the
relationship between the features and the class’s label, the
SVRFmodel makes use of an observation-matching function.
As for capturing the relationships between the neighboring
data points, and a local-consistency function, respectively
[24]. Forms of decision trees have also been developed to
account for spatial dependency and autocorrelation, namely,
spatially aware Predictive Clustering Trees (PCT). This
method follows the same approach of decision trees, where
the test criteria at the nodes is the main difference, in PCT
it selects the split that maximizes the inter-cluster variance
reduction [25]. In order to leverage spatial heterogeneity a
study [26] proposes Geographical Random Forest (GRF),
which converts the global process of building trees into a
decomposition of multiple local sub-models.

2) WATER SATURATION MAPPING
Predicting water saturation using machine learning has
been extensively studied in the literature through various

approaches that are guided by the data available for the
location.

Well-log data such as sonic, density, neutron porosity, and
resistivity logs are used to predict water saturation in reser-
voirs. Several models exists that are based on neural networks
on their own [9], or in combination with other techniques
such as fuzzy logic [16], [27], ensemble structures [28],
Mutual Information (MI) [20], least-squares support vector
machine (LS-SVM) [29], and subtractive clustering [2]. Tra-
ditional machine learning models such as multilayer percep-
tron (MLP), Support Vector Machine, Decision Tree For-
est, and Tree Boost methods were used, in another study,
to train models for predicting water saturation in tight gas
reservoirs [19].

Core data provides a different set of features that can be
used to predict water saturation. A study using core poros-
ity, deep resistivity log, neutron porosity, density log, sonic,
and gamma-ray logs as input parameters [17], shows to
improve prediction accuracies over the dual watermodel [30].
In another study, ANN is also used to predict the water sat-
uration using the porosity, permeability of sample extracted
from the core of the well, and height above the free water
level [31].

In addition to well-log data and core data, seismic data
contain useful information that can be used to predict poros-
ity and water saturation. Studies adapting machine learning
approaches for learning from seismic data use models such
as support vector Regression (SVR) [21], ANNs [22] and
adaptive neuro-fuzzy inference system optimized by a genetic
algorithm [18].

To overcome some challenges of seismic data such as low
resolution, crosswell electro-magnetic surveys are proposed
to better understand the fluid types and saturation in the
inter-well region of a reservoir [32]. Several studies are ded-
icated to mapping water saturation from these surveys using
machine learning models [10], [11], [23], [33].

C. MODEL VALIDATION
1) K-FOLD CROSS VALIDATION
In K-fold cross validation, random 1/K of the points of the
data cube are reserved for testing and the rest for training.
This process is repeated K times and can be with or without
replacement.

2) RELATED WORKS ON SPATIALLY-AWARE VALIDATION
Multiple methods have been proposed to give a more realistic
estimation of ML models built for spatial data by having
spatially dependent data in train and test sets. One study [34]
proposed Spatial leave-one-out cross-validation. It considers
a single data point for validation, and leaves out all spatially
dependent surrounding data points within a certain threshold
and trains theMLmodel using the remaining points. It repeats
this step and then computes the average performance over
all repetitions. Although the approach addresses the issue of
spatial autocorrelation, it remains computationally costly.
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Other works discuss the idea of cross-validation in spa-
tial dependent data or data with spatial autocorrelation. One
approach proposes spatial k-fold cross-validation (SKCV) [6]
that introduces a dead zone around the testing data points,
in which data points to be removed and the final model is
trained on the remaining points. Another study investigates
cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogenetic dependencies [5]. The study
introduces the concept of spatial blocking for the different
data structures. It presents a guide on how to perform the
blocking, starting with analyzing the type of dependency,
then assessing the objective of the final model, for both
interpolation and extrapolation. The next step is to block
the data according to the objective and structure, perform
the cross-validation, and finally make the final prediction.
As most spatial analysis studies focus on interpolation, this
study points out that blocking induces extrapolating and is
key in building ML models that extrapolate [5]. In addition,
it mentions that in the case where the approach aims to
avoid inducing extrapolation in the model, the size of the
blocks should be minimized. Geographical covariant maps
and buffer distances can be used to ensure that data points
with high spatial dependency are not co-located in the same
train or test split [35]. Although the resulting model is unbi-
ased, the process is computationally expensive and storage
demanding. Therefore, it is not recommended for data sets
with greater than 1000 points. Moreover, with the covari-
ant maps added as features, the resulting model is optimal
for interpolating only and not to extrapolate or explain the
structural dependencies. Whereas in this study we focus on
generalization.

In the remote sensing field, studies emphasize that in addi-
tion to spatial validation strategies, spatial dependency should
be considered in different aspects of MLmodel development,
including spatial feature selection [7]. Using spatial feature
selection ensures that only features that generalize beyond
the training data are included. The study also concludes that
statistical evaluation for the models is not enough to evaluate
ML models built for remote sensing problems and that a
visual assessment must be performed [7].

Recently, a study pointed out the issue of over-promising
RF models, and RF models that perform well in random
cross-validation but have poor transferability [4]. As an
example, the study evaluated an RF model that was trained
to predict total volatile organic compounds from different
borehole geophysical logs. It demonstrates that RF models
built with random cross-validation might be suitable for inter-
polating missing well-logs, however, they may not be suitable
for generalization [4].

D. RANDOM FOREST REGRESSION
Random Forests (RF), formally introduced by Leo
Breiman [36], is an ensemble of tree predictors in which each
tree is fit to an independent bootstrap sample drawn from the
data. The results of those trees are aggregated by unweighted
voting in the case of classification, whereas in regression,

it is performed by calculating the mean of the individual
predictions [36], [37].

Assuming an unknown joint distribution PXY (X ,Y ), where
X is a p-dimensional random vector X = (X1, . . . ,Xp, )T

representing the predictor variables and Y is the independent
variable, the goal of the algorithm is to find the prediction
function f (X ) for predicting Y . The prediction function is set
to minimize the expected value of the loss function [37].

EXY [L(Y , f (X ))] (1)

where EXY is the expectation with respect to the joint distri-
bution of X and Y . In regression, usually, L is the squared
error loss.

L(Y , f (X )) = (Y − f (x))2 (2)

By that, minimizingEXY [L(Y , f (X ))] for squared error loss
gives the conditional expectation.

f (x) = E[Y |X = x] (3)

The ensemble predictor f (x) in regression is a result of
averaging the results of the base learners h1(x), . . . .hJ (x)
where J is the number of base learner trees in the ensemble.

f (x) =
1
J

J∑
j=1

hj(x) (4)

The tree base learners leverage an independent bootstrap
sample from the data given at random and make the fitting
using binary recursive partitioning. In binary recursive parti-
tioning, all the training data points are put in a single node.
Then, until the stopping criteria is met, the node(s) are split
into two descendant nodes based on the value of the predictor
variables, and this is done recursively. In order to determine
the split in regression, each possible split is considered, and
the selected split point is the one that minimizes the mean
squared residuals at the nodes (Q), that are defined as:

Q =
1
n

n∑
i=1

(yi − ȳ)2 (5)

where n is the number of training data points at a node and
ȳ = 1

n

∑n
i=1 yi, which is the predicted value at the node [37].

When training a Random Forests Regressor, some of the
most common hyperparameters to tune are (using sklearn
library parameter names): n_estimators, which determines
the number of decision trees building the forest, max_depth,
which sets the maximum number of levels in each decision
tree, and max_features, which sets the maximum number
of features to consider when splitting a node. There are
also other parameters that are less common to tune, such
as bootstrap to determine whether sampling the data point
is with or without replacement, min_samples_split which
sets the minimum number of points to be placed in a node
before the node is split, andmin_samples_leaf which sets the
minimumnumber of points to be allowed in a leaf node. There
are several advantages of using Random Forests such as its
robustness to outliers and noise, simplicity, and that it can be
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Algorithm 1 Spatial Masking - Mask Selection Algorithm
procedure SelectMask

trainData← layers with the symbol 0
testData← layers with the symbol 1
model ← Fit the model using the trainData
SpatialMaskErr ← RMSE of testing the model using the testData
ConsecutiveErr ← 0
K ← LCount/MaskLen
for i in range(K) do

trainData← layers with symbol 0 and !(i < LNumber/LCount <= i+ 1)
for j in range(1,MaskLen-1) do

testLayer ← LNumber == (i ∗ K )+ j
if LNumber > MaskLen/2orLNumber < LCount −MaskLen/2 then

ConsecutiveErr+ = RMSE of testing the model using the testLayer
if SpatialMaskErr−ConsecutiveErr > e then

AcceptMask

implemented with parallelization easily. Also, that it provides
variable importance and internal estimates of errors [36].

III. APPROACH
In this section we describe the components of the pro-
posed SAMA machine learning framework. The framework
is designed to tackle overfitting, and implicitly under-fitting,
of regression models that arise from data-related inconsisten-
cies. Therefore, the framework is considered model-agnostic,
as any regression algorithm can be used for fitting the
data.

A. SPATIAL FEATURE ENGINEERING
1) SPATIAL FEATURE GENERATION
In order to learn from nearby points, features are derived
based on the grid to which the points belong in order to
help the model learn from its region. These features are the
mean of the resistivity or porosity of a 2D plane or a 3D area
which a point belongs to. A description of the 19 feature
IDs considered in this study is shown in table 1. For the
2D features, the featureID naming consists of the number
of data points on the two axes that the grid is constructed
on. For the 3D features, the Feature_id naming consists of
3D followed by one or two digits on the size of the 3D
block for the x and y-axis, followed by one digit, which is
the height of the block across the z-axis. For each feature
ID, the resistivity res_featureID and porosity poro_featureID
are calculated, amounting to a total of 24 derived
features.

2) SPATIAL FEATURE SELECTION
Feature selection is performed to reduce the complexity of the
model, to improve the accuracy of the prediction, and to better
interpret the model. In our case study, it is performed after
adding the derived features that were a result of averaging
the feature from the grid in which the data point belongs,
Table 1. This experiment aims to compare two approaches

TABLE 1. Different grid sizes for generated features.

considered for spatial feature selection and feature selection
approaches that use evaluation methods that less enforce
spatial generalization:

• Spatial Forward Feature Selection(SFFS-6L) The fea-
tures are added one at a time, and after that the predic-
tion’s performance is evaluated using the mask testing
layer following the selectedMask during themask selec-
tion step. After evaluation, if the performance increases,
the feature is added. This process is to be repeated
multiple times until the performance of the model stops
increasing.

• Spatial Backward Feature Selection(SBFS-6L) All fea-
tures are added at first. Then they are removed one at a
time until the performance stops increasing while vali-
dating on the mask testing layer following the selected
Mask during the mask selection step.

• Spatial Forward Feature Selection(SFFS-0L) Features
are added one at a time, then the prediction’s perfor-
mance is evaluated using the mask testing layer with the
mask 0000010000, in which there are no leave-out lay-
ers. After evaluation, if the performance increases, the
feature is added. This process is to be run multiple times
until the performance of the model stops increasing.
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• RandomForward Feature Selection (RFFS)The features
are added one at a time, validating randomly on 10%
of the data points. After evaluation, if the performance
increases, the feature is added. This process is to be run
multiple times until the performance of the model stops
increasing.

The random state is set to 42, and the R2 is used for the com-
parison during the feature selection process. For the testing
of the feature selection approaches, a Random Forests model
is trained and tested by shifting the Mask by one each time
(e.g., 00xxx1xxx0, 000xxx1xxx, x000xxx1xx, etc.). For each
mask shift, the model is run 5 times without setting the
random state. This results in 50 model runs.

FIGURE 1. SAMA framework pipeline.

B. SPATIALLY-AWARE VALIDATION STRATEGIES
1) SPATIAL BLOCKING
Building on the spatial blocking works in the literature [5]
and the analogy of spatial k-fold cross-validation [6] and
CV-block [38], a similar idea is applied to spatial data cubes.

a: K-FOLD RANDOM CROSS-SECTION CROSS-VALIDATION
In Random cross-sections cross-validation, 1/K random
cross-sections across the x, y, or z-axis of the data cube
are reserved for validation, while the rest for training. This
process is repeated K times and can be with or without
replacement. No neighboring points on the cross-section used
for validation are included in the training data.

b: K-FOLD CONSECUTIVE CROSS-SECTION
CROSS-VALIDATION
In K-fold Consecutive cross-sections cross validation 1/K
layers of consecutive x, y, or z-axis cross-sections are used
for validation, and the remaining data is used for training.
This process is repeated K times by changing the valida-
tion layers until the data cube is exhausted. This approach
provides a much stricter evaluation approach as 1/K data
cubes of the original spatial data cube is held out during
testing. No neighboring points on the cross-section used for
validation are included in the training data, nor are the points
of the neighboring cross-sections except for two layers.

2) SPATIAL MASKING
Although K-fold Consecutive cross-sections cross validation
seems strict in enforcing spatial generalization, in datasets
with spatial heterogeneity or in small datasets, important
information may be lost in removing consecutive layers that
represent 1/K of the data. Therefore, the need for an approach

that takes into account the spatial heterogeneity of the data
arises. In addition, as a previous study concluded, when
dealing with spatial data, spatial feature selection should
be performed to avoid the selection of features that do not
generalize when extrapolating [7], which results in high com-
putation cost when using the existing cross-validation spatial
evaluation techniques for tuning the model. Therefore we
propose Spatial Masking as an approach to train-test split
spatial data. In Spatial Masking, conforming to a certain
pattern, cross-sectionals(layers) are either included in the
training subset, left out, or used for testing. The aim of this
approach is to provide a more accurate estimate of the model
performance and to reduce the spatial auto-correlation in the
dataset from the spatial dependencies while accounting for
spatial heterogeneity.

In order to select the Mask, K-fold Consecutive
cross-sections cross validation is performed. The length of
the fold is set to the length of the mask pattern, in our case,
K = 10. K is the length axis from which the cross-sectionals
are taken over the length of the Mask, in our case, ten,
too. Then the nine training folds are trained and evaluated
using Spatial Masking, and the tenth fold is used for testing.
The average RMSE of the layers resulting from the K-fold
Consecutive cross-sections cross validation after removing
the first and last layers (as guards) in the K-fold Consecutive
cross-sections cross validation are compared against the
RMSE resulting from the Mask. The Mask that had an RMSE
equivalent to the K-fold Consecutive cross-sections cross
validation’s RMSE is selected. An illustration of the mask
selection approach is shown in Figure 9. The implementation
details are in Algorithm 1, where LCount is the total number
of layers, LNumber is the layer’s sequential number, and
MaskLen is the Mask’s length.

C. TRAINING WATER SATURATION MAPPING MODEL
In this section we describe our proposed water saturation
mapping model that is developed using the SAMA frame-
work, illustrated in Figure 1. Given the above components,
the SAMA framework now combines them using the follow-
ing pipeline:

1) The machine learning algorithm(s) that are going to be
used for regression are selected.

2) The mask selection algorithm is used to generate a
validation mask using the raw features.

3) The feature derivation algorithm is executed. This is
performed by applying the algorithm proposed in the
feature generation section above.

TABLE 2. hyper-parameter tuning search values.
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TABLE 3. Final feature set and performance values on the validation set for different Feature selection approaches.

FIGURE 2. Feature importance of the SM-RF (Sw ) mapping model.

TABLE 4. Test evaluation results of the feature selection approaches per
region.

4) The selected mask and model are used to perform
feature selection using one of the feature selection
algorithms.

5) Hyper-parameter tuning is performed at this step for
model-specific parameters, if any.

6) The prediction model is built using the selected
features, selected validation mask, and selected
hyperparameters.

IV. RESULTS
A. DATASET
1) RESERVOIR BOX DATASETS
This work introduces one real-world dataset and five syn-
thetic datasets to evaluate the proposed approach. The
real-world dataset is a 3D data cube containing features of a
realistic reservoir box model, specifying porosity, resistivity,

FIGURE 3. Water saturation (top-left), resistivity (top-right), porosity
(bottom) for the RBMD data cubes.

and water saturation values. The reservoir box model dimen-
sions are (122 x 100 x 20) in terms of (x,y,z), representing
an area with dimensions 2km x 2km x 70ft (0.21 km) in
depth. We refer to this dataset as RBMD. Figure 3 displays
the water saturation, resistivity, and porosity for the 3D data
cube. Figure 4 displays the water saturation, resistivity, and
porosity taken along the z-axis. Figure 5 displays the water
saturation, resistivity, and porosity taken along the y-axis.

Five synthetic datasets (RBMD-02,RBMD-05, RBMD-
10, RBMD-20, RBMD-50) are generated for evaluation by
adding white Gaussian noise at different rates: 2%, 5%,
10%, 20%, and 50% of the standard deviation of the original
distribution of the feature, respectively. Visualization of the
resistivity and porosity with the added noise for three of the
synthetic datasets are presented in Table 5.

The distribution of the features and target in the
dataset along the z-axis is shown in Figure 6. We can notice
that the water saturation increases along the z-axis. The least
water-saturated layers have a mean of 0.4 water saturation;
17 out of 20 layers along the z-axis have a mean of water
saturation higher than 0.6. When performing Shapiro-Wilk
Test on the target ’swat’ water saturation, it fails the test with
a p-test score of 0.00, indicating the water saturation data is
highly skewed.

Figure 7 shows the correlation between the features
’poro’,’ res’ and the target ’swat’. It is observed that
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TABLE 5. Porosity and resistivity for synthetic datasets at layer 4 across the z-axis.

both features have a negative correlation, with ’res’ having
−0.19 Pearson correlation and ’poro’ having −0.42 Pearson
correlation.

2) PRODUCTION AND INJECTION WELLS
The reservoir model boxWhole Region contains one horizon-
tal injection well, located between 35 and 42 on the x-axis
and 23 and 70 on the y-axis. It also contains one horizontal
production well, located between 83 and 90 on the x-axis and
27 and 80 on the y-axis. Locations are illustrated in Figure 8.
The EM transmitters and receivers are embedded within the
wells.

There are two regions that we evaluate separately due to
their importance for the problem: we refer to the first one as
theFocus Region and is located between layers 30 and 95with
respect to the x-axis, layers 23 and 80 with respect to the y-
axis, and layers 3 and 13 with respect to the z-axis. The other
region is the Interwell Region, and is located between layers
43 and 82 with respect to the x-axis, layers 23 and 80 with
respect to the y-axis, and layers 3 and 13 with respect to the
z-axis.

B. EXPERIMENT SETTINGS
1) EXPERIMENT DESIGN
The experiment procedure first starts by applying the mask
selection algorithm. Then using the selected mask eval-
uate Spatial Masking as a train test split against other
cross-validation strategies in terms of providing a better esti-
mate for the extrapolation error provided byK-Consecutive
Cross-section Cross-validation. Then different feature selec-
tion spatial and aspatial feature selection approaches are
evaluated. Finally, two approaches for fitting the data are
evaluated. For all the aforementioned experiments, Random
Forests are used as they have been used in multiple stud-
ies concerning the evaluation strategies of ML for spatial
data [5], [7]. Random Forests do not make the i.d.d. assump-
tion, making them suitable for spatially dependent data. How-
ever, they would easily over-fit in the case of spatial data with
high auto-correlation since it allows for distributing nearby
data points with high auto-correlation within the training and
testing subsets, which causes over-estimating the model’s
performance [5]. Random Forests do not require an extensive
amount of hyperparameter tuning to get models with high
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FIGURE 4. Water saturation (top-left), resistivity (top-right), porosity
(bottom) for layer 4 taken at the z-axis.

FIGURE 5. Water saturation (top-left), resistivity (middle), porosity
(bottom) for layer 76 across the y-axis.

performance, which will direct our focus to the proposed
approach for evaluation, as opposed to hyperparameter opti-
mization.

2) EVALUATION METRICS
In order to evaluate and report the performance of regression
models, several metrics can be used. Here, we will present
the evaluation metrics that are used for evaluation; namely,
the root mean square error (RMSE), and the coefficient of
determination R2. Those metrics are the top two metrics used
for evaluating the Sw prediction in the surveyed studies are the
RMSE and R2, where 69% of the surveyed studies for water
saturation prediction use RMSE , and 50% of the studies used
R2 for evaluation.

FIGURE 6. Top: water saturation, middle: porosity, bottom: resistivity per
layer (layers across the z-axis.

FIGURE 7. Pearson correlation heatmap for the variables of the RBMD
dataset.

a: ROOT MEAN SQUARED ERROR (RMSE)
RMSE measures the average magnitude of the errors in a set
of predictions. It calculates the squared difference between
actual and predicted values.

RMSE =
1
n

n∑
j=1

(yj − ŷj)2 (6)

where n is the number of points, yj is the actual value, and
ŷj is the predicted value for a point j. Squaring the difference
penalizes more for errors with a larger magnitude, and it is
commonly used in engineering problems.

b: COEFFICIENT OF DETERMINATION (R2)
The coefficient of determination, also known as the good-
ness of fit, measures the extent to which the output of the
regression model is better than a straight line and is given by
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FIGURE 8. Production and injection wells’ location.

the formula:

R2 = 1−

∑n
j=1(yj − y)

2∑n
j=1(yj − ŷj)2

(7)

where n is the number of points, yj is the actual value, and
ŷj is the predicted value for point j, and y is the mean of the
observed values.

C. EXPERIMENTAL RESULTS
1) SPATIAL FEATURE ENGINEERING
The validation results of applying different feature selec-
tion approaches to our case study are presented in Table 6.
As shown in the table, the models built on the selected
features of the two approaches that did not use spatial fea-
ture selection or used a less strict mask as with the Mask
111110111, had a high R2 score and a fewer number of fea-
tures, mostly of the larger block sizes. However, when eval-
uating them using the selected Mask (00xxx1xxx0), which
more accurately estimates the extrapolation error and using
the evaluation strategy, a drop in R2 score and the rise in
RMSE error is noticed. This is accompanied by very low
performance for the Focus Region and the Interwell Region,
which indicates an overpromising and overfitting models.
Evaluation results are shown in Table 7.
On the other hand, when applying spatial feature selection

while using the selected Mask (00xxx1xxx0), whether by
using SFFS or SBFS, validation scores, in Table 6, and testing
scores, in Table 7, are very close. In addition, a higher
R2 score is observed, especially in the Focus Region and
Interwell Region, than when not applying spatial feature
selection. Although SFFS and SBFS have almost equal per-
formance, the SFFS-L6 feature set contains 15 features while
the SBFS-L6 feature set contains 21 features. Therefore, the
SFFS-L6 feature set is used in building the final model.
These results corroborate results from previous studies such
in [7] that when dealing with spatial data, spatial feature
selection should be performed to avoid the selection fea-
tures that do not generalize when extrapolating. Also, that
SFFS is more suitable for avoiding outfitting in spatial data
than SBFF.

2) SPATIALLY-AWARE VALIDATION STRATEGIES
a: MASK SELECTION
This experiment aims to select the Mask to be used for
Spatial Masking for this RBMD dataset, following the Algo-
rithm 1. Themasks used for the experiments are 0000010000,
0000 × 1x000, 000xx1xx00, x00xx1xx00, 00xxx1xxx0,
0xxxx1xxxx, x0xxx1xxx0, where 1: training layer, x: leave
out layer, 0: training layer. The masks are combined with
adding a mesh-like structure to include only (50%, 25%,
12.5%, and 6.25%) of the data points in the training layers in
training. All cross-sectionals are taken across the y-axis, and
the optimal hyperparameters in Table 2 are used. The random
state is set to 42, and the RMSE is used for the comparison.

b: SPATIAL MASKING STRATEGY EVALUATION
This experiment aims to compareK-fold cross-validation [39],
spatial blocking for 3D data cubes, and Spatial Masking.
To compare the approaches, Random Forests models are
built. The percentage of the training data is 90%, and
for the testing, the data percentage is 10% for the cross-
validation strategies. As for Spatial Masking, since the Mask
00xxx1xxx0 is used, based on the results from the Mask
Selection Experiment, 30% of the data is utilized for training,
and 10% is used for testing. The random state is set to 42, and
the R2 and RMSE are used for the comparison.

c: SPATIAL MASKING AS A MODEL FITTING APPROACH
This experiment aims to evaluateSpatial Maskingas a model-
fitting approach, in which the model is only fit on the 0 layers
of the Mask instead of the whole data for the final build.
K-Consecutive Cross-section Cross-validation was used for
the evaluation, and the model is fit once using the Mask and
once all the data points reserved for training are fit.

3) WATER SATURATION MAPPING MODEL
To build SM-RF water saturation (Sw) mapping model, the
hyperparameters are tuned via a grid search on the differ-
ent hyperparameter values in Table 2. The derived features
selected by the SFFS-L06 approach are utilized, and the
model is built and evaluated using theMask 00xxx1xxx0. The
model has a R2 of 0.620 and a 0.220 RMSE when evaluating
theWhole Region. As for the Focus Region and the Interwell
Region, an improvement of 33% and 32.6% in terms ofRMSE
difference is observed compared to using only the resistivity
and porosity without the derived features, which we consider
here as the baseline model, shown in Table 8. Visualization
of some of the predictions are in Table 9.

V. DISCUSSION AND ANALYSIS
A. MASK SELECTION
Figure 9 illustrates how as leave-out layers surround-
ing the testing layers are added, the difference between
the RMSE of using K-Consecutive cross-sections cross-
validation and Spatial Masking diminishes. At masks
00xxx1xxx0, 0xxxx1xxxx, and x0xxx1xxx0 the RMSE is
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TABLE 6. Final feature set and performance values on the validation set for different Feature selection approaches.

FIGURE 9. Training and testing scores based on different masks.

FIGURE 10. RMSE scores across layers when using 10-Consecutive cross-sections cross validation.

TABLE 7. Test evaluation results of the feature selection approaches per
region.

very close. However, at Mask 00xxx1xxx0, the RMSE of
the K-Consecutive cross-sections cross-validation is at its

TABLE 8. Results of evaluating the models performance on different
regions in the reservoir.

lowest value. The difference in RMSE between using the
Mask 00xxx1xxx0 while utilizing 50% of the training layers
data and the K-Consecutive cross-sections cross-validation
RMSE is at 0.006. Therefore, the Mask 00xxx1xxx0 and the
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TABLE 9. True values, prediction values, and residual errors of layers 6, 36, and 76 across the y-axis.

TABLE 10. Results of testing the Baseline model and the SM-RF model on
the synthetic datasets, with random_state = 42.

utilization ratio of 50% are selected to build the Spatially
Masked Random Forests (SM-RF) models for predicting
water saturation.

To investigate that further, we look at the errors per
layer when running a K-Consecutive cross-sections cross-
validation. Errors are illustrated in Figure 10. We can notice
the errors stabilize at their highest around layers 4-7 with a
sharp decline in RMSE error in the layers before and after
for every ten layers. This indicates that layers 4-7 are more
representative of the actual performance of the model built,
and the high performance of the outer three layers from each
side is due to overfitting from having nearby points in training
and validation data. This validates the mask choice by the
algorithm as it selected a mask with three leave-out layers
from each side of the testing layer to avoid this sort of contam-
ination to the testing data. Applying the mesh-like structure
further treats the overfitting problem, as we can notice from
the illustration and by the reduction in the standard deviation
of the RMSE error across the layers from 0.05 when not using
the mesh structure to 0.043 and 0.3 when using 50% and
12.5% of the data respectively. However, when combining
the mesh structure with the Spatial Masking method and a
Mask that has a total of 6 leave-out layers reduces the training

TABLE 11. Results of testing different the RF model on different spatial
blocking method.

data significantly and throws out too much of the data, which
reduces the overall performance. Therefore, the elimination
of the data to create the mesh-like structure was capped
at 50%.

B. SPATIAL MASKING AS AN EVALUATION STRATEGIES
Table 11 shows that using Spatial Masking as an evaluation
approach gives the closest error estimate in terms of RMSE to
the baseline of 10-consecutive cross-section cross-validation
layer. Thus providing a more accurate estimate for the extrap-
olation error.

C. WATER SATURATION MAPPING MODEL
The SM-RF model robustness when testing on the 5 syn-
thetic datasets, the model’s performance is steady to a great
extent. From Table 10, there is a 0.008 increase in RMSE for
the RBMD-20 dataset, where 20% of noise is added. This
equates to a decrease of 3.6% in R2 for the SM-RF model
as opposed to a 59% decrease in R2 for the Baseline Model.
As the error difference percentage is bound by the percent-
age of noise added to generate the synthetic datasets pre-
sented in Table 10, mathematically, the model is considered
stable [40].
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VI. CONCLUSION
In this work, we tackled the issue of over-promising eval-
uation and over-fitting Forests models when built on spa-
tially auto-correlated data. We proposed Spatial Masking as
a train-test split approach to build and evaluate Random
Forests models while minimizing overfitting and delivering
a more realistic evaluation of the models. Through a series
of experiments on a case study of water saturation (Sw)
mapping in oil/water reservoirs, Spatial Masking did provide
a more accurate error estimate of the extrapolation error than
random K-Fold cross validation and Random K-Fold cross-
section cross validation. Combining Spatial Masking with a
Mesh-like structure did reduce the extrapolation error further
when fitting the model. An SM-RF (Sw) mapping model was
developed by fitting the data on the Mask 00xxx1xx00 with
a 50% utilization rate of the training data and the features
selected by the spatial forward selection approach using the
same mask. In the future, we will investigate the different
sources of the errors found in the mapping and work on
further improvement in the mapping related to the Interwell
region.
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