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ABSTRACT Decentralized exchanges (DEXes) provide effective price discovery and fair trading while
dealing with the drawbacks of centralized exchanges, e.g., lack of transaction transparency and exclusive
control of user assets and transaction fees. However, many DEXes suffer from frontrunning and transaction
reordering, which fundamentally flaw their design. In this paper, we present a novel incentive mechanism
design for mitigating frontrunning and transaction reordering even if frontrunners pay high transaction
fees in DEXes. We utilize a weighted counting sort algorithm to order transactions based on the users’
multi-dimensional private information (e.g., transaction delay and confidentiality). To elicit users’ private
information, we consider a multi-dimensional contract-theoretic design based on the users’ willingness to
share their private information. We show that the miner can always maximize its utility under the complete
and incomplete information scenarios.We implement solutions to our multi-dimensional contract and sorting
algorithm on a decentralized oracle network to create a decentralized system and design a web application to
extensively evaluate the performance of our proposed incentive mechanism. We further show that ordering
transactions based on users’ private information increases the miner’s utility by 78.42% − 84.57% and
reduces the users’ cost by 64.47% compared with the state-of-the-art fair sequencing services, automated
arbitrage market maker, and miner extractable value auctions.

INDEX TERMS Blockchain, decentralized exchanges, incentive mechanism, multi-dimensional contract,
transaction ordering.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATIONS
Blockchains have gained significant traction in diverse areas
over the few years. Many users have rushed to build
innovative solutions on blockchains, such as bitcoin and
ethereum. In particular, blockchains feature the key benefits
of transaction decentralization, transparency, tokenization,
and anonymity for a more reliable exchange of value among
participants [1]. Blockchains also provide the essential plat-
form for decentralized exchanges (DEXes), which enable
users to buy and sell cryptocurrencies without the need
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for brokers [2]. While these are the marks of blockchain’s
tremendous success, certain behaviors of miners, such as
reordering transactions to maximize their block utilization
and profits, lead to higher transaction costs and longer mining
delay for users. Also, transactions becomemore vulnerable to
frontrunning as they languish in the mempool.

Furthermore, Daian et al. neologized the term miner
extractable value (MEV) to express the various possibilities
of using adversarial ordering optimization (AOO) to extract
money from a blockchain smart contract system [3]. Recent
investigations have determined that at least 28.8M USD was
taken from MEV over the past decade [4]. Usually, the term
MEV is closely associated with miners because they hold
unlimited power to order transactions in a block. At the
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application layer, MEVs like sandwich trading worsen the
user experience1 [5]. Sandwiched users have more slippage
and poorer trade execution, e.g., increased latency [3]. Like-
wise, generalized frontrunners and the gas-price auctions that
typically engage in (when two or more frontrunners raise
their gas prices to compete for the next block) cause net-
work congestion and high gas costs at the network layer [6].
MEV can also have deleterious effects between blocks. If a
block’s MEV exceeds the regular block reward, miners may
be encouraged to remine and acquire theMEV, which triggers
network reorganization and consensus instability [3].
There have been some efforts to tackle the above

MEV extraction challenges. We classify these efforts
into transaction-ordering-based and fees-optimization-
based approaches. Firstly, in the transaction-ordering-based
approach, the authors in [7] introduced fair sequencing ser-
vice (FSS), a decentralized oracle network (DON)2 for fair
user transaction sequencing based on the time of arrival,
which improves the users’ transaction latency. However,
this transaction-ordering-based technique typically leads to
poor income for miners and redundant MEV on the network
(e.g., [7]). Secondly, the works in [8] and [9] presented an
auction theoretic approach to mitigate MEV via auctioning
the right to order transactions on the blockchain network.
Nonetheless, these approaches result in ‘‘managed central-
ization,’’ where a single sophisticated party always wins the
auction and captures all of the MEV (e.g., [8], [10], [11]).
Fees-optimization-based techniques, such as [12] and [13],
regulated transaction fees to lower user expenses. In [12]
and [14], the authors presented an automated market maker
(AMM) to reduce users’ costs by leveraging smart contracts
(SCs) to alter gas fees upon incoming transaction requests
autonomously. The authors of [13] introduced an automated
arbitrage market maker (A2MM) that selects the best-effort
two-point arbitrage among various AMMs based on trans-
action costs. Generally, in fees-optimization-based systems,
fees cannot be forecasted with 100% accuracy before sub-
mitting an order since requests may be executed on bridge
reserves with higher fees without the user’s knowledge [14].

However, with all the promising efforts to mitigate MEV,
certain challenges still need to be addressed. Most existing
studies usually make an optimistic assumption that users
are often willing to pay an equivalent amount for mining,
corresponding to their profit margins. This assumption may
not be realistic due to the network’s various user types, e.g.,
users with diverse preferences for confidentiality and delay
tolerance. One way is to ensure that users pay for transactions
honestly to promote ethical miner behavior. However, this
may not be easy to achieve if the miner does not know
users’ multi-dimensional information preferences, such as
transaction delay and confidentiality. Users’ transaction delay

1Sandwiching involves placing orders before and after a transaction. The
attacker front-runs and back-runs concurrently, sandwiching the original
pending transaction.

2ADON is a collection of autonomous blockchain oracles that supply data
to a blockchain and eliminates single points of failure in smart contracts.

preferences are characterized by how long they can wait in
a queue until their transactions are mined, which is often
unknown to the miner, especially when there are several het-
erogeneous users. The confidentiality of users’ transactions is
also users’ private information and will not be easily accessed
by the miner due to privacy concerns. Although the miner
may not know each user’s private information, it may obtain
certain statistics of such information from market research
and transaction histories [15]. For instance, the miner may
know the user type distributions (which is referred to as an
incomplete information in this paper). Different levels of
information asymmetry require the miner to design differ-
ent optimal strategies to achieve the highest possible utility.
Therefore, motivated by the preceding discussion, we ask and
attempt to answer the following questions in this paper:

1) How could transactions be ordered on the blockchain
network to avoid MEV centralization and extraction?

2) How should users withmulti-dimensional private infor-
mation be incentivized to encourage honest behaviors?

3) How could transaction ordering andmulti-dimensional
contracts be implemented on the blockchain platform?

B. CONTRIBUTIONS
Contract theory is considered to be an effective approach for
designing incentive mechanisms under asymmetric informa-
tion scenarios [16]. Therefore, we leverage contract theoretic
techniques to design an incentive mechanism with the users’
multi-dimensional private information to encourage ethical
behaviors in the blockchain network. Firstly, we character-
ize the user types based on their multi-dimensional private
information (transaction delay and confidentiality), which
can help the miner make effective decisions to maximize its
utility. Secondly, we provide a contract design under the com-
plete information scenario and incomplete information sce-
nario to users based on the willingness to share their private
information with the miner.3 This contract design extracts the
users’ private information necessary for an efficient transac-
tion ordering stage. Next, we deploy a weighted counting sort
algorithm to order transactions on the blockchain network
based on the users’ private information. Expressly, our multi-
dimensional contracting and transaction sorting algorithm are
jointly achieved via a DON to prevent MEV centralization
and extraction. The DON forwards transactions to a mempool
after ingesting them and reaching a consensus on the transac-
tion order based on users’ private information. We term this
integrated system as weighted sequencing service (WSS) in
the subsequent literature for simplicity.

To the best of our knowledge, this work is the first attempt
to investigate the relationships betweenminers and users with
multi-dimensional private information and related transac-
tion ordering problems resulting from MEV. Compared to

3In contract theory, incompleteness occurs from the fact that the infor-
mation is expensive and sometimes inaccessible to (a) the parties at the
time of contracting or (b) the parties or the enforcing court at the time
of enforcement [17]. We use the complete information scenario as our
preliminary benchmark, where the user information is readily available.

VOLUME 11, 2023 96015



D. M. Doe et al.: Incentive Mechanism Design for Mitigating Frontrunning and Transaction Reordering

previous recent works, our contributions can be summarized
as follows:

• Transaction ordering mechanism design: We apply a
weighted counting sort algorithm with very low compu-
tational complexity to order transactions based on user
preferences from our multi-dimensional contract.

• Multi-dimensional contract design with users’ private
information: We design a multi-dimensional contract
that elicits users’ private information and overcomes the
information asymmetry between the miner and users.

• Implementation of multi-dimensional contract and
transaction ordering algorithm:We deploy the solutions
to our optimal contract design and transaction ordering
algorithm on a DON to demonstrate the feasibility of the
real deployment of our proposed scheme.

• Experiment and results discussion: We develop a web
application platform to experiment and evaluate the per-
formance of our proposed mechanism gains compared
with existing approaches.

The rest of the paper is organized as follows.
Section III presents the system model and the preliminaries
for our incentive mechanism design. We present our multi-
dimensional contract formulations and closed-form solutions
in Section IV. Section V introduces the transaction sorting
algorithm for our proposed mechanism and overall system
architecture. In Section VI, we illustrate the experiment
results and analysis of our proposed mechanism, and finally,
Section VII concludes our discussion.

II. RELATED WORKS
Blockchains have gained significant traction in diverse areas
over the past few years. As such, several kinds of research
have been centered on incentive mechanism designs in
the blockchain aspect of this field of study. In [18], the
authors proposed a data-sharing incentive model based on
an evolutionary game theory using blockchain with a smart
contract. The smart contract mechanism can control the
excitation parameters in real time and encourage users to
share data. The authors in [19] addressed a need for more
understanding of the strategic behavior of rational processors
within committees in shard-based consensus protocols by
analyzing the behavior of processors using a game-theoretic
model. In [20], the authors presented a reputation system
called RTChain, which is integrated into the e-commerce
blockchain to achieve a distributed consensus and transaction
incentives.

Furthermore, in close relation to our work, the authors
in [7] introduced fair sequencing service (FSS), a decentral-
ized oracle network for fair user transaction sequencing based
on the time of arrival, which improves the users’ transaction
latency. However, this transaction-ordering-based technique
typically leads to poor income forminers and redundantMEV
on the network (e.g., [7]). Secondly, the works in [8] and [9]
presented an auction theoretic approach to mitigate MEV via
auctioning the right to order transactions on the blockchain

network. Nonetheless, these approaches result in ‘‘managed
centralization,’’ where a single sophisticated party always
wins the auction and captures all of the MEV (e.g., [8], [10],
[11]). In [12] and [13], regulated transaction fees to lower
user expenses. In [12] and [14], the authors presented an
automated market maker (AMM) to reduce users’ costs by
leveraging smart contracts (SCs) to alter gas fees upon incom-
ing transaction requests autonomously. The authors of [13]
introduced an automated arbitrage market maker (A2MM)
that selects the best-effort two-point arbitrage among vari-
ous AMMs based on transaction costs. Generally, in fees-
optimization-based systems, fees cannot be forecasted with
100% accuracy before submitting an order since requests may
be executed on bridge reserves with higher fees without the
user’s knowledge [14].

Our work differs from [7], [8], [9], [12], [13], and [14]
in that we consider a multi-dimensional contract-theoretic
design based on the users’ willingness to share their pri-
vate information, which is used for sorting transactions to
optimize the users’ and miners’ utilities. In principle, our
proposed mechanism is a more practical approach to trans-
action reordering and frontrunning on blockchain networks.
The authors in [21] proposed a consensus scheme called
PoRF, which is based on a reputation-based consensus that
allows for fair and random transaction selection. It aims to
address the problem of dishonest nodes colluding with other
nodes to prioritize their transactions over others, reducing
their latency and improving their QoS. However, the authors
fail to consider the existential users’ and miners’ information
asymmetry levels.

III. SYSTEM MODEL
Consider a blockchain network with DON, users, and miners
interacting via DEX contracts. We propose a contract-based
incentive system to characterize the miners’ and users’ honest
conduct under various information asymmetries. Users can
choose from a range of contract items offered by the DON on
behalf of the miners. Section III-A presents a modeling of the
interaction between the DON, miners, and blockchain users.
As our network model, we present the user types and contract
preliminaries in Section III-B. In Section III-C, we provide
the utility model, which specifies the users’ payoffs and the
miners’ utility.

A. SYSTEM ARCHITECTURE
Consider an ethereum proof-of-work (PoW) network, which
is composed of immutable ledgers protected by a decen-
tralized network of computers, known as ‘‘miners’’ [22].
We can also apply the concepts from this work to other
blockchain networks, such as proof of stake, as long as they
support DEXes. These miners are responsible for cumulating
pending transactions into blocks, which are subsequently
validated by the entire network and added to a global ledger.
New blocks of transactions are continuously generated, while
the blockchain network ensures that all transactions are
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FIGURE 1. An overview of DON, miners, and users’ interactions in our
system architecture.

valid, e.g., no double-spending attacks.4 Consequently, the
blockchain network has a limited network downtime, which
makes it challenging to guarantee that transactions will be
ordered exactly as submitted on the blockchain [23]. Each
block in the blockchain can only hold a certain number of
transactions. Conventionally, miners have complete control
over which pending transactions from the mempool they
include in their blocks (an off-chain location for unconfirmed
transactions). However, this autonomy brings with it the
inherent issues associated with MEV.

In this work, we deploy the DON, which comprises a com-
mittee of blockchain responsible for handling any interaction
between the miners and users. By severing the ability to
order transactions from the ability to produce blocks with
our DON, we can avoid malicious value extraction by min-
ers or transaction frontrunning by users through predefined
ordering policies. The DON provides real-world data to a
blockchain through middleware and is also capable of simple
computation on such data. To achieve our DON implemen-
tation, we adopt a chainlink platform that gives blockchain
developers an easy-to-use framework for writing hybrid SCs
that connect to external resources by combining on-chain and
off-chain computation [24]. We refer to the implementation
from [25] and [26] to construct our DON. For simplic-
ity, we show a list of major symbols and their definitions
in Table 1.
Fig. 1 illustrates the typical DON, miner and users inter-

action on a blockchain network.5 Users submit transactions
to the mempool, and miners decide from the mempool on
which transactions to include in their block of transactions
and the transaction order. In Fig. 1, the variable T $

1 represents
a user transaction that arrives first with a gas fee $, where

4Other methods can be employed in blockchains to prevent double-
spending attacks. However, this problem is not the focus of this paper.

5For simplicity, we consider multiple users and aminer in Fig. 1. However,
all deductions extend to multiple miners. See Section VI-A for more on this
extension.

TABLE 1. List of major symbols and their definitions.

$ < $$ < $$$. This concept also holds for the sub-
sequent transactions T $$

2 , and T $$$
3 . Generally, users send

these transactions to the mempool for mining. With chainlink
keeper functions, the DON orders unconfirmed transactions
from mempool storage to the contract scheme contracted-
out number (SCON) for the miner [27]. The DON chainlink
keeper functions provide a mechanism for executing basic
blockchain network tasks [26]. Typically, a miner will select
transactions solely based on the highest gas fees (the trans-
action fee), e.g., T $$$

3 , T $$
2 , and T $

1 . As a result, a miner can
extract extra profits from users by capitalizing on its ability
to arbitrarily reorder transactions, creating what is generally
referred to asMEV [4], [28]. The subsequent subsections pro-
vide the significant preliminaries required for our mechanism
design.

B. NETWORK MODEL
1) USER’S TYPES
We consider a group of N users on the blockchain net-
work, which are characterized by two-dimensional private
information: the transaction confidentiality θ and the delay
tolerance t . Different applications, e.g., stock trading, finan-
cial transactions, NFT, etc., require different confidentiality
and delay tolerance levels. In this work, θ represents pri-
vate information such as the transaction revenue or arbitrage
opportunity observed by the user. For the convenience of
presentation, we denote a user withmulti-dimensional dataµi
as µi ≜ (θi, ti) as a type-i user for all users belonging to a set
I = {1, · · · , I } of I types,6 where θi and ti represent the type-
i user’s confidentiality and delay tolerance, respectively. Each
user type i ∈ I comprises ni users, such that

∑
i∈I ni = N .

Practically, users evolve with time and, therefore, will have

6We refer to multi-dimensional contracts by P. Bolton for more on user
types descriptions [16].
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different individual preferences. However, we assume the
user’s type does not change for simplicity.

Due to the existence of diverse user private information,
it is challenging for a miner to predict user behaviors without
the information about each user’s type.7 To address this infor-
mation asymmetry challenge, we propose a contract-theoretic
approach that elicits private information from users.

2) CONTRACT FORMULATION
Contract theory is a promising and extensively used theoretic
tool for addressing problemswith private information. Hence,
we introduce our contract formulation in this subsection.

3) MINER’S CONTRACT
The miner will offer a contract that stipulates the relationship
among users’ delay tolerance, transaction workload and cost.
Concretely, contract C = (tmax , ϕ) includes a maximum
delay tmax (for all user types) and I contract items ϕ for each
user type, such that ϕ = {ϕi}i∈I . Notation tmax represents
the maximum delay acceptable by users on the blockchain
network, which can be achieved by setting verifiable delay
functions (VDFs) on transactions [29], i.e., miners with
ti ≤ tmax can finish mining and propagating transactions in
time. We specify the relationship between each type-i user’s
transaction workload and cost in each contract item ϕi ≜
(ωi, ri), where ωi and ri represent the transaction workload
and the reward (e.g., money) for mining each type-i user’s
transaction, respectively, if the miner completes a transaction
workload within the required time. We mention that the val-
ues ofωi and ri are functions of the mining resource demands,
e.g., block size of user i’s transaction denoted as si, such that
ωi = ω(si) and ri = r(si) [30]. The miner with ti > tmax
proposes a zero contract item for any type-i.

4) USERS’ CHOICES
Before establishing the contract, each user decides on a delay
tolerance level and an amount that it is willing to pay for its
transaction, based on the transaction’s confidentiality, e.g.,
how much revenue it can obtain from that transaction. Next,
the user proceeds to choose a contract item that best describes
its type or maximizes its payoff. If a user chooses the contract
item ϕi, the miner needs to ensure that ω(si) is mined and
propagated within time tmax .8 In return, the miner receives a
reward r(si) that determines the user’s transaction cost. Usu-
ally, the miner and users will not participate if their respective
payoffs are negative (defined in Section III-C1 and Section
4d, respectively). Consequently, we specify the miner’s and
the users’ payoffs in the following.

7The miner can know each user’s type from their multi-dimensional
private information provided in the software layer when sending transactions
to the blockchain for mining in Section V.

8Any reasonable interval can be tmax . However, we average network
execution time for different blocks.

C. UTILITY MODEL
1) MINER’S UTILITY
The miner’s utility is defined as the difference between its
reward obtained from the blockchain transaction and transac-
tion mining cost. Consider a miner with an available resource
x, a transaction workload ω, and the miner’s hash power γ

can be expressed as γ (ω(si), x) [31]. We denote the miner’s
block size by s, which comprises the total transactional and
metadata size. The token reward for miners constitutes a
fixed bonus β ≥ 0 for mining a new block and a variable
transaction fee λsi defined by the occupied transaction block
size si of a user i and a predefined transaction fee rate
λ [32]. Therefore, the i-th miner’s token reward r(si) can be
expressed as follows:

r(si) = (β + λsi)P(γ (ω(si), x), si), 9 (1)

where P(γ (ω(si), x), si) represents the probability that the
miner obtains the reward for contributing a block to the
blockchain [31]. The miner’s utility U can be calculated as

Uϕi = 1ti≤tmax r(si)− θiω(si), (2)

where θiω(si) is the miner’s cost for type-i user’s transaction
and 1ti≤tmax can be expressed as

1ti≤tmax =

{
1, if ti ≤ tmax ,
0, if ti > tmax ,

(3)

which means that only miners with ti ≤ tmax are likely to take
a transaction. A miner with ti > tmax gets a deduction to dis-
courage the possibility of MEV extraction once contracting.

2) USERS’ PAYOFF
Each user’s payoff in each trading is based on its utility and
payment. Specifically, a type-i user’s utility can be expressed
in terms of its confidentiality and valuation for transaction
workload, which are usually its private information. The user
payment generally comprises the cost for mining its trans-
action, depending on how much reward the miner obtains
from the mining. If a type-i user selects a contract item ϕi,
the respective payoffW can then be calculated as:

Wϕi = V (θi, ti)− cir(si), (4)

where V (θi, ti)10 is the type-i user’s evaluation function
regarding θi and ti, which is a strictly increasing concave
function of V (θi, ti), where V (θi, ti) = 0,V ′(θi, ti) > 0, and
V ′′(θi, ti) < 0 for all i ∈ I. The term cir(si) represents the
transaction cost from the miner, where ci is an additional fee
imposed by the miner based on its valuation on the reward
from providing the required service to users. However, for
simplicity, we set ci = 1 to fundamentally not change the
nature of our solution.

10We consider this function to be a set of weights applied to both θi and ti
of any transaction to determine its value, as discussed in Section V.
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IV. MULTI-DIMENSIONAL CONTRACT DESIGN FOR USERS
In this section, we analyze the miner’s optimal incentive
mechanism for users with different information asymmetry
levels. To investigate the impact of these information asym-
metry levels between the miner and users, we consider the
following contract designs:

1) Complete information scenario: The miner is aware of
each user’s type, which provides an upper bound of
its reward compared with the incomplete information
scenario [16].

2) Incomplete information scenario: In this case,
the miner does not know the user type but only knows
the distribution of user types. This scenario leads to the
second-best outcome with a non-linear price discrimi-
nation for user transactions [16].

For each design, we first present the contract feasibility
condition and then solve for the optimal contract. The con-
tract feasibility and optimality are defined as follows [16]:
Definition 1 (Contract Feasibility): A contract is feasible

if each user obtains the maximal payoff by choosing the
contract item designed for its type.
Definition 2 (Contract Optimality): A contract is optimal

if it maximizes the miner’s payoff among all feasible con-
tracts.

The rest of this section includes the optimal contract design
under the complete information and incomplete information
scenario in Section IV-A and IV-B, respectively.

A. COMPLETE INFORMATION SCENARIO
In this subsection, we investigate the miner’s optimal contract
under the complete information scenario where the miner
knows each user type. This design makes it feasible for the
miner to observe and ensure that each user type accepts the
contract items designed for that type and will not accept
any contract item not designed for it. Also, the miner can
obtain a first-best outcome, which leads to perfect price dis-
crimination [16]. Nonetheless, the miner is still required to
guarantee that each user obtains a non-negative payoff, which
incentivizes users to accept their corresponding contract item.
Expressly, a contract is feasible if and only if it satisfies
Individual Rationality (IR) constraints:
Definition 3 (Individual Rationality): A contract is indi-

vidually rational if it provides a non-negative payoff to each
type-i that accepts the contract item ϕi designed for its
type, i.e.,

Wϕi ≥ 0, ∀i ∈ I. (5)
Therefore, the optimal contract C∗complete = (t∗max , ϕ

∗) under
the complete information scenario is the solution to the opti-
mization problem:
Problem 1 (Contracting Under Complete Information Sce-

nario Problem):

max
tmax ,ϕ

Uϕi (6a)

s.t. Wϕi ≥ 0, ∀i ∈ I, (6b)

FIGURE 2. Miner’s preference order for different user types based
on 5(θ, t).

which aims to maximize the miner’s utility as shown in
(6a) under the IR constraint presented in (6b). To solve this
problem, we first calculate the miner’s reward r(si) for any
given si from (1). Next, we substitute r(si) into the miner’s
objective function to obtain the optimal transaction workload
ω∗(si) as well as the optimal transaction delay time t∗max (see
Theorem 1).
Lemma 1: For any given transaction workload ω(si) even

if ω(si) ̸= ω∗(si), it is optimal for the miner to choose its
reward as r(si) = θiω(si),∀i ∈ I.
We provide the proof of Lemma 1 in Appendix, which

establishes that the miner will offer zero payoffs to all users
contracting under the complete information scenario. Subse-
quently, we can determine the optimal transaction workload
for each user type that minimizes the miner’s cost based on
Lemma 1. Next, we present another observation based on
Lemma 2, showing the impact of choosing each user type-i
on the miner’s cost.
Lemma 2: The miner’s payoff for only choosing type-i is

expressed as

5(θi, ti) ≜
θ3i

4P(γ (ω(si), x), si)
+

θ2i

(
1+

θ2i
4λ

)
4λP(γ (ω(si), x), si)

.

(7)
We provide the of Lemma 2 in Appendix. Lemma 2

describes the miner’s trade-off towards different users’ pri-
vate information, i.e., θ and t . As a result, we can trans-
form users’ two-dimensional private information into a one-
dimensional model, which shows the miner’s preference for
different user types:
Definition 4 (Miner’s Preference List): The miner has a

higher preference for a user type-i than type-j (expressed by
i ≻ j) if and only if 5(θi, ti) > 5(θj, tj).
Fig. 2 shows how the miner’s preference changes for each

user type over (θ, t) parameter spectrum. Each axis represents
the users’ sensitivity towards (θ, t). Expressly, the miner’s
preference on users’ types is higher for users with high confi-
dentiality and low transaction delay than low confidentiality
and high delay users. We express the set of user types that
have the same high miner preference as follows:

µ∗i ≜ argmax
i∈I

5(θi, ti). (8)
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For instance, suppose that there are five user types
A,B,C,D, and E characterized with (θ, t) as shown in Fig. 2.
The miner’s preference list is A ≻ B ≻ D ≻ E ≻ C and
µ∗i = {A}. In Theorem 1, we provide the optimal contract for
the miner under the complete information scenario consider-
ing different cases of the set µ∗i :
Theorem 1: Under complete information scenario, the

miner’s preference order for users’ transactions can be
derived as:

1) if µ∗i = {i}, the miner’s optimal contract is

t∗max = ti, ϕ∗i = [
θ2i

4λP(γ (ω(si),x),si)
,

θ3i
4λP(γ (ω(si),x),si)

], and
ϕ∗i = 0,∀i ̸= j,

2) if |µ∗i | > 1, the miner’s optimal contract is to choose
any one type user i ∈ µ∗i with t∗max = ti, ϕ∗i =

[
θ2i

4λP(γ (ω(si),x),si)
,

θ3i
4λP(γ (ω(si),x),si)

], and ϕ∗i = 0,∀i ̸= j,

3) if |µ∗i | > 1, offering only positive contract to one type
i ∈ µ∗i results in the same miner’s maximal utility.

Proof of Theorem 1 is provided in Appendix. Theorem 1
illustrates that the miner only provides a positive contract
item to the most desired user type and offers zero contract
to all other users. Additionally, due to the non-uniqueness of
the most preferred user type, the optimal contact may not be
unique but will always exist. Conversely, it is not optimal to
choose (offer a positive contract item) to several user types
within or outside the set µ∗i , as this would reduce the miner’s
reward.

Logically, having less user information would result in
different behavior of the miners. As a result, we present in the
subsequent subsection that the miner’s optimal contract under
an incomplete information scenario is more complicated than
the complete information scenario.

B. INCOMPLETE INFORMATION SCENARIO
In this subsection, we present the miner’s optimal contract
under the incomplete information scenario, where it does not
know which type each user belongs to but is aware of the
probabilistic distribution of users’ types, i.e., a probability Pi
that a user belongs to a type-i. The user type-i probability Pi
for this case can be expressed as

Pi =
N !

ni!(N − ni)!
Pni (1− P)N−ni , ni ∈ N . (9)

Moreover, this user type probability in our contract design
applies to any distribution that best characterizes the user
behavior.

In this design, the miner needs to account for any expected
reduction in its payoff for incorrectly proposing contract
items not precise for a specific user. Hence, the miner’s utility
for user type-i in this case is

Pi(Uϕi ) = 1ti≤tmaxPi{r(si)− θiω(si)}. (10)

Suppose the miner adopts the previously derived optimal
contract design from the complete information scenario for
the incomplete information scenario. In that case, the miner
will have a higher payoff for offering a higher contract item to

user type-i instead of user type-j, where V (θj, tj) > V (θi, ti),
and vice versa. The miner will likely receive a low utility
when user type-j andN are not sufficiently large. Usually, this
type of contract design leads to a second-best outcome, where
the miner needs to adopt a non-linear pricing model [16].
Motivated by the structure of the complete information sce-
nario, where miners only select the most preferred user type,
we construct a simplified contract where theminer only offers
two types of contract items; one is positive payoff for a group
χ ⊆ I of user types, and the other is zero payoff for the rest
user types in I\χ . This contract structure provides a tractable
approach to characterize the incomplete information scenario
efficiently.

Also, the miner cannot force a user to accept a specific
contract item, but it can design the contract to ensure each
user accepts their corresponding contract item. Hence, the
miner needs to further guarantee the Incentive Compatibility
(IC) constraints:
Definition 5 (Incentive Compatibility): A contract is incen-

tive compatible if it provides the maximal payoff for each
type-i user when he chooses the contract item ϕi designed
for its type, i.e.,

Wϕi ≥ Wϕj , ∀i, j ∈ I. (11)

We can find the optimal contract C∗incomplete = (t∗max , ϕ
∗),

which is a solution to the optimization problem:
Problem 2 (Contracting Under Incomplete Information

Scenario Problem):

max
tmax ,ϕ

E
{
Uϕi

}
=

N∑
i=1

Pi(Uϕi ) (12a)

s.t. Wϕi ≥ 0, ∀i ∈ I, (12b)

Wϕi ≥ Wϕj ,

ϕi > 0, ϕj > 0, ∀i, j ∈ χ;

ϕk = 0, ∀k ∈ I\χ. (12c)

In this problem, we also maximize the miner’s utility as
presented in (12a) under the IR and IC constraints shown in
(12b) and (12c), respectively.

Let χi represent any subset of user types in I, and χ∗

represent the set of user types resulting in the maximal miner
utility in the optimal incomplete information scenario. In the
following subsection, we provide how to solve the opti-
mal contract, establish the optimal contract for any arbitrary
type set χi, and give the guideline for finding the optimal
type set χ∗.

From (12), the complexity of our problem increases since
the number of IR and IC constraints become I2. As presented
in Lemma 3, we first reconstruct IR and IC into an equiva-
lently small set of equations to solve this problem. Second,
we present the optimal solution considering a set of users χi,
i.e., C∗incomplete, and evaluate the The probability of having nχi
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users belonging to the types in χi as:

P(nχi ) =
(
N
nχi

)
P
nχi
χi (1− P)N−nχi , (13)

where Pχi =
∑

i∈χi Pi as the probability of having i users
in set χi. Let Tmax and θmax represent the maximum delay
tolerance and confidentiality of user types in χ , such that
Tmax = max{ti}i∈χi and θmax = max{θi}i∈χi , respectively.
Then C∗incomplete(χi) can be characterized by Lemma 3.

Lemma 3: For any arbitrary set of types under incom-
plete information scenario, the optimal contract is given as
follows:

1) t∗max = Tmax ,
2) for all user types in χi:

ϕ∗ =
θ2max

P(γ (ω(si), x), sχi )

 ∑N
nχi=1

P(nχi )
1
√
1+λ∑N

nχi=1
P(nχi )nχiθmax

 ,

θ3max

P(γ (ω(si), x), sχi )

 ∑N
nχi=1

P(nχi )
1
√
1+λ∑N

nχi=1
P(nχi )nχiθmax

 .

(14)

3) for any user type i /∈ χi, φ
∗
= 0.

Next, we obtain the optimal user type set χ∗. We show the
insight concerning the user types composed in the optimal
type set χ∗ for any value ofN . Generally, we expect the miner
to choose user types with higher preference. Nonetheless, the
following counter-intuitive results demonstrate that choosing
certain user types with lower preferences (excluding others
with higher preferences) may increase the miner’s utility.
Proposition 1: For the optimal contract under incomplete

information scenario Cincomplete, there exist user types i and j
such that i ∈ χ∗, j /∈ χ∗, and 5(θi, ti) > 5(θj, tj).

Proof of Proposition 1 is provided in Appendix. The
insights behind Proposition 1 are: 1) choosing a user typewith
higher preference may not be optimal when the probability
that this user type exists is small, 2) theminer’s cost is decided
by the user types’ maximum computational time ti and the
maximum workload ω(si) in the type set. Consequently, the
combination of multiple high-preference types may not have
an excellent overall performance.

V. MULTI-DIMENSIONAL CONTRACT AND TRANSACTION
ORDERING MECHANISM
After contracting in Section IV, the miner must sequence
transactions strategically to obtain maximal payoff. However,
this step is challenging to achieve without MEV extraction
or the miner’s utility trade-offs for user satisfaction. In this
section, we present our transaction ordering algorithm with
our multi-dimensional contract in Section V-A and the overall
system architecture design in Section V-B. Concretely, this
approach can help resolve the ordering problems in MEV
extractions and decentralized finance (DeFi). It simultane-
ously aims to address the problems of high gas costs for
diverse user transactions types.

A. TRANSACTION ORDERING MECHANISM DESIGN
As mentioned in the Section IV, blockchain users reach
a service-level agreement (SLA) with a miner to include
its transaction to the current block [33]. In this case, the
SLA document comprises the multi-dimensional contract
designed for each user type. This contract design spec-
ifies the acceptable delay and confidentiality constraints
of user transactions. The miner has to consider its block
size and user requirements before ordering transactions.
Let the set Q = {Q1,Q2, · · · ,Qz, · · · ,QZ } represent Z
number of transactions in the mempool and the set A =
{1, 2, · · · ,m, · · · ,M} denote M number of miner’s blocks.
The miner’s ordering solution Q∗ can be presented as Q∗ =
{Q1,1,Q2,2, · · · ,Qz,m,, · · · ,QZ ,M }, where Qz,m denotes a
transaction z located at the block m. Expressly, we formulate
the WSS transaction ordering and contracting problem as an
optimization problem shown below:
Problem 3 (WSS Transaction Ordering and Contracting

Problem Formulation):

max
tmax ,ϕ

E
{
Uϕi

}
(15a)

s.t. Wϕi ≥ 0, ∀i ∈ I, (15b)

Wϕi ≥ Wϕj , ∀i, j ∈ I, (15c)

ϕi ≥ 0, ϕj ≥ 0, ∀i, j ∈ χ,

ϕk = 0, ∀k ∈ I\χ
Z∑
z=1

Qz = Q,

Z∑
z=1

M∑
m=1

Qz,m = Q∗. (15d)

In this problem formulation, (15a) presents the objective
function for maximizing the miner’s utility. This objective
function is formulated similar to the multi-dimensional con-
tract design from Problem 2, which captures Problems 1 and
2 if the probabilities are known, e.g., Pi = 1. The constraints
in (15b) and (15c) represent the IR and IC constraints, respec-
tively. The IC constraint is dropped if the user type falls under
the complete information scenario. The constraint in (15d)
ensures that the sum of each block size and transaction match
the total available block size and transactions.

We divide this problem into two parts, with the first part
comprising the solutions provided in Section IV. Essentially,
the solutions from Section IV, which comprises (15a)-(15c),
reveal each user types’ private information needed for our
transaction ordering stage. Under the complete information
scenario, we offer the contract items from the solution in The-
orem 1 under the incomplete information scenario, and under
the incomplete information scenario, we offer the contract
items from Lemma 3. The second part provides a weighted
transaction ordering algorithm to handle subsequent con-
straints. This weighted transaction sorting algorithm ensures
the optimal ordering of transactions to meet the miner’s
block size requirements and total available transactions on the
network.

To understand the modeling preliminaries of our trans-
action ordering algorithm, we introduce the classification
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groups of transactions. Without loss of generality, transac-
tions are grouped into four main categories based on the
users’ desired confidentiality and delay. These categories
include very high priority (VHP), high priority (HP), mid
priority (MP), and low priority (LP) transactions [34]. A VHP
transaction requires high confidentiality and a short delay
compared with an LP transaction with low confidentiality and
long delay. HP transactions demand high confidentiality but
long delay, and MP transactions require low confidentiality
and a short delay. We classify transactions into these cate-
gories to determine the maximum delay for each transaction,
which can be represented as 1

4 tmax ,
2
4 tmax ,

3
4 tmax , and tmax for

VHP, HP, MP, and LP transactions, respectively. The transac-
tion categories can be calculated as follows

P1 = (ti < 0.5× 1
4 tmax) ∩ (θi > 1

N

∑N
i=1 θi), (16)

P2 = (ti > 0.5× 2
4 tmax) ∩ (θi > 1

N

∑N
i=1 θi), (17)

P3 = (ti < 0.5× 3
4 tmax) ∩ (θi < 1

N

∑N
i=1 θi), (18)

P4 = (ti > 0.5× tmax) ∩ (θi < 1
N

∑N
i=1 θi), (19)

where P1,P2.P3 and P4 represent VHP, HP, MP, and LP
transactions, respectively.

In theWSS design, we apply aweight σi to each transaction
expressed as

σi =
ti × θi × ω(si)

N
, (20)

where σi is the weight of Qi computed as a product of
the delay tolerance specified by the user, the transaction
confidentiality, and the transaction workload, this weight
determines the position and cost of a particular transaction.
In this case, the total number of transactions Z is used instead
of the number of particular transaction types to make this
approach agnostic and generic for satisfying all three designs
in Section IV.We employ the counting sort algorithm to order
the weights, which determines the position of each transac-
tion in the mempool based on the weights of each transaction.
We use counting sort because it is fast, efficient, and suitable
for the nature of our problem [35]. Counting sort also excels at
sorting out values that have repeating occurrences in a given
set.

Additionally, the time complexity of counting sort
algorithm isO(Nw+Kw), whereNw is the number of elements
in the input weights and Kw is the range of weights [36].
The time complexity for our multi-dimensional contract can
be computed as O(N ) [37]. Therefore, the overall system’s
time complexity can be evaluated as O(N ) + O(Nw + Kw).
WSS applies a second phase check by timestamp for repeated
similar transactions to ensure fairness in terms of the time of
arrival. We present algorithm 1 and Section V-B to explain
the WSS mechanism design.

B. OVERALL MODEL ARCHITECTURE
In our model, users can submit their transactions directly
to the DON. To ensure a transparent ordering is available

Algorithm 1 The Proposed Weighted Sequencing
Service (WSS) Mechanism Algorithm
Data: θ = confidentiality, t = delay,W = user

payoffs
σ = transaction weights, N = total transaction,
ω = transaction workload

input : t, θ, ω,N
output: Q∗ = getSolution(arr)
/* sorts transaction weights */
void countSort(arr):

max = *maxElem(arr.begin(), arr.end());
min = *minElem(arr.begin(), arr.end());
range = max - min + 1;
count(range), output(arr.size());
for (i = 0; i < arr.size(); i++) do

count[arr[i] - min]++;
end
for (i = 1; i < count.size(); i++) do

count[i] + = count[i - 1];
end
for (i = arr.size() −1; i >= 0; i–) do

output[count[arr[i] - min] - 1] = arr[i];
count[arr[i] - min]–;

end
for (i = 0; i < arr.size(); i++) do

arr[i] = output[i];
end

return
/* contract & sorting execution */
Function main():

Initialize N ;
/* execute miner’s contract */
[ti, θi]← executeContract();
Size(σN )← N ;
/* Weights calculation */
for (i = 1; i < N; i++) do

σi = (ti × θi × ω(si))/N
arr[i] = σi ×Wi

end
/* sort transaction weights */
countSort(arr);

return

to all miners on the blockchain, the users must simultane-
ously submit transactions to these multiple nodes. However,
we explore an alternative in which the DON monitors the
mempool of a target blockchain and selects transactions from
it on behalf of a relying SCON [27]. Typically, the DON
utilizes web services as its data source and considers the
mempool as a data source to produce reports corresponding
to the user transactions. We show the flow of our proposed
WSS implementation in Fig. 3 and the detailed description in
Appendix.

In Fig. 3, users submit their transactions to the mem-
pool in step 1. The DON in step 2 executes the miner’s
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FIGURE 3. Users send three transactions, T1, T2, and T3, to the mempool.
The DON observes the three transactions, provides a contract to extract
(θ, t), orders them in the mempool, and forwards them to SCON.

contract to reveal each user’s type and obtain the various
parameters (e.g., confidentiality and delay) needed for the
transaction ordering stage.11 These optimal contract solutions
from Theorem 1 and Lemma 3 are coded directly into the
chainlink SCs to enhance the latency performance of our
mechanism. Next, the DON sequences12 user transactions
sent to the mempool using Alg. 1 in in step 3 of Fig. 3 The
DON ingests transactions and then reaches a consensus on
their ordering, rather than letting a single node dictate. Both
WSS multi-dimensional contracting and transaction ordering
algorithm are available through an application programming
interface (API) calls to ensure that all nodes obtain the
same results [38]. The DON comprises chainlink keepers
that employ WSS to sequence these transactions and then
forwards the transactions to the mempool for the miners.
The miners interact with the newly-ordered user transactions
through the blockchain SCON, as shown in step 4 of Fig. 3.
To validate the mining sequence, we check the transaction
order against the miner’s block id (e.g., Qiαi = U i

αi
, where

U i
αi
denotes the miner’s transaction order).

Peer-to-peer networks are complicated, and a miner can
take advantage of these complications to launchMEV extrac-
tions. Also, an adversary with several peers and a fast network
connection can frontrun others. However, we can signifi-
cantly raise the bar for MEV extraction and front-running
attempts with our type-revealing contract design and trans-
action ordering algorithm. Additionally, this incentive mech-
anism ensures the miner’s utility is maximized, offers a good

11We use the executeContract() function from Alg. 1, which computes the
contract items for each user using solutions from Theorem 1 and Lemma 3.

12We execute the weight computation and countSort() function in Alg. 1
to sort the user transactions.

quality of service to each user type, and reduces unethical
behaviors on the network.

VI. EXPERIMENT RESULTS AND ANALYSIS
In this section, we first present the system configuration for
our experiments in Section VI-A. Secondly, we introduce
the performance metrics and experiment benchmarks for the
basis of our experiment in Section VI-B. Finally, we per-
form extensive experiments to evaluate the performance
gains of the proposed mechanism and validate our results
in Section VI-C.

A. SYSTEM CONFIGURATION
In this section, we present the configuration design for
our proposed scheme’s pervasive experiments and analysis.
All experiments are conducted regarding blockchain system
architecture and standards [1]. We execute the experiments
utilizing Python 3.6 environment and solidity v0.8.0 on
a Core i7 CPU computer capacitated with 3.8 GHz and
32GB RAM processor speed and memory. In our evaluation,
we employ the blockchain states of Uni and Sushiswap [39],
two of the largest on-chain DEXes obtaining 73.27% of
the market volume. Consequently, our proposed scheme
implementation performs as expected on these two plat-
forms. We use Uniswap as a pricing oracle to fetch the
2, 000 USD/ETH prices for any arbitrary transaction [40].
We assume that the 2, 000 USD/ETH transaction price is
zero when none is available, thus neglecting the correspond-
ing transaction. We utilize a price of 2, 500 USD/ETH as
of Dec 2021.

To deploy the multi-dimensional contract and sorting
algorithm in this system, we execute a chainlink keeper from
the chainlink platform with SCs on Ubuntu 18.04 LTS OS.
We use solidity programming languages for scripting and
writing our SCs. The solutions to our multi-dimensional con-
tract design are directly written into SCs that execute on the
selected batch of transactions to extract the user types for
transaction ordering. We select a batch of 25 transactions per
transaction execution round by default. We also built a web
interface with ReactJS [41] to manage adding transactions,
chainlink oracle node initialization, and experiment results
(see appendix). In this experiment, we initialize 10 chainlink
oracle nodes for decentralizing the execution of our contract
and sorting algorithms. However, due to the cost involved
in deploying transactions on-chain, we limit the majority of
transaction executions to off-chain to reduce the cost. Addi-
tionally, ourmechanism ensures legacy compatibility with the
existing blockchain and lower gas costs when implemented
using chainlink technologies. Other predefined parameters
include: tmax = 10min, β = 12.5, λ = 15, s = 10kb, and
Q = 1, 000.

We set the user confidentiality θ and delay preferences
t to [None, LP, MP, HP, VHP], which maps to θ and t to
[2, 4, 6, 8, 10] in the menu options to determine the weights
for each transactions, as shown Fig. 5b in Appendix. In the
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experiment, we consider 300 different user types and 10 dif-
ferent miners on the blockchain network.

B. PERFORMANCE METRICS AND EXPERIMENT
BENCHMARKS
In this section, we introduce the preliminaries, such as
experiment criteria and benchmarks, for Section VI-C. The
experiment criteria explain how the different results for this
discussion were chosen, and the benchmarks explain the
measurement metrics that were used to get these results.

1) EXPERIMENT CRITERIA
To analyze our proposed incentive mechanism, we offer the
following outcomes in this experiment: contract analysis,
miner’s utility analysis, users’ payoff analysis, fraction of
users served, user participation rate analysis, and security
analysis. Based on contract evaluation, the contract analysis
expands the miner’s utility and the user’s payoff, providing a
comprehensive overview of contracts in our proposed incen-
tive mechanism. To investigate the analysis of our contract
design, we present the benchmarks in Section VI-B2. In addi-
tion, as stated in Section VI-C1, our contract analysis goes
into greater depth regarding how different contract designs
affect the miner’s utility and the users’ payoff.

Based on the benchmark in Section VI-B3, our system
performance results indicate the miner’s utility and user’s
payoff as transactions increase, the fraction of users served,
the user participation rate, and security analysis. To begin,
the miner’s utility and the user’s payoff as transactions on the
blockchain increase indicate the performance of our pro-
posed strategy as transactions on the blockchain increase.
We observe and record the effects on the miner’s utility
and the user’s reward to obtain these results, as discussed
in Sections 4c and VI-C3, respectively. Second, based on the
proportion of user transactions processed and the number
of user types on the blockchain platform, the fraction of
users served and the user participation rate reflect the per-
formance of our proposed scheme. We actively compute the
total number of mined user transactions and user types using
the experiment setup from Section VI-A. Finally, the secu-
rity analysis demonstrates our proposed incentive scheme’s
unique weaknesses and mitigating mechanisms, as discussed
in Section VI-C6.

2) BENCHMARK 1
This benchmark includes the miner and users’ evaluation
towards complete information, incomplete information, uni-
form, and no contract. The complete information contract
comprises the solution from Section IV-A, and the incomplete
information contract describes the results from Section IV-B.
To expand the depth of contract analysis studies, we present
Appendix’s uniform contract, which has a single contract
item applicable to all users. In addition, we propose a no
contract scenario in which users are not offered any contracts,
which essentially characterizes the existing system. This met-
ric provides a framework for evaluating the miner’s utility

and the users’ payoff preferences in relation to the various
contract design situations.

3) BENCHMARK 2
This benchmark comprises FSS, A2MM, and MEV auction.
Firstly, the authors in [7] introduced an FSS, which orders
transactions based on a first-come-first-served approach in
the mempool but did not consider the miner’s utility opti-
mization and user preferences. Secondly, the authors in [13]
presented an A2MM, which performs optimal transaction
routing based on transaction fees but fails to consider the user
preferences introduced in our work. Lastly, the work in [9]
presented MEV auctions to mitigate MEV via auctioning the
right to order transactions but failed to consider the users’
payoff optimization and preferences. We utilize these metrics
to evaluate our system’s performance concerning the miner’s
utility and user’s payoff as transactions increase, the frac-
tion of users served, the user participation rate, and security
analysis.

C. DISCUSSION ON IMPLEMENTATION
1) CONTRACT ANALYSIS
From Figs. 4a and 4b, the contract analysis such as miner’s
utility and users’ payoff contrasted with contract evaluation
will be discussed.

In this experiment, we investigate the contract preferences
based on user type evaluations. Specifically, we analyze the
miner’s utility and users’ payoff considering the various con-
tracts as shown in Figs. 4a and 4b.13 In Fig. 4a, we can
observe that the miner’s utility is an increasing function of the
users’ evaluation, which results from a higher willingness to
pay. Users with high confidentiality and tolerance are more
likely to pay since they value the mining service, which
directly increases the miner’s income when the transaction
cost is fixed or minimal. Furthermore, as a user’s evaluation
increases, it becomes more profitable to serve users with
higher evaluation than lower evaluation.

Miner’s utility achieves the highest under the complete
information scenario contract and the lowest under no con-
tract. From Fig. 4b, the users’ payoff is high under complete
information scenario contract followed by incomplete infor-
mation scenario contract and uniform contract.14 This trend’s
deduction can be attributed to the suitable contract design
for each user type under the complete information scenario
to produce maximal utility and vice versa. Also, users can
capitalize on misrepresentation of its type probability to
reduce their cost, as observed in Figs. 4a and 4b. Hence,
we can conclude from the results that a miner will prefer a
complete information contract design at all times while users
gravitate towards incomplete information scenario contract.

13Due to lack of space on the figures, we show complete information
contracts as complete contracts and incomplete information contracts as
incomplete contracts.

14Please refer to the Appendix for the uniform contract solution. We con-
sider this as one of our contract analysis benchmarks.
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However, our multi-dimensional contract design significantly
improves the miner’s utility and users’ payoff.

2) MINER’S UTILITY ANALYSIS
Fig. 4c shows the performance of our proposed mechanism
design based on the miner’s utility. In Fig. 4c, we evaluate the
miner’s utility from (1) considering our proposed WSS with
FSS, A2MM, and MEV auction.15 First, the miner’s utility is
an increasing function of the number of transactions and user
evaluations but a decreasing function of the transaction cost,
which is intuitive since a high transaction cost reduces the
miner’s utility. Our proposed WSS achieves approximately
78.42% − 84.57% increase in the miner’s utility compared
with FSS, A2MM, andMEV auction in blockchain networks.

As shown in Fig. 4c, offering a multi-dimensional contract
in addition to the sorting algorithm delivers higher miner’s
utility. The reasons for this trend in results constitute: (i) as
shown inWSS’s multi-dimensional contract, we illustrate the
optimal strategies for the miner to help maximize its utility,
(ii) as we have shown from Fig. 4c, our contract design
extracts the various user types for appropriate pricing, which
improves the miner’s utility, (iii) WSS weighs transactions
based on user evaluations for transactions after contracting
to increase the miner’s utility. As the miner has an increased
utility from our proposed mechanism, we can conclude that
WSS is a promising approach to enhancing miners’ utility on
blockchain networks.

3) USERS’ PAYOFF ANALYSIS
This part of the experiment compares the users’ payoff under
WSS, FSS, A2MM, and MEV auction as shown in Fig. 4d.
The users’ payoff increases as transactions increase with
WSS achieving up to 64.47% cost reduction compared with
FSS, A2MM, and MEV auctions. From (4), the users’ payoff
is a function of workload evaluation and transaction cost.
That is, a highly evaluated transaction presumably yields a
higher revenue to users, and the more costly resources a
miner will use, the higher the price users will be charged.
Highly evaluated transactions often attract high transaction
fees and vice versa. This approach provides a more efficient
way of identifying and extracting profits for miners from
users without indiscriminately increasing transaction fees or
encouraging any gas price bidding wars among users. The
users’ payoff is high under WSS, followed by FSS, A2MM,
andMEV auction, which suggests a superior performance for
our proposed mechanism.

Similarly, in Fig. 4d, the better results from our proposed
mechanism can be attributed to the following reasons: accu-
rate representation of each user type for proper pricing via
contracting and decisive transaction ordering based on the
representation of each user type. Also, users do not need to
worry about mining speed since getting a transaction into
the mempool is guaranteed upon accepting contract items

15Implementations for FSS, A2MM, and MEV auction can be obtained
from [7], [9], and [13], respectively.

designed for each type. Therefore, users with low evaluation
can send transactions with low gas prices, which are eventu-
ally mined with auditable records showing that transactions
were not censored. Additionally, users will have a low evalu-
ation of transactions if transaction fees exceed a threshold,
requiring miners to process low-priority transactions. As a
result, users’ payoff increases based on reduced transaction
fees. The DON also re-transmits scheduled user transactions
to a relying contract with a high gas price, providing timely
processing, and by using batching, the network keeps per-
transaction gas costs low.

4) FRACTION OF USERS SERVED
This part of the experiment illustrates the fraction of users
served as one of the system performance metrics of our
proposed mechanism (WSS). In Figs. 4e and 4f, we compare
the fraction of users served in WSS compared with FSS,
A2MM, andMEV auction. The fraction of users served deter-
mines two main criteria: how many successful transactions
are mined per sampled group of transactions and how many
transaction types (e.g., VHP, HP, MP, and LP) are served
per sampled number of users on the blockchain network.
Figs. 4e and 4f describe the fraction of users served based
on number of transactions and transaction types, respectively.
From Fig. 4e, the fraction of users served increases as the
number of transactions increase. This trend indicates that
increasing transactions does not overload the blockchain net-
work, which results from a relatively large block size and
relatively small transaction processing time.

Also, our proposed mechanism achieves 72% more frac-
tion of users served than FSS, A2MM, and MEV auctions.
This trend can be attributed to the various user type charac-
terization from contracting. Our contract designs ensure that
any user type is well represented, which enhances the chance
of processing more transactions. As deduced in Theorem 1,
offering a positive contract to a particular user type yields the
same payoff as many user types, making it more reasonable
to serve more users instead of specific user types. Also,
Proposition 1 can infer that the miner is not fixated on serving
high-priority users since this approach does not always yield
a higher utility the probability of that user type is low. As a
result, the miner is motivated to accept various user types
that optimize its utility. Finally, accepting the contract items
designed for each user type guarantees that transactions will
be mined within specified delay preferences. Failure to pro-
cess transactions within the specified time duration leads to a
negative payoff to the miner’s utility. Hence miners are incen-
tivized to execute transactions promptly and as scheduled.
Therefore, we can conclude that our proposed mechanism
offers a better fraction of user satisfaction than other proposed
MEV mitigation schemes.

5) USER PARTICIPATION RATE ANALYSIS
In this experiment, we evaluate the user participation rate
based on the duration and number of users engaged on
the platform using WSS, FSS, A2MM, and MEV auction.
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FIGURE 4. Contract analysis: Fig. 4a and Fig. 4b show the contract evaluation considering various contract types. System performance: Fig. 4c - Fig. 4h
represent the miner’s utility, users’ payoff, fraction of users served (number of transactions), fraction of users’ served (transaction types), user
participation rate (time), and user participation rate (number of transactions), respectively.

User participation is an essential system performance metric
for the sustainability of blockchain networks. Figs. 4g and 4h
illustrate the user participation rate based on the experiment
duration and number of transactions. From Figs. 4g and 4h,
the user participation rate for our proposed system increases
as the experiment time and number of transactions increase.
WSS achieves up to 68% more user participation than FSS,
A2MM, and MEV auction.

Based on the results obtained from Sections VI-C2 and
VI-C3, we can conclude that the high user participation rate
observed in our proposed mechanism is due to the enhanced
miner’s utility and user’s payoff. The results also point to the
potential of individual rationality and incentive compatibility,
which provides users a non-negative payoff for any contract
and a high payoff for choosing a contract designed for its
type. As a result, users are more motivated to participate
in blockchain transaction mining than other proposed MEV
mitigation strategies.

6) SECURITY ANALYSIS
In this part of the experiment evaluation, we present the
security analysis of our proposed mechanism to support the
results from Sections VI-C2 to Sections VI-C5. We consider
two main concerns: 1) the possibility of miners disregard-
ing the transaction mining order submitted by the chain-
link nodes, and 2) MEV centralization and 51% attacks by
chainlink nodes when sequencing transactions. Firstly, the
miners risk obtaining a negative reward, which prevents them
from defaulting in mining transactions beyond the required
delay tolerance. Next, miners have minimal arbitrage oppor-
tunity ideas of the transactions before executing the mining
because the private user information about any transactions
is hidden. This concept of obfuscating transactions ensures
that miners will not reorder transactions, which will cause

penalties in future mining activities. Secondly, our proposed
mechanism reduces the risk of MEV centralization and 51%
attacks with decentralized transaction ordering by the chain-
link nodes. Expressly, no miner or DON has exclusive access
to WSS, which prevents the possibility of collusion on the
network.

By mitigating these security challenges, WSS obtains a
better fraction of users served and participation rate, as shown
in Sections VI-C4 and VI-C5.

VII. CONCLUSION
In this paper, we have studied an essential issue of incentive
mechanism design for mitigating frontrunning and transac-
tion reordering in DEXes. To the best of our knowledge,
this is one of the first papers to address multi-dimensional
private information considering different levels of infor-
mation asymmetry and transaction ordering mechanisms
for blockchain networks. We have introduced a weighted
counting sort algorithm for ordering transactions on the
blockchain network to avoid MEV centralization and extrac-
tion. To incentivize and encourage ethical behaviors, we have
presented a multi-dimensional contract design for users with
multi-dimensional private information. Moreover, we have
implemented a DON to execute our transaction ordering
and multi-dimensional contracts on the blockchain plat-
form. We have revealed the effects of the various contract
types on the miner’s optimal strategies. One of our key
contributions is to investigate how to implement our opti-
mal multi-dimensional contract with a transaction ordering
algorithm in decentralized blockchain environments. The
experiment results demonstrate that our proposed solution
offers a 78.42%− 84.57% increase in the miner’s utility and
64.47% cost reduction for users, which incentivizes ethical
behaviors on the blockchain network.
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VIII. ADDITIONAL INFORMATION
Appendix proof is available for this paper at:
https://github.com/DanielDoe/WSS-appendix
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