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ABSTRACT Advanced driver assistances are becoming increasingly common in commercial cars, not only
to assist but also to free drivers from manual driving whenever possible. Soon, drivers should be allowed
to engage in non-driving-related tasks. The fact that responsibility for driving is shifting from humans to
machines must be considered in the development of these assistances in order to guarantee safety and
trust. In this article, we introduce AdVitam (for Advanced Driver-Vehicle Interaction to Make future driving
safer), an autonomous system aiming at maintaining driver’s situation awareness and optimizing takeover
quality during conditionally automated driving. The information conveyed to drivers is dynamically adapted
to achieve these goals, depending on the driving environment and the driver’s physiological state. This
system consists of three connected modules. The first module (Driver State) predicts the driver’s state
with machine learning and physiological signals as inputs. The second module (Supervision) uses different
interfaces (a haptic seat, a personal device, and ambient lights) to maintain the drivers’ situation awareness
during the autonomous driving phases. The third module (Intervention) is a machine learning model that
chooses the most appropriate combination among haptic, auditory, and visual modalities to request the
driver to take over control and thus optimize takeover quality. To evaluate the system and each module
independently, a preliminary user study with 35 drivers was conducted in a fixed-base driving simulator.
All participants drove in two different environments (rural and urban). In addition, the activation of the
Supervision and Intervention modules were manipulated as two between-subject factors. Results show that
conveying information on the driving environment status through multimodal interfaces increases drivers’
situation awareness (i.e., better identification of potential problems in the environment) and trust in the
automated vehicle. However, the system does not show positive outcomes on takeover quality. Besides,
the Driver State module provided consistent predictions with the experimental manipulation. The system
proposed in this paper could lead to better acceptance and safety when conditionally automated vehicles
will be released by increasing drivers’ trust during phases of automated driving.

INDEX TERMS Automated driving, driver’s state, human—vehicle interaction, machine learning, multi-
modal interaction, situation awareness, takeover quality, trust.
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I. INTRODUCTION

A. CONTEXT

Even if the number of road accidents is decreasing year
after year in many countries, this remains a major cause of
death in the world [1]. Usually, drivers are responsible for
accidents causing material and physical damage, often due
to an error or inattention [2]. To alleviate this problem, car
manufacturers have been working on vehicle automation,
precisely to support the driver. To provide a common basis for
the scientific and industrial community, the Society of Auto-
motive Engineers (SAE) has introduced a taxonomy of terms
associated with vehicle automation. In this article, we defined
LX-SAE as the level of automation corresponding to the level
X of automation in the SAE taxonomy. In 2022, partially
automated vehicles (L2-SAE) are on the road, equipped with
advanced driver assistance systems (ADAS) to assist the
driver in longitudinal (e.g., speed, distance to the vehicle in
front) and lateral (e.g., steering wheel control and lane posi-
tioning) control of the vehicle. If we follow the taxonomy, the
world should see the emergence of conditionally automated
vehicles (L3-SAE) in the near future, before vehicles are
fully autonomous (L5-SAE). Currently, L3-SAE automated
vehicles are already being tested on the road in some coun-
tries such as the United States in the state of California [3].
France have also authorised the circulation of this type of
vehicle since September 2022 with very strict restrictions.
The shift from L2-SAE to L3-SAE implies a strong change
of responsibility when driving. At L3-SAE, the vehicle is
responsible for monitoring its immediate environment, using
various combinations of sensors such as radar, LiIDAR and
cameras. The vehicle is also capable of autonomous driving
when the situation allows. This means that the driver can
engage in a non-driving-related task (NDRT). However, when
the vehicle cannot handle a situation, it asks the driver to
take over control of the vehicle, through a Take-Over Request
(TOR). To do this, the driver must therefore always maintain
a sufficient level of Situation Awareness (SA), i.e. perceive
and understand the variables in the Driving environment at
any time. In addition, increasing the level of automation in
cars can lead to a decrease in trust and therefore acceptance
of these vehicles. Indeed, the vehicle is the only entity moni-
toring the environment at L3-SAE. If it does not transmit any
(or enough) information to the driver, this could reduce the
driver’s trust [4]. This paradigm shift poses new challenges
to car manufacturers to ensure that these vehicles are fully
adopted by end users while guaranteeing sufficient safety.

In particular, one of the challenges is to ensure that the
driver is in good condition to take over control at any time.
In the case of manual driving, factors such as fatigue (or
drowsiness), distraction, mental workload, alcohol, or stress
have already been shown to degrade driving performance [5],
[6], [7], [8]. Drivers may already be in poor condition when
they get into the vehicle, but it can also get worse while
driving. At L3-SAE, engaging in an NDRT may not only
increase drivers’ mental load but also cause them to lose
sight of the driving environment and thus reduce their SA.
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On the other hand, continuously monitoring the vehicle’s
environment during long periods of automated driving may
cause drowsiness [5], [9]. To ensure that the driver is ready
to take over control, it is necessary to detect these dangerous
states early enough and warn the driver accordingly.

B. MOTIVATIONS AND OBJECTIVES

Given the problems that L3-SAE vehicles can engender, it is
necessary to take into account the driver’s state and the
driving environment to induce sufficient trust and SA. The
latter would contribute to optimise the takeover quality when
needed. Providing optimal assistance to drivers would con-
tribute to the safe use of conditionally automated vehicles and
a reduction in the number of traffic accidents. In particular,
one of the objectives is to adapt the human vehicle interaction
continuously, as a TOR could occur at any time, to optimise
takeover quality. Conveying Context-related information to
the driver might also increase the driver’s trust in the auto-
mated vehicle. Here, this information describes the status of
the driving environment at a given moment. Furthermore,
another objective is to evaluate the driver’s state in a non-
intrusive way, thus allowing acceptance and consequently
trust in the automated vehicles.

C. CONTRIBUTIONS

The overall contribution of this work is the theoretical design
and implementation of an innovative adaptive system to assist
the driver in conditionally automated driving, and to opti-
mize the shared control between the driver and the car. This
proposed system is named AdVitam system (for Advanced
Driver-Vehicle Interaction to Make future driving safer). Its
goal is to adapt the interaction in the vehicle, depending
on drivers’ state and the driving environment’s status. This
supports drivers in their task of supervising the environment,
but also better prepares them to take over control when
needed. The driver’s state is measured by physiological sig-
nals, while the state of the environment is defined by the type,
Severity, and location of potential limitations. A Limitation
is defined in this article as a factor that may alter the proper
functioning of the automated vehicle. The taxonomy of six
limitations defined by Capallera and colleagues is used as
a reference for the potential hazards in a simulated driving
environment [10].

The overall simplified architecture of the AdVitam system
is shown in Figure 1. It is connected to a driving simulator
and is designed to run continuously. The driving simulator
sends information about the status of the driving environment
to the AdVitam system. Physiological signals from the driver
are also collected and processed by the AdVitam system and
its Modules, which intelligently adapts the interaction in the
car according to the received values.

The AdVitam system is composed of three modules, one
of which communicates information to the other two. Each
module independently constitutes an innovative contribution
to scientific research:
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FIGURE 1. Simplified global architecture of the AdVitam system.
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Module 1: Driver state. This module aims at evaluating
the driver’s state continuously. It takes as input three
physiological signals from the driver, namely the elec-
trocardiogram (ECQ), the electrodermal activity (EDA),
and the respiration (RESP). A wide range of indicators is
computed from these signals to predict four risk factors
for automated driving: fatigue, mental workload, affec-
tive state, and SA. These predictions are made by several
machine learning algorithms. A reconstruction of the
driver’s global state is also proposed. The outputs of this
module (i.e., values of the four risk factors and the global
state) are used as inputs for the other two modules.
Module 2: Supervision. The purpose of this module is
to support the drivers’ supervision task by conveying
context-related information through different interfaces
to maintain/increase the driver’s situation awareness.
This module takes as input the status of the driving envi-
ronment according to each category of limitation (type,
severity, and location), as well as the level of mental
load and the overall state of the driver. Using a rule-
based model, information is sent to the driver in a tai-
lored way to maintain/increase SA via three interfaces:
ambient lights around the dashboard, vibrations through
the driver’s seat, and a mobile application running on a
handheld device. These interfaces can be combined and
operate at the same time. The choice of the modality,
as well as the nature of the information transmitted to
the driver, depends on the value of the variables received
as input.

Module 3: Intervention. The purpose of this module is
to support the drivers’ intervention task when a takeover
is requested, by triggering the optimal TOR modality
and thus optimising takeover quality. This module takes
as input the driver’s physiological indicators calculated
over the last 90 seconds of the collected signals (ECG,
EDA, RESP) and the state of the environment (weather
conditions). A machine learning model has been trained

to predict the takeover quality, and to choose the best
modality to request the driver to take over between three
options: icon and chime, icon and vibration, or a com-
bination of the three. The module chooses the modality
that minimises the takeover quality metric (i.e., lower
reaction time and steering wheel angle), based on the
value of the input variables.

After a detailed presentation of the implementation of the
different modules, the article also presents the implementa-
tion of the complete AdVitam system running continuously
and communicating with the driving simulator. An empiri-
cal study was conducted in a static driving simulator with
35 drivers, in order to test the AdVitam system and its mod-
ules. This can be considered as a preliminary evaluation of
the AdVitam system, which consists in:

« Validating the effectiveness of the AdVitam system, and
specifically the Supervision and Intervention modules
alone on SA, takeover quality, and trust.

« Analysing qualitatively the consistency of the predic-
tions made by the Driver State module for both driving
scenarios.

The structure of the paper follows the contributions and
tasks mentioned above i.e., the design and implementation of
each module as well as those of the AdVitam system. The
article then details the preliminary study carried out and the
results obtained. Finally, those results are discussed.

Il. MODULE 1: DRIVER STATE

This section presents the literature review performed before
designing the architecture of the Driver State Module. It also
details the data collected and the implementation of the mod-
ule performed for training the machine learning models to
predict the driver’s physiological state continuously.

A. RELATED WORK

In manual driving, a series of intrinsic and extrinsic factors
can affect the psychological and physiological state of the
driver and thus alter driving performance. Some of them
might also alter the takeover performance in conditionally
automated driving (L3-SAE). The aim of this section is to
provide a non-exhaustive list of all the risk factors that have
been shown to have an impact on driving performance in
manual driving. In addition, a review of previous work that
has predicted driver state is conducted, with a focus on those
using physiological signals. Based on this literature review,
some risk factors to be predicted for conditionally automated
driving are selected in order to design the module (see Design
section).

1) RISK FACTORS IMPAIRING DRIVING PERFORMANCE

There is no doubt that alcohol is one of the main causes
of accidents on the roads. Significant impairment of driving
skills occurs even at very low blood alcohol concen-
trations [11]. Alcohol mainly increases risk-taking, reac-
tion time to danger and variability in vehicle control
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[12], [13], [14]. Drugs and/or medications can also have
a negative effect on driving performance, similar to alco-
hol [15], [16]. Other factors related to the physical condi-
tion of the driver, such as illness or poor eyesight, can also
impair the driver’s alertness (and therefore driving perfor-
mance) [17].

Fatigue is another factor known to impair performance
and cause motor vehicle accidents. It plays a role in around
10 per cent of crashes, which might be even more on high-
ways or parkways than on other types of roads [18], [19].
Several factors impact fatigue, such as time of day, prolonged
wakefulness, (repeated) sleep deprivation, or time spent on
a task [20]. In manual driving, increased fatigue is often
characterised by poorer lateral control of the vehicle and
lower speed [21].

Distraction due to engagement in NDRT also impairs
drivers’ performance, primarily due to a distraction of their
visual attention from the environment [22]. Engagement in
another task can also affect the mental workload, which also
has a clear relationship to performance and thus with the
risk of having an accident [23]. The level of workload may
also vary depending on driving conditions. The monotonous
nature of roads can lead to performance degradation, likely
due to a state of mental underload [24]. Conversely, driving
in a complex environment (e.g., adverse weather and/or visi-
bility conditions, high traffic density, etc...), can increase the
driver’s workload [25].

Driving conditions can also induce some driver stress,
which is known to be an important factor in driver safety
and individual well-being [8]. To a greater extent, drivers’
affective state and emotions can have an impact on the
driving behaviour [26], but also mood and personality since
they are also related to affective state [17]. Other factors,
such as driving experience or vehicle knowledge, can also
affect driving performance. Experienced drivers generally
make fewer errors and have better lateral control of the
vehicle [27].

2) DRIVER's STATE PREDICTION

In the literature, many works have proposed solutions to
predict the different risk factors mentioned above, using dif-
ferent data sources combined with machine learning tech-
niques [28]. Fatigue and drowsiness can be predicted with
high accuracy from features computed from different physi-
ological signals or from face-related features [29], [30], [31].
Whether in driving studies or in the laboratory, brain activ-
ity has proven to be a relevant data source for predicting
mental load using machine learning techniques, especially
when combined with other physiological signals (ECG, EDA,
RESP) or driving data [32], [33], [34], [35]. Furthermore,
emotions or affective state can be predicted from physiologi-
cal signals in the laboratory [36], [37]. More specifically, the
prediction of driver stress from physiological signals has been
the focus of numerous studies, both in simulators and in real
driving conditions [38], [39]. This factor, typically occurring

VOLUME 11, 2023

while driving, can be predicted with very high accuracy
[39], [40].

These previous studies were conducted to predict a specific
risk factor (fatigue, workload, stress, etc...) with machine
learning algorithms. However, there is no model considering
the combined (and continuous) prediction of several factors
for the evaluation of the driver’s state with machine learn-
ing techniques. The closest proposal corresponding to this
problem is a model developed in the framework of a Euro-
pean project called Highly automated vehicles for intelligent
transport (HAVEit) [41]. It included the development of a
model for the evaluation of the driver’s state by the combined
detection of drowsiness and distraction. Their proposal was
to measure long-term drowsiness and short-term distraction
separately, using both direct (camera data) and indirect (driv-
ing data) measures of the driver’s state [42].

B. DESIGN

1) SELECTION OF INPUT SIGNALS AND RISK

FACTORS TO PREDICT

Driving data cannot be used anymore since the automated
car is driving autonomously most of the time. Also, cam-
eras might not be the most appropriate way to evaluate the
drivers’ state as they might not look at the windshield while
engaging in an NDRT. Thus, our choice was directed towards
the use of physiological signals to evaluate continuously and
non-intrusively the driver state in conditionally automated
vehicles. With the recent advances in wearable sensors, sev-
eral signals such as EDA or photoplethysmogram (PPG)
can be collected in this way through smartwatches in real-
world conditions. Several measures depicting the driver’s
state such as Heart Rate Variability (HRV) indicators or
tonic and phasic EDA indicators can be calculated from
these raw signals. Thus, three physiological signals, namely
ECG, EDA, and RESP, were selected as inputs for this
module.

The goal is to select risk factors that impair takeover
performance in conditionally automated driving, that can
be assessed by physiological signals, and that are not too
limiting to be experimentally manipulated. The driver might
be already tired and/or stressed when getting into the car.
Long periods of automated driving might also increase the
driver’s drowsiness and reduce workload, which might impair
takeover performance. Also, engaging in an NDRT or driving
in an urban area might also induce workload and stress, even
in conditionally automated driving.

Besides, it may be relevant to assess the drivers’ SA con-
tinuously as it might be reduced when engaging in an NDRT.
It is not clear whether Situation Awareness can be assessed
through physiological signals. Reference [43] suggested that
it might be possible to predict SA by manipulating it experi-
mentally and training machine learning algorithms to assess
it, based on collected data. Hence, SA was considered in the
module conception, to verify whether physiological signals
can be considered to evaluate drivers’ SA in this context.
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FIGURE 2. Global architecture of the Driver State module.

However, alcohol and distraction detection were not
selected in the Driver State module design. The former is
ethically more restrictive to collecting physiological data
from drunk participants, while it is difficult to predict the
latter from physiological signals alone (see the effect of task
modality on classification accuracy in [35]).

Hence, four risk factors considered as critical for condi-
tionally automated driving are selected to be predicted by the
Driver State module: fatigue, mental workload, affective state
and situation awareness.

2) GLOBAL ARCHITECTURE

The approach used for this module is to train several machine
learning models, each one responsible for predicting one
specific risk factor that can be measured through physio-
logical signals. An overview of the Driver State module is
presented in Figure 2. To provide the AdVitam system with a
global indicator of the driver’s physiological state, a fusion of
all machine learning algorithms outputs has been designed,
following the idea of the HAVEit project [41]. It could be
used by other modules or by in-vehicle displays for further
visualisation of the driver’s state.

3) DATA COLLECTION

There are no existing datasets of drivers’ physiological sig-
nals collected specifically during conditionally automated
driving. In order to be as close as possible to reality, the
physiological signals of drivers corresponding to the four
selected risk factors were collected to train machine learning
algorithms. Several experiments were designed and carried
out to manipulate the selected risk factors in driving simulator
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experiments [35], [44]. Table 1 summarizes the three user
experiences conducted.

C. IMPLEMENTATION

Figure 3 shows the implementation of the driver’s state mod-
ule. This pipeline was implemented in Python and is aimed
at running continuously to provide the AdVitam system with
an indicator of the driver’s state, based on physiological data.
The training of machine learning models from collected data
is detailed in the first subsection. The implementation of the
fusion for the Fatigue and Affective State blocks, as well as
the Global fusion is explained in a second subsection.

1) TRAINING MACHINE LEARNING MODELS

A large amount of physiological data was collected during
the different experiments conducted on the driving simulator
(Table 1). Seven machine learning models were trained on
the basis of physiological indicators calculated from phys-
iological data collected in user experiences. These models
predicted the four selected risk factors, all considered critical
for driving: two for fatigue, one for mental workload, three for
affective state, and one for situation awareness. Table 2 shows
the list of all models trained and saved for further continuous
driver’s state prediction. All machine learning models were
trained using the same pipeline implemented in Python with
the scikit learn framework [45]. The pipeline is described in
detail in [35] and [44].

Different segmentation levels (i.e., time windows) were
tested to split the raw signals into several windows. The
latter were processed separately to generate features, which
allowed to provide machine learning models with more
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TABLE 1. List of user experiences conducted to create the physiological dataset to train the Driver State module. The duration of physiological recording

includes baseline, training, and driving phases.

ID Manipulated state Condition/Task Participants | Duration Ref.
#1 Affective State : Stress Driving with a passenger vs. driving alone 60 25 [44]
Affective State : Relaxation Pre-driving meditation podcast vs. audiobook min
#2 | Mental Workload : Task difficulty N-back task : no task vs. 1-back vs. 3-back 80 70 [35] ‘
Task modality N-back task : no task vs. visual task vs. auditory min
Situation Awareness Context-related information on mobile app vs. no app
#3 Fatigue : Sleep-related fatigue Sleeping time (<6 hours vs. >7 hours) 63 70 in press ‘
Affective State : Stress Driving environment (Urban vs. rural) min
Fatigue : Drowsiness Beginning vs. end of drive (before TOR)

Sensors : BiosignalPlux

Features

Legend:

Signals

Features

Machine learning model

Fusion block

Processing with Neurokit

Selecting corresponding features for each model

v ! l

Model Model Model Model
#0 #1 #2 #3

Fatigue

oo

Model Model Model
#4 #5 #6

;H

Affective state

[Alert, Not Alert]  [Low/High workload] J [Relaxed, Neutral, Stressed] [Low/High SA]

Global
fusion

l

1 : Critical

5:Good

FIGURE 3. The implemented pipeline for continuous assessment of the driver’s

physiological state.

training samples. Raw physiological signals were processed
with the Neurokit library in Python to compute a large
range of physiological features [46]. For each time window,
224 features corresponding to 112 physiological indicators
(10 from EDA, 74 from ECG, 21 from RESP, and 7 from
RSA) were calculated. For each indicator, two features were
created one corresponding to the value of the indicator while
driving, and the same indicator but with baseline correction
(difference between driving and baseline). Features were
used as inputs of three algorithms: a random forest (RF),
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a k-nearest neighbor (KNN) and a neural network with one
hidden layer (NN). Sensor fusion and segmentation (i.e.,
length of the time window used to calculate drivers’ features)
were tested. A repeated k-fold cross-validation approach for
training and evaluating was employed for each algorithm.
A weighted fl-score was used as the evaluation metric.
The machine learning model that achieved the best perfor-
mance over five iterations of the procedure was saved, with
corresponding segmentation levels and combination of sig-
nals. To summarize the entire training process, the Table 2
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TABLE 2. Summary of the selected machine learning models that gave the best performance to predict the selected risk factors. Exp = ID of experiment

(see Table 3).

# Manipulated driver state Output values Exp
#0 Drowsiness End of rural scenario (Not alert) vs. beginning (Alert) #3
#1 Sleep-related fatigue >7h (Alert) vs. <6h (Not alert) #3
#2 Mental Workload (0-20) Low (0-10) vs. High (10-20) #2
#3 Relaxation Meditation podcast (Relaxed) vs. audiobook (Neutral) #1
#4 Social stress Passenger (Stressed) vs. alone (Neutral) #1
#5 | Stress induced by environment Urban (Stress) vs. Rural (Neutral) #3
#6 Situation Awareness Mobile app with contextual info (High SA) vs. No app (Low SA) #2

TABLE 3. Summary of the selected machine learning models that gave the best performance to predict the selected risk factors. The parameters
characterising each model are reported. Algo = Machine learning algorithm; Seg. Ivl = segmentation level; Window = size of time window used to
calculate features (in minute); Performance = F1-score or MAE achieved by the model (with standard deviation).

# Predicted risk factor Algo Signals Window | Performance
#0 Fatigue: Drowsiness RF EDA 1 0.73 (0.05)
#1 Fatigue: Sleep deprivation NN EDA 1 0.99 (0.00)
#2 Mental Workload KNN | EDA + ECG + RESP 1.5 3.195 (0.384)
#3 Affective State: Relaxation NN EDA 1 0.89 (0.01)
#4 | Affective State: Presence of passenger NN EDA + ECG 1 0.96 (0.02)
#5 | Affective State: Driving Environment RF EDA 1 0.85 (0.01)
#6 Situation Awareness RF EDA + RESP 3 0.99 (0.00)

summarizes the values predicted by each model from the
experiment data (#1, #2 or #3). In addition, Table 3 shows
the input signals, the time window, and the algorithm that
performed best for each model.

2) RECONSTRUCTION OF DRIVER's STATE: THE FUSION

For Mental Workload and Situation Awareness blocks, only
one model was trained to predict these states so no fusion
was necessary. The model #2 predicted the level of driver’s
workload (0-10 = low workload, 10-20 = high workload)
from subjective ratings obtained in the experiment #2 [35],
while model #6 predicted if drivers had a high or low SA.
Participants who received Context-related information on a
mobile application during the drive were considered to have a
high SA (see [47] for more details). For Fatigue and Affective
State blocks, several machine learning models were trained
to predict different components of these states.

For the Fatigue block, the output of model #1 (sleep depri-
vation) was selected when the predictions of model #0 and #1
were different. This choice was motivated by the fact that the
driving scenarios to test the model in the final user experience
(see section 6) are rather short (2 x 10 minutes) and were not
designed to induce drowsiness. It was thus more relevant to
detect if the driver was tired due to a lack of sleep.

For the Affective State block, the prediction of three models
had to be considered to choose the final affective state of
the driver. If the models #4 and #5 detected that the driver
was stressed, the final affective state was set as Stressed.
Otherwise, if these two models did not detect any stress
and that model #3 predicted that the driver was relaxed, the
final affective state was set as Relaxed. Otherwise, the final
affective state was set as Neutral. This choice is debatable and
the fusion of this block can easily be implemented in another
way.
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As shown in Figure 2, another goal was to compute a
unique driver state indicator by merging the predictions made
by the four blocks (Fatigue, Mental Workload, Affective
State and Situation Awareness). This indicator, referred to
as ‘“global state”, is meant to provide the AdVitam model
with global information on the driver’s state used to prop-
erly adapt the in-vehicle interaction for maintaining aware-
ness as well as optimize take-over-requests. This indicator
is defined as a continuous value between 1 and 5. Lower
values mean worse driver state conditions with respect to
fatigue, mental workload, affective state and situation aware-
ness criteria. It can be defined as a decision-based fusion (or
late fusion) approach as it makes a prediction from values
returned by the upper-level blocks [48]. A machine learning
model was used to remain consistent with the rest of the
architecture module. A questionnaire was created and sent
to the authors’ academic institutions to build the dataset and
create an initial ground truth. Respondents were asked to rate
the driver’s state and ability to drive a conditionally auto-
mated vehicle (L3-SAE) on a 5-point Likert scale (1=very
bad, S=very good), depending on the driver’s state regard-
ing each component: fatigue (low/high), mental workload
(low/high), affective state (relaxed/neutral/stressed), and situ-
ation awareness (low/high). 34 respondents rated the 24 pos-
sible combinations (2 x 2 x 3 x 2) resulting in a dataset of
34 x 24 = 816 samples. A linear regressor was trained to
predict a continuous value between 1 and 5, based on ground
truth collected from the questionnaire. The scikit-learn frame-
work [45] was used to implement it, and a standard train/test
split was done for training the model.

IIl. MODULE 2: SUPERVISION
As a context reminder, with L3-SAE vehicles, drivers are nec-
essary but do not have to always monitor their environment.
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They must be ready to take over the control of their vehicle
at all times with notice. Because drivers will not be fully
engaged in driving, vehicle disengagement will generate a
higher cognitive load. This section explores the potential
of using full-body and multi-sensory experience by consid-
ering the whole car interior and peripheral interaction in
order to support the drivers’ supervision task by conveying
context-related information through different interfaces.

A. RELATED WORK

1) SITUATION AWARENESS

Situation(al) Awareness (Situation Awareness) is the per-
ception of environmental elements and events with respect
to time or space, the comprehension of their meaning, and
the projection of their future status [49]. In the context of
driving, this means that drivers perceive information about
their environment and the functioning of their vehicle that
they can understand and interpret to mentally project this
element into the future. For example, they can perceive the
current speed of their vehicle and the traffic around them.
They can then understand the difference between their speed
and the speed of the vehicle in front of them to project the
position of their vehicle in the future and finally make the
decision to brake if the distance is too short [50].

SA may be impacted positively by the driver’s good train-
ing, experience and abilities. However, SA may also be
impacted negatively by different factors such as a high cog-
nitive workload, fatigue, and stress by carrying out an NDRT.
This can lead to drivers getting out of the supervisory loop,
having less information about the vehicle’s environment, and
could consequently affect their ability to properly regain
control of the vehicle when necessary. This phenomenon,
called ““out-of-the-loop”, has been introduced and identified
in the literature for a few years now [51]. Moreover, the
lack of active involvement and the highly automated driv-
ing could become problematic by inducing drowsiness and
underload if there is no associated secondary task [52] and
thus impairs SA.

2) HUMAN-VEHICLE INTERACTION MAINTAINING SA

Bakker’s research on the “interaction-attention continuum’
[53] shows the effectiveness of peripheral interactions to
inform users of their environment even while they are
engaged in another task. This type of interaction could
help drivers in their (passive) supervision task. Many works
demonstrate the effectiveness of using human-vehicle inter-
action to maintain driver SA using vibration in the driver’s
seat [54], [55], ambient lights in the periphery of view
[56], [57], text and icons on the windshield [58], [59] or
even audio-visual interaction [60], [61]. To date, there are few
concepts that attempt to combine several modalities as well
as the whole vehicle. For example, [62] combines vibrations
in the seat and peripheral lights. In this article, only the envi-
ronment and the status of the vehicle are taken into account.
However, we have seen that the drivers’ state can also impact
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their SA. It is therefore important to take it into account. Thus,
we propose interfaces that adapt in terms of modality and/or
location according to the driver’s state and to the driving
and interaction context (environment and NDRT) in order to
efficiently maintain the driver’s situation awareness. Indeed,
conveying Context-related information seems a promising
strategy according to the article proposed by [47].

B. DESIGN

The Human-Vehicle Interaction (HVI) for supervision com-
bines haptic interaction (vibrations in the seat) and two
visual interactions (ambient lights and mobile application)
described below and illustrated in Figure 4. The design and
implementation of the different interfaces are detailed in the
article [63]. The study shows a positive impact of the use of
these interfaces on SA.

« Haptic Seat: Transmits the presence of an obstacle
around the vehicle (continuous vibration) and the state
of right and left lane markings (discontinuous vibration).
The intensity of the vibration reflects the Severity of the
Limitation. The location of the limiting factor in the
environment corresponds to a particular zone of vibra-
tion in the seat. For example, the presence of an obstacle
at the front left of the vehicle will be indicated by a
vibration at the front left of the bottom seat (i.e., under
the thighs). The danger of the obstacle will be reflected
by a continuous vibration more or less intense.

« Ambient lights: Reflects the general severity of the
environment. They are displayed in the driver’s periph-
eral field of view. A green colour means there is no lim-
itation in the environment. Yellow corresponds to a low
severity while orange corresponds to a more important
severity but which still does not require a takeover.

« Mobile application: An icon appears on the screen if the
vehicle encounters a limitation. The drawing represents
the limitation and the colour of its severity. It is possible
to click on the icon to have more information. Any
change in severity is notified by the appearance of the
icon followed by a double horizontal back and forth from
right to left.

The choice of colours, intensities and combination (or not)
of interfaces is driven by a rule-based model. This system
takes into account the driver’s state given by the Driver State
Module described before as well as the limitations in the
vehicle environment based on the taxonomy from [10] (Envi-
ronment, External Human Factors, Road, Lane, Obstacles and
Vehicle Alteration). The implementation of this rule-based
model is defined in the following section with an emphasis
on the multimodal aspect of the interaction.

C. IMPLEMENTATION

The rule-based model takes into account the following
input parameters (see Table 4): the type, the severity and
the location of the limitation, the engagement (10 <
mentalworkload < 20) or not (mentalworkload < 10) in a
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FIGURE 4. Interfaces and modalities managed by the Supervision module.

TABLE 4. Summary of the inputs on the rule-based model.

Input
Type: Environment, External Human Factors, Road, Lane, Obstacles and Vehicle Alteration
Limitation Severity: 0, 1 or 2
Location: both, left, right
NDRT Yes (1), No (0)

Driver’s state | Good (1), Bad (0)

NDRT and the state of the driver (good for globalstate > 3 or
bad for globalstate < 3). The first inputs are sent by the
simulator while the engagement in the task and the driver’s
state are received from the Driver State module. The output
modalities (see Figure 4) used to sustain the driver’s SA are
the haptic seat (vibration location, pattern and intensity), the
ambient lights (colours) and the mobile application (icons
drawing and colour). Figure 5 summarizes the set of rules
implemented for this module.

The implementation of this module uses the durable-rules
framework in Python. Thus, taking the example of erased
lines (“‘Lane” category) of severity 2, in case the driver does
not perform an NDRT and his/her state is considered as bad,
the following rule would be selected by the module:

if (Lane_severity = 2) & (driverstate = 0) & (NDRT =

0)) then

set_modality(lane, modality, characteristics)
end if
with modality = [light & seat] and characteristics =
[orange ambient light, high intensity vibration]

In this case, the set_modality() method would return the
category (Lane) and the characteristics of the concerned
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interfaces (orange ambient light and high-intensity vibration
in the seat). Let’s take another example and assume that a
rock (category ““Obstacle”) is detected by the vehicle, rated
with a severity of 1. If the driver performs an NDRT, but its
overall state is still considered good, the following rule would
be triggered:

if ((obstacle_severity = 2) & (driverstate = 1) &

(NDRT = 1)) then

set_modality(obstacle, modality, characteristics)
end if
with modality = [light & mobile application] and
characteristics = [yellow ambient light, yellow obstacle
icon]

To summarise, this module considers the limitations of the
environment provided by the simulator as well as the global
state of drivers and their cognitive state (i.e., performing an
NDRT or not). These are defined by the Driver State module.
A rule-based model chooses a combination of interfaces to
use within the vehicle. The characteristics also depend on
the input parameters. The different combinations chosen are
intended to maintain the driver’s SA but also their trust in the
vehicle during the autonomous driving phases. The choice of
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FIGURE 5. General logic of the rule-based model.

using the mobile application is only made when the driver is
performing a secondary task because it is the same device.
The lights reflect the overall severity as this seems to be
effective since the literature mentioned above. Finally, the
choice of using the haptic seat and different intensities is
established following the study from [63]. The proposal of
this model and the validation of these choices are evaluated
in the rest of the paper

IV. MODULE 3: INTERVENTION

This section explores the potential of using machine learning
to predict takeover quality, and use this information to support
the driver by providing the most suitable takeover request
modalities for any given takeover situation. The related work
section highlights the literature that investigated the impact
of takeover request modalities on takeover quality, as well as
research that proposed approaches to predict takeover quality.
This allows us to transition to our proposed agent design and
implementation.

A. RELATED WORK

1) THE IMPACT OF TAKEOVER REQUEST MODALITIES ON
TAKEOVER QUALITY

Supporting the driver for takeover situations is usually done
prior to the takeover by raising the driver’s awareness or
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forcing the driver to monitor the environment periodically.
Several works were done to see the impact of specific modal-
ities on takeover performance, with a few conclusions but no
consensus on a perfect set of modalities.

In particular, [64] showed that multimodal signals were
perceived as more urgent by the drivers and allowed drivers
to take over faster on straight roads, but their reaction time
(RT) decreased on curved roads. In the case of unimodal
takeover requests, visual was repeatedly shown as being the
less efficient unimodal takeover request, with higher reac-
tion time than auditory or haptic modality [65], but those
performances could be significantly increased by adding the
auditory modality, according to [66]. Reference [67] showed
that a static pattern for the haptic modality led to a slightly
shorter reaction time as opposed to a dynamic pattern in
the haptic driver seat. Reference [68] showed that having
the haptic modality in the driver seat also help for takeover
when the expected behaviour from the driver was to change
lanes. However, [69] did not see any improvement in reaction
time using an experimental haptic steering wheel. Refer-
ence [70] concluded by showing that the haptic modalities
for a takeover request should be located on the seat rather
than the steering wheel.

In the case of experimental modalities, [71] proposed the
concept of Useful Field of View (UFOV), which extends the
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field of view of the driver with augmented reality and pro-
vided icons during takeovers. However, if the results showed
that UFOV was beneficial for experienced drivers, with a
significantly lower reaction time, the more inexperienced
drivers displayed a higher average reaction time.

2) MACHINE LEARNING STUDIES ON TAKEOVER QUALITY
Most of the work on conditionally automated vehicles and
artificial intelligence (AI) focus on driving intelligence, using
sensors and various captor. However, some research was done
specifically on using Al to improve the takeover quality,
which is highlighted hereafter.

Reference [72] proposed a predicting model of the takeover
scenario risk level, which was a label deducted from the
takeover performance of the driver. In a sense, it is indirectly
predicting the takeover performance of the driver. There were
in this case three possible risk levels, which an RF algorithm
was able to predict with an accuracy of 98.8%. Reference [73]
proposed a regression formula to estimate the reaction time of
the driver after a takeover request. This highlighted the poten-
tial features to consider as well as showing that regression of a
takeover quality metric is indeed possible. The time between
the takeover request and the estimated time before a collision,
the lane position of the car, the traffic density and the number
of times the drivers encountered a similar situation were all
features of the regression. The age of the driver was shown to
have a minimal impact on the reaction time. Reference [74]
proposed a model which aims to predict the takeover quality
of the driver using the external environment and the driver
state. In their study, the takeover quality was a binary label,
which was either “good” or “bad”. This binary estimation
was done by the researchers based on the overall quality of the
takeover. The best performing model was a Random Forest
with an f1-score of 64%. Reference [75] proposed a regres-
sion formula which was already discussed and refined in [73],
but proposed a regression model for the lateral acceleration
as well, a metric closely related to Maximum Steering Wheel
Angle (MaxSWA), one of the metrics used in this piece of
research. The variables are the same as the ones presented in
the previous regression, showing that the same features can
be used to predict both metrics.

B. DESIGN

Focusing on the highlighted points from the previous section,
a smart Module using Al is proposed to support the driver
in a takeover situation. This module aims to improve the
takeover quality by providing the most suitable takeover
modalities for the takeover request. It essentially functions
as a human-machine interface able to design its interactions
with the driver on the fly based on the situation.

In order to do so, the module needs to consider pertinent
inputs from which it can extract relevant features, allowing
it to model the takeover quality. Once this step is validated,
it can infer variations in the takeover quality caused by the
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modifications of the inputs. This means the module design
needs to resolve the following points:

1) Identify the factors influencing takeover quality.

2) Choose the factors that the module can act upon to
directly influence this takeover quality.

3) Model the takeover quality according to the literature
metrics.

4) Recommend modifications on the chosen factors to
increase the takeover quality.

1) RELEVANT FACTORS
The literature and modules presented in the previous sections
highlighted four potential inputs for modelling the takeover
quality:

o The driver’s physiological state.

o The driver situation awareness.

o The external environment.

« The takeover request modalities.

The driver’s physiological state is a crucial source of infor-
mation directly derived from the module 1 Driver State.
Driving performance is influenced by the mental state of the
driver, and knowing this state should allow modelling more
precisely the takeover quality. Both the driver’s physiological
features and state are potentially good sources of information,
and should both be taken into account if possible. Driver
Situation Awareness is a construct that is difficult to measure
continuously with physiological signals but was shown to
influence takeover quality [76]. An approach is proposed in
Module 1 to investigate whether SA can be inferred with high
accuracy. However, the system needs to be validated before
its prediction can be used for this module. As such, it will
unfortunately not be considered as an input for this module.
The external environment was shown [77]to impair takeover
quality especially when it consisted of adverse weather, and
should be monitored. The takeover request modalities influ-
ence heavily the takeover quality and are the only factor that
is directly decided by the vehicle, making it easy to monitor
and change.

By analysing the four factors presented above, the takeover
modalities appear to be the only factor that can be easily
controlled to influence the takeover quality. The modali-
ties chosen for this module are visual, auditory and haptic,
which were the modalities highlighted by the previous section
4.1.1 “The impact of takeover request modalities on takeover
quality™.

2) MODELING THE TAKEOVER QUALITY

As proposed in the previous section, the module aims at
modelling the takeover quality. In order to achieve this goal,
a machine learning model must be developed where the
inputs are used to predict the takeover quality, before mak-
ing a recommendation on the most suitable takeover request
modalities using this model. Figure 6 shows the architecture
of the module. This architecture is an extension of the one
proposed in [78], which only proposed a model of takeover
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FIGURE 6. Architecture of the Intervention module, with the extension from previous architecture in blue.

quality. Here, the potential takeover modalities are all tested
to allow for the selection of the best-performing one, which
is then recommended to the system.

The following section focuses on the implementation of
this design.

C. IMPLEMENTATION

In this section the implementation of the module Intervention
is discussed. There are two major sections: the machine learn-
ing methodology, including the models training and evalua-
tion, and the real-time implementation of the best performing
models, which is the version we propose in this piece of
research.

1) TRAINING AND EVALUATING MODELS FOR TAKEOVER
QUALITY PREDICTION

The machine learning model created by [79] was used for the
takeover quality prediction. In a user experience, the physio-
logical data of 15 participants were collected continuously.
In particular, the physiological indicators corresponding to
the state of the drivers 90 seconds before a takeover situation
were calculated to create the dataset. A total of 80 takeover
situations could be tested. Drivers’ takeover quality was
deducted using the normalized aggregation of the driver RT
and MaxSWA attained during the takeover process. Several
machine learning models were trained to predict this takeover
quality using the driver’s physiological features from the
90 seconds prior to the takeover request, as well as the exter-
nal environment (represented by the weather condition) and
the takeover request modalities.

We can see in Table 5 all the trained machine learning
models and the baseline, which was the constant prediction
of the average of the takeover quality across all takeovers.
Support Vector Regressor appeared as the best performing
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TABLE 5. Summary of Mean Squared Error (MSE) and Mean Absolute
Error (MAE) scores of models on the takeover quality prediction. Best
model in bold.

Algorithm MSE MAE

Baseline 0.6000 | 0.2073
KNN 0.0691 | 0.2013
Support Vector Regressor | 0.0538 | 0.1614
RF 0.0883 | 0.2421
Multi Layers Perceptron 0.0779 | 0.2478

model, and was then selected for the next step: modalities
recommendation.

The recommendation quality was then evaluated using
the methodology described in [80]. There were two evalu-
ation criteria: the modality impact and the modality diver-
sity. Modality impact ensures that switching modalities does
indeed influence the takeover quality prediction, as it should,
according to the literature. Modality diversity ensures that
no modalities are systematically better than others, which
should not happen, according to the literature. Modality
impact is calculated as the maximum difference between each
modality prediction of the takeover quality, while modality
diversity is a statistical check of the distribution of the rec-
ommended modalities. These evaluation criteria were done
only on the test set of the dataset, in order to evaluate
their impact on unseen data and avoid bias as much as
possible.

The modality impact of the Support Vector Regressor
was 4.95% on average, with a standard deviation of 2.7%.
This means that on average the difference between the best
performing modalities and the lowest performing modalities
was a little less than 5%. Regarding modality diversity, the
most recommended modalities were the auditory-visual com-
bination, with 62.5% recommendation (10 out of 16). The
haptic-auditory-visual combination was second with 25%
of the recommendation (4 out of 16) and the haptic-visual
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FIGURE 7. Global architecture of the AdVitam system.

combination represented 12.5% of the recommendations
(2 out of 16).

2) CONTINUOUS PREDICTION OF OPTIMAL TOR MODALITY
To be able to function properly in the AdVitam system
system, this module needed to be adapted to operate con-
tinuously. This meant receiving the features, predicting the
takeover quality for every possible set of modalities and rec-
ommending the modalities associated with the best takeover
quality prediction. This loop was scheduled to run every
second, to always have a recommendation ready in case
of a need for a takeover request. There were several steps
needed to transform the model presented in the previous
section to work in this new context. This process is detailed
hereafter.

Despite working well in the previous conditions, the model
was not able to transfer flawlessly to this new context.
The modality impact criteria from the previous evaluation
dropped to O in the first test of the whole setting, which
forced the original design to be modified to be more robust.
A secondary model, named the backup model, was added
to the prediction pipeline in order to make a secondary pre-
diction if the first one fails to do so. Failure was defined
as having a modality impact of 0%, meaning each modality
returns the same takeover quality prediction and no recom-
mendation can be made. The second model was a KNN
model which was trained on the same data presented as the
first model, but with the first model prediction as the label.
This ensures consistency in both models’ prediction, with the
second model being able to predict directly the recommended
modality instead of the takeover quality. The combination of
both models proved to be able to make a prediction in most
cases and was deemed robust enough to operate continuously
with the other modules, which is presented in the following
section.
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V. THE AdVitam SYSTEM

This section presents the theoretical architecture of the
AdVitam system system and its implementation. It has been
implemented in order to be able to operate continuously and
to be tested during a driving simulator study with drivers.

A. THEORETICAL ARCHITECTURE

The global architecture of AdVitam is presented in Figure 7.
It shows the interaction between the three Modules, but also
between the driving simulator and the modules. The phys-
iological signals of the last 90 seconds are first collected
and then processed by the Python module. The indicators
corresponding to this time window are then transmitted to
modules 1 and 3. From these indicators, module 1 (Driver
State) is executed to predict the driver state (four dangerous
states and global state, see Figure 3). Module 2 (Supervision)
retrieves the prediction of the mental workload (high or low)
and the global state of the driver from module 1, as well as
the environmental data from the simulator. Based on this,
it triggers the appropriate in-vehicle interfaces to maintain
driver awareness. The Figure 5 summarizes the modality
of the information transmitted to the driver according to the
input values (see Table 4). Module 3 (Intervention) takes as
input the same physiological indicators as module 1, with
additional information on weather conditions (good or bad
weather). Based on this, it predicts the optimal takeover
modality using machine learning techniques (see Figure 6).
Depending on the highest Severity in the environment, the
output of module 2 or 3 is selected for in-vehicle interaction
(see Figure 8 in the next section).

B. IMPLEMENTATION

To implement the theoretical operation of the AdVitam sys-
tem explained above, several processes were implemented to
run in parallel:
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FIGURE 8. Flowchart (activity diagram) of the Python module operation.

Main process: Starts the main loop, the others process
and receives/sends data from/to the driving simulator
Process 1: Raw physiological data acquisition (with
calibration)

Process 2: Calculation of physiological features after
baseline (90 seconds)

Process 3: Calculation of physiological features during
automated driving (last 90 seconds)

Process 4: Driver state prediction (module 1, scheduled
to run every second)

Process 5: Take-Over Request modality recommenda-
tion (module 3, scheduled to run every second)

Figure 8 shows the functioning of the Python module. The
main process starts by initialising the simulation parameters
(participant code, sampling rate, time window) and connect-
ing to the driving simulation via WebSocket. Process 1 starts
the acquisition of raw physiological signals in parallel. The
raw values of the EDA, ECG and RESP signals from the last
90 seconds are saved at each iteration of the main loop. Once
the first 90 seconds have elapsed, Process 2 processes the raw
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data. The driver’s physiological indicators during the baseline
are calculated with the Neurokit library [46] and saved to a
CSV file for later use.

Next, processes 3, 4, and 5 are started to run in parallel to
the main loop. Process 3 calculates the driver’s physiological
indicators while driving (Dr features). Those calculated after
process 2 are also used by process 3 to generate additional
features corrected with the baseline (Dr-Bl features). For this,
the difference between the two values is made, as it is the
case for the driver state module. All calculated physiological
features are saved in a CSV file. They are used by processes
4 and 5 to respectively predict the driver state and the TOR
modality. These two processes are scheduled to be executed
every second.

Once all processes are started, the main loop iterates until
the driving simulation is stopped. The last frame sent by the
driving simulator, the global state of the driver as well as its
workload level (process 4), and the TOR modality (process
5) are retrieved by the main loop. For the latter two, default
values are assigned if the prediction could not be executed:
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10 for the workload level, 3 for the global state of the driver,
and the audio-visual modality for the TOR.

Then, the data received from the driving simulator is
parsed. The data describing the state of the Driving envi-
ronment is modelled by a frame in JSON format, containing
the micro-category, the severity and the location of the five
macro-categories of potential danger. The frame sent to the
driving simulator is structured in a JSON format.

Then the main loop calculates the maximum severity
among the five categories. Based on this, the outputs of
modules 2 and 3 are fed back to the driving simulator.
If the maximum severity in the environment is lower than 3
(see Figure 8), the output of module 2 (supervision) is
retrieved and the HVIs for maintaining/increasing situational
awareness (Situation Awareness) are used. The data frame
sent to the driving simulator is also structured in JSON.

If the highest severity is 3 (see Figure 8), a TOR must be
triggered to request the driver to regain control. In this case,
the last output of module 3 (i.e. the optimal TOR modality) is
retrieved, sent to the simulator and immediately transmitted
to the driver. The frame sent to the driving simulator is also
structured in JSON.

Throughout the simulation, logs of predictions made by the
driver state module (each model, each block, and the global
driver state), the intervention module (takeover modality),
and the supervision module (rule selected by the model)
are saved. All the physiological indicators of all participants
calculated after each iteration of process 3 are also saved.

VI. EMPIRICAL STUDY

This section describes the research hypotheses of the empiri-
cal study as well as the experimental design and the procedure
put in place to evaluate them. It also describes the materials,
instruments, measurements, and statistical analysis used dur-
ing and after the experiment.

A. GOALS AND HYPOTHESES

The purpose of this experiment is to be able to test the com-
plete AdVitam system in a simulated driving situation with
participants. In particular, the goal is to evaluate the effec-
tiveness of each of the Modules on different safety-related
measures, namely SA and takeover quality, but also measures
of trust, mental workload, fatigue, and user experience. The
hypotheses are as follows:

e (HI): Module 1 should return a prediction consis-
tent with the driver’s experimental manipulation. Thus,
we should observe that mental workload increases dur-
ing the NDRT phases (closer to 1) [7], that affective
state is closer to stress during the urban scenario (closer
to 2 on the 0-2 scale) [38], and an increase in SA
for drivers receiving Context-related information on the
environment [47] (Supervision condition, see the exper-
imental design below). In addition, the overall state of
the driver should be worse during the NDRT phases and
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we should not see a major change in fatigue due to the
short duration of the experiment.

o (H2): Receiving contextual information about the car’s
environment through the multimodal interfaces (Super-
vision) should increase (or at least maintain) SA and
tend to improve takeover quality [47], [76]. It should
also increase user trust and experience in the car as it
increases the vehicle’s transparency [62].

e (H3): The intelligent adaptation of the TOR modal-
ity (Intervention) should improve the takeover quality
[66], [67]. This should also increase the user’s trust and
experience in the car as it increases the transparency and
personalisation of the vehicle.

e (H4): Driving with the full AdVitam system (Supervi-
sion x Intervention) should not increase participants’
mental load and fatigue (i.e., sleepiness). It should also
increase driver trust and user experience, consistently
with hypotheses 2 and 3.

B. PARTICIPANTS AND DESIGN

35 participants (11 females) were recruited for the experimen-
tal evaluation. The age of the participants ranged from 19 to
55 years old (M = 26.1 years old; SD = 65.98 years old).
On average, they reported driving 6305.43 km per year
(SD = 88421.53 km) and have held a driving license for
about 7.4 years (SD = 6.54 years). The only criterion for
participating in this experiment was to be in possession of
a valid driver’s license. Students received course credit for
their participation. All participants were entered into a draw
to win one of five 20 CHF vouchers for a store in the city.
All the research and measurements followed the tenets of the
Helsinki agreement and consent form was obtained from all
participants.

The design of the experiment included two between-
subjects factors (Supervision and Intervention) as well as
one within-subjects factor (rural vs. urban scenario). The
first between-subjects factor was the presentation and use of
the supervision module. Drivers received information about
the environment from in-vehicle interfaces according to the
situation and their state. The second one was the presentation
and use of the intervention module. Drivers received different
takeover modalities (audio-visual, haptic-visual, and audio-
haptic-visual) with regard to the environment of the car and
their own state.

Throughout some parts of the driving session, participants
had to perform a cognitive NDRT on a handheld tablet (visual
2-back task). In addition, the participants had to react to
the presence of five Limitations and two takeover situations
divided into a rural and an urban scenario. The order of
apparition and the location of limitations and takeover sit-
uations in the scenarii was the same for all participants.
Figure 10 describes the order of occurrence of the limitations,
the times during which drivers perform an NDRT, and the
situations leading to a TOR. Each takeover was requested due
to an issue with automation. These situations depicted three
of the six categories from the taxonomy [10], which were:
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FIGURE 9. A participant in the driving simulator during the experiment.

Rural scenario:

o A slightly damaged lane marking (Category Lane)

« A more slightly damaged lane marking (Category Lane)
« A rock on the other lane (Category Obstacle)

o Rocks blocking the way (Category Obstacle)

Urban scenario:

o A slightly damaged lane marking (Category Lane)

o A dog standing on the right side of the road and then
crossing over (Category External Human Factor)

o A pedestrian walking very close to the road (Category
External Human Factor)

C. MATERIAL, MEASURES, AND INSTRUMENTS

The experiment was conducted on a driving simulator specif-
ically built for the project. Rural and urban environments
were both used for the experiment. All participants were
given a Samsung Galaxy Tab A (10”’) to perform the NDRT.
An Android mobile application was developed to administer
the visual 2-back task. Figure 9 shows a participant sitting in
the driving simulator, performing the non-driving related task
during the experiment.

Physiological signals from the drivers were recorded using
the Biosignals PLUX kit at a sampling rate of 1000 Hz.
This value was chosen to have the same data frequency
as for the data collected in the previous experiments. The
data were sent in real-time via Bluetooth to a laptop on
which the AdVitam system was running. Pre-gelled dispos-
able Ag/AgCl electrodes (EL507 and EL503, Biopac) were
connected to the kit’s wire sets. ECG electrodes were placed
on the left side of the drivers’ stomachs, following the Lead-
I configuration. EDA electrodes were attached to the index
and middle fingers of the left hand. The breathing belt was
attached around the abdomen at the stomach region. Before
each scenario, drivers’ arousal, valence, and sleepiness were
evaluated through questionnaires presented on a tablet. After
each scenario, they were also assessed in addition to the
mental workload, SA, and trust towards the vehicle during
the drive.
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Valence and arousal were assessed on a 1-5 scale
using the animated version of the Self-Assessment Manikin
(AniSAM) [81]. Sleepiness was self-rated by participants
on the Karolinska Sleepiness Scale (KSS) [82]. The mental
workload was evaluated on a 0-20 scale using the Mental
demand item of the NASA-TLX questionnaire [83].

Different techniques exist to measure awareness, such as
objective, subjective, performance-based or process index-
based methods. In our study, the drivers’ Situation Awareness
was assessed using the Situation Awareness Rating Technique
(SART) [84] and an open question asking for the cause of
the TOR. Post-trial questionnaires were used because we
preferred not to freeze the simulation while collecting physi-
ological data. Each SART item was rated on a 7-point scale,
from 1 (Low) and 7 (High). Trust was assessed using the Sit-
uational Trust Scale for Automated Driving (STS-AD) [85].
A trust score was calculated for each scenario, according to
the authors’ instructions.

To measure objectively drivers’ SA, measures of task per-
formance and identification rate of limitations were calcu-
lated. The task performance on the visual 2-back task was
calculated according to the formula:

TaskScore
correct answers—wrong answers—missed targets

= ey

correct answers + missed targets

To assess whether participants saw and understood the
limitations that occurred during the experiment, a think-aloud
method was used. They had to orally report what type of limi-
tation they saw in the vehicle’s environment, with its Severity
and location. Their answers were transcripted during the
experiment. During data preparation, participants’ answers
were coded separately by two authors. Each limitation was
scored separately, with the type, severity and location. One
point was accorded if the participant answered correctly. All
limitations occurring in the experiment (see Figure 10) were
scored, except for the two takeover situations and the pre-alert
in the rural scenario (Obstacle, severity 2, front). Cases,
where the two authors disagreed, were discussed afterwards
to make the final decision. For each scenario, an average score
was computed for limitations’ type, severity and location
separately.

The quality of the takeover can be measured through differ-
ent metrics that can be categorized into five categories [86]:
time/distance margin, speed, offset in lane, steering and brake
behaviour. In this study, takeover quality was evaluated from
the driving data. The metrics used were the drivers’ RT
and MaxSWA. The number of collisions was also reported
(failed Take-Over Request). We computed these three met-
rics because the experiment combines situations where the
driver can either avoid an obstacle or brake to complete a
stop.

At the end of the experiment, participants filled in the
User Experience Questionnaire Short version (UEQ-S) [87]
in order to assess their user experience in the driving
simulator.
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FIGURE 10. The experimental procedure.

D. PROCEDURE

After initial instructions about the experiment, the participants
filled in a questionnaire on a tablet containing socio-
demographic questions, as well as questions about their
driving habits and a consent form. Each participant had
to familiarize themselves with the limitations of automated
vehicles. Participants were presented the taxonomy with
categories and an illustrated situation involving all categories.
They also received instructions about modalities according to
the module they encountered (Supervision and/or Interven-
tion). From that point, the experiment was divided into three
distinct periods:

o Training session: participants received instructions on
the operation of the autonomous pilot (activation, deac-
tivation, TOR) and on the interactions of the simulator
according to the test conditions. They then practised
driving the simulator for a few minutes to become famil-
iar with the equipment. The device for recording physi-
ological signals with electrodes was installed at the end
of this phase.

« Rural environment: this session started with a two
minutes baseline where participants only monitored the
environment. Then, they experimented with the rural
driving session. Their task was to mention verbally the
limitations they may encounter on the route. They had
to also perform an NDRT (visual 2-back task) on some
parts of the route. In the end, they filled out SART,
AniSAM and KSS questionnaires.

o Urban environment: During this period, they experi-
mented with the urban driving session. The instructions
were the same as in the rural scenario.

In the case of a TOR, all participants were instructed to
react accordingly and drive the car manually until the critical
situation was over. Once they had estimated that the situation
was safe again, they could activate the autopilot again. If they
forgot to reactivate, the researcher reminded them.

At the end of the session, participants were asked to
stop the car and leave the simulator to fill in the last part
of the questionnaire. Finally, participants were thanked and
discharged.
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E. STATISTICAL ANALYSIS

A repeated-measures analysis of variance (ANOVA) was run
on measures of workload, SA, trust, task performance, iden-
tification rate of limitations, and takeover quality, with the
Supervision and Intervention modules (with vs. without) as
between-subjects factors, and the Driving environment (rural
vs. urban) as a within-subject factor.

For measures of arousal, valence and sleepiness, the driv-
ing environment was replaced by the measurement time as
the within-subjects factor, but with three levels (baseline
vs. rural vs. urban). To investigate the effect of the driving
environment, Supervision and Intervention modules on the
number of crashes, a Fisher’s exact test was done to test the
hypothesis that the two column percentages in a 2 x 2 table
are equal.

For user experience measures, only an ANOVA with
Supervision and Intervention modules was run, since it was
only measured once at the end of the experiment.

VII. RESULTS

This section describes the overall results obtained during
the study. This part allows us to evaluate the impact of the
AdVitam system system and of the different Modules on the
drivers’ state, SA, trust and user experience. In the following
paragraphs, M stands for Mean, SD for Standard Deviation
and SE for Standard Error.

A. AROUSAL, VALENCE, SLEEPINESS AND MENTAL
WORKLOAD

There was a significant effect of time measurement on arousal
(F(2,62)=13.74,p < .001, n* = .07). Participants reported
a higher arousal after both rural (M = 2.96, SE = 0.14;
1(62) = —4.00, p < .001) and urban (M = 3.05, SE =
0.14; #(62) = —4.94, p < .001) environment than before the
experiment (M = 2.56, SE = 0.13). Otherwise, no significant
effect of Supervision or Intervention were found on arousal,
valence and sleepiness (p > .05). The effect of the Driving
environment was not significant on valence and sleepiness
(p > .05).
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FIGURE 11. Influence of the environment and the AdVitam system
(i.e., Supervision and Intervention modules) on SART results.

The statistical analysis also revealed a significant effect
of the driving environment on workload (F(1, 31) = 15.62,
p < .001, nz = .05). Drivers had a lower mental workload
during the rural environment (M = 15.24, SE = 0.60) than in
the urban one (M = 16.93, SE = 0.60). We can notice that
regardless of their condition, drivers reported having a high
workload during the experiment. The effect of Supervision
and Intervention, as well as interaction effects were not
significant on workload (p > .05).

B. SA, TRUST AND USER EXPERIENCE

The statistical analysis revealed a significant effect of the
driving environment on SA (F(1, 31) = 88.92, p < .001,
n?> = .43). Participants reported having a higher SA in
the rural environment (M = 20.11, SE = 0.96) than in the
urban one (M = 9.80 SE = 0.96) environment. Interestingly,
a significant interaction effect of Intervention and scenario
was found on SA (F(1, 31) = 4.70, p < .05, n> = .02),
but post-hoc tests do not help to interpret this result. In the
same way, we can observe a significant interaction effect
of the Supervision, Intervention and scenario on SA (F(1,
31) =5.00, p < .05, n2 = .02), see Figure 11. Besides, the
effect of Supervision and Intervention modules alone were
not significant on SA (p > .05).

The statistical analysis also revealed a significant effect of
the driving environment on trust (F(1,31) =24.37,p < .001,
n?> = .15). Participants trusted the car more in the rural
environment (M = 4.36, SE = 0.19) than in the urban one
(M = 3.02, SE = 0.19) environment. Besides, a significant
effect of Supervision was found on trust (F(1, 31) = 5.32,
p < .05, 7> = .09). Participants trusted more the car
with information provided by Supervision (M = 4.24, SE =
0.22) than without (M = 3.51, SE = 0.22), see Figure 12.
Otherwise, the effect of Intervention was almost significant
(p = .054), participants tend to trust more the vehicle with
intervention (M = 4.44, SE = 0.24) than without (M = 3.61,
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FIGURE 13. Effect of the Supervision module on objective measures of
SA (i.e, identification of limitations).

SE = 0.21). Other all interaction effects were not significant
on trust (p > .05).

On a scale from —3 to 3, users rated their experience in
the simulator at 1.10 (SD = 0.75). Pragmatic and hedonic
components were respectively rated at 0.66 (SD = 1.12) and
1.54 (SD = 0.77). Both Supervision and Intervention did not
statistically affect participants’ user experience regarding the
global score (p > .05). However, we observed a significant
effect of Supervision on the hedonic component of UEQ-S
(F(1, 31) =892, p < .01, n2 = .21). Drivers reported
to have a higher user experience (in the hedonic compo-
nent) with Supervision (M = 1.89, SE = 0.17) than without
(M =1.18, SE = 0.16).

C. OBJECTIVES MEASURES OF SA: TASK PERFORMANCE
AND IDENTIFICATION OF LIMITATIONS
No effect of driving environment, Supervision, or Interven-
tion on task performance (p > .05). Interaction effects were
not significant either (p > .05).

The agreement of experimenters for coding the think-aloud
answers regarding the Limitations reached 97.57% (12 cases
where coding has diverged, over 495 cases). The statistical

5763



IEEE Access

M. Capallera et al.: Contextual Multimodal System for Increasing Situation Awareness and Takeover Quality

Rural scenario

No NDRT NDRT

0.8

for each factor

0.4

Average value predicted by the model

0.2

Factor
— Fatigue (0-1)
—— Mental Workload (0-1)

0.6 )
W —— Affective State (0-2)

— Situation Awareness (0-1)

No NDRT NDRT

w w
N N

w
[=}

N
o

Global state - Continuous value (1-5)
N N
~ ©

200 400 0 100 200 300 400 500
Time (in seconds)
Urban scenario
NDRT No NDRT NDRT No NDRT
T ~34
g ;
2 =
()]
2 12 233
> >
a0 »
<= 10 3
38 Factor g 32
%g 0.8 —— Fatigue (0-1) £
=8 —— Mental Workload (0-1) 8 3.1
gL 06 n_nr™if, —— Affective State (0-2) &
§ —— Situation Awareness (0-1) i
o 04 =
@ 3
g 8 29
z 02 32
0 100 200 300 400 0 100 200 300 400

Time (in seconds)

FIGURE 14. Predictions made continuously by the module 1 (Driver state), for each factor (Left) and for the global driver state (Right).
Top: Predictions for the rural scenario. Bottom: Predictions for the rural scenario. The horizontal axis is in seconds.

analysis revealed a significant effect of Supervision on the
identification rate of type (F(1, 31) = 20.21, p < .001,

2 = 30), Severity (F(1,31) = 46.69, p < .001, n?> = .44)
and location (F(1, 31) = 8.76, p < .05, n> = .15) of limi-
tations occurring during the experiment, see Figure 14. The
driving environment, Intervention and all factor interactions
did not have any significant effects on the identification of
limitations.

D. TAKEOVER QUALITY

The statistical analysis revealed a significant effect of the
driving environment on both reaction time (F(1, 18) = 28.80,
p < .001, 7% = .37) and MaxSWA (F(1, 18) =5.29, p < .05,
n? = .12) after a Take-Over Request. Participants took less
time to takeover (M = 2.38, SE = 0.31) and steered less the
wheel (M = 9.55, SE = 9.96) in the rural environment than in
the urban environment (M = 4.74, SE = 0.11 and M = 42.66,
SE = 9.96). However, no significant effects of Supervision
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and Intervention were observed for either parameter, as well
as for all interaction effects between the different factors
(p > .05).

Fisher’s exact tests were used to determine if there was a
significant association between the number of crashes and the
driving environment, Supervision and Intervention. There
was a statistically significant association between the number
of crashes and the driving environment (two-tailed p =.02).
There was a significantly higher percentage of crashes in
the urban scenario (39.39%) than in the rural one (12.12%).
However, there was no association between the number of
crashes and Supervision or Intervention (p > .05).

E. PREDICTIONS MADE BY MODULE 1: DRIVER STATE
Figure 14 shows the prediction of the module for each haz-
ardous factor and for the global state of drivers in both
environments.
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In the rural environment, participants initially did not
engage in the non-driving task on the tablet (first part of
the scenario). During this time, Module 1 predicted that
their mental workload remained constant (blue line), their
fatigue remained constant and then decreased (red line),
and their affective state approached a neutral state (green
line). Once they began to engage in the cognitive task, the
module predicted an increase in their mental workload and
fatigue. The predictions made by these blocks were consistent
with the prediction of the drivers’ overall state. It improved
before performing the NDRT but worsened significantly
when participants engaged in the cognitive task. Throughout
the scenario, the module’s prediction of drivers’ Situation
Awareness remained constant (purple line). For drivers who
had the Supervision module available, predictions of situa-
tional awareness ranged from 0.5 to 0.6, whereas they ranged
from 0.4 to 0.55 for drivers who did not have this module
available (not visible in Figure 14). Overall, we can conclude
that the module predictions are consistent with respect to the
rural scenario.

In the urban scenario, participants had to engage in NDRT
from the beginning. We can see that the module correctly
predicted an increase in mental load, then a decrease before
remaining constant (blue line). It is difficult to tell if the
module made incorrect predictions or if drivers disengaged
from the task because it was too difficult to follow in this
scenario. The module’s predictions for situational awareness
(purple line) and fatigue (red line) remained consistent, which
makes sense for such a short driving session (about 8 min-
utes). For the drivers who had the Supervision module, the
predictions of situational awareness increased from 0.6 to
0.75 throughout the scenario, while they remained constant
between 0.45 and 0.65 for the drivers who did not have this
module (not visible on the figure). For the driver affective
state, the predicted value was higher in the urban scenario
(about 1.25) than in the rural scenario (about 1). In other
words, the module predicts that participants experience more
stress in the urban environment, which is consistent with the
literature [38].

For the global state predictions in the urban scenario, the
drivers’ state got worse at the beginning but then improved
in the second part of the NDRT. Once they stopped the task,
the mental workload slightly decreased and thus the global
state improved. However, it is difficult to explain the drastic
decrease in drivers’ global state at the end of the scenario.

F. FEEDBACKS

Overall, the majority of participants enjoyed the experience
(““interesting and immersive experience’’, “a very original
experience’’), although some had reservations about the oper-
ation of the autopilot, particularly in the urban environment
(““difficult to know where the vehicle goes in the city”),
and sometimes lacked confidence in the system (participants
without a module) (“lack of confidence in the system’).
The participants confirmed the difficulty of the non-driving
related task and the fact that it helped to get them out of
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the control loop (“difficult to concentrate on several things
at the same time”’). The majority of participants who had
experienced one (or both) of the two modules appreciated
receiving this type of information and found it useful (*‘the
device is rather complete and greatly helps for autonomous
driving”’). Some mentioned that they felt that a little more
training would be needed to get the most out of the proposed
interactions.

Regarding the takeover request, only one participant pre-
ferred having a static TOR (constant modality, without adap-
tation to the driver state), which indicates a global acceptance
of a dynamic TOR. Other feedbacks were mostly about the
personal preferences of modalities for the takeover situation,
with some participants preferring a voice TOR (*“A voice like
Siri asking to take over”, ‘‘a message indicating the nature of
the problem and its localisation’’) while others preferred the
auditory chime (“The beep was perfect’). A user suggested
always using the auditory modality and adapting only the
haptic modality when needed, while another said the auditory
modality was not enough for a takeover. All those feedbacks
strongly suggest that TOR should be adapted to the user
and the situation since no modalities emerged as a global
preference.

Regarding the use of the supervision module, participants
appreciated the pop-up notifications (‘“The little notifications
on the tablet I was using were great’). Several participants
suggested the additional use of chime or speech (‘“more sound
because I am more receptive to it”’, “Sounds in addition to
vibrations (e.g. voice saying danger on the right). This would
allow looking directly at the right place”).

VIil. DISCUSSION

The results reported above are interpreted in this section. The
goal is to validate the effectiveness of the AdVitam system
system and the Supervision and Intervention Modules on the
drivers’ state, takeover quality, trust, and user experience.

A. AFFECTIVE STATE, FATIGUE AND MENTAL WORKLOAD

Regarding subjective measures of the driver’s state, the data
analysis revealed that participants had higher arousal dur-
ing the driving session than before driving. Conditionally
automated driving can hence be considered as an arousing
task, even though drivers are not performing the driving
task anymore. Participants also reported having a higher
mental workload in the urban environment. This effect may
be due to the higher number of changing variables in their
surroundings (traffic lights and other road users) compared
to the monotonous scenario in a rural environment. Overall,
participants reported having a rather high mental workload.
This suggests that relieving the driver of the driving task
does not necessarily reduce the driver’s mental load, as the
driver may be engaged in another equally cognitive task (as
was the case in this experiment). Regarding the module 1
(Driver State) predictions, they were often consistent with the
experimental manipulation. The predicted fatigue remained
constant as the experiment was short, the predicted workload
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increased during the NDRT (except for the second half in
the urban scenario but they might have disengaged for the
task), and the affective state was closer to stress in the urban
scenario, and the predicted situation awareness was higher for
drivers who had the Supervision module. The predictions of
the global driver state were consistent in the rural scenario
(worse when engaged in the NDRT) but less in the urban sce-
nario as the predicted driver’s state got better after the Take-
Over Request. Overall, we can argue that (H1) is validated.
The results obtained are encouraging for further research
to continuously assess the driver’s state using physiological
signals and machine learning.

The use of the Supervision and Intervention modules
(interaction effect of both) do not have a significant effect on
participants’ mental workload. This may suggest that receiv-
ing information via different interaction modalities combined
or adapting dynamically the TOR modality does not add
mental load to the driver which is a very important criterion
to take into account when creating such interactions. (H4) is
thus verified.

Besides, the nil effects found on sleepiness measures can
be explained by the short duration of the experiment. Also,
participants were engaged in a non-driving-related task so
they did not have time to get drowsy.

B. SITUATION AWARENESS

Based on the analysis of results regarding the identification of
Limitations, the Supervision module has a significant impact
on the driver’s situation awareness. However, these results are
not confirmed by subjective results obtained from the SART
questionnaire.

However, the hypothesis that task performance would be
higher with the Supervision module because they would be
more engaged in the NDRT while receiving information is
not validated. This may be due to the fact that the majority
of participants were using this simulator for the first time and
were unsure of how the autonomous pilot might behave and
therefore preferred to watch the environment more regularly.
In addition, some people also mentioned that they found the
task very hard and encountered difficulties in performing it.
(H2) is thus partially verified regarding Situation Awareness:
the results confirm a positive impact of the module on SA but
not on NDRT engagement and performance.

The statistical analysis also shows a significant impact of
the type of environment on the driver’s situation awareness.
Indeed, the results reflect greater SA in rural areas. This can
be explained by the fact that the rural scenario proposes few
road changes and has no traffic. The situation is then quicker
to interpret. The urban environment, on the other hand, offers
many more disruptive elements such as traffic and many road
changes at intersections.

The results obtained are encouraging for further research to
convey adaptive Context-related information according to the
situation and driver’s state. The use of an interface combinin-
ing to propose multisensorial and full-body experience seems
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beneficial to maintain drivers’ SA. The AdVitam system joins
the YUI [88] concept which could present similar results.

C. TAKEOVER QUALITY

No beneficial effect of both Supervision and Intervention
modules were found on takeover quality of participants. (H2)
is thus partially refuted regarding takeover quality and (H3)
is refuted. Getting context-related information did not help
drivers to better take over the car. Drivers with the Supervi-
sion module were better at identifying limitations (better SA)
but did not show different behaviour in taking over control of
the vehicle (no significant difference for reaction time and
steering wheel angle). This result is consistent with Ends-
ley’s suggestion that having good SA does not necessarily
lead to good performance [43]. Given the takeover situations
implemented in this study, drivers could have had several
possible behaviours to take over control. Significant results
could potentially have been observed in a more restricted
takeover situation (one choice only, e.g., braking).

Besides, several factors might explain the nil effect of
the Intervention module: the drivers’ state was not critical
enough in the experiment for the module to have a real
impact, the module was trained on too little data, or the
module does not take enough Driving environment variables
into account. These areas of improvement could increase the
impact of the module.

Interestingly, a significant difference in takeover behaviour
was found between rural and urban scenarios. The takeover
situations were different in both scenarios. In the rural envi-
ronment, the car requested a takeover because of rocks on the
road, while it requested to take over because a dog crossed
the road at the last moment in the urban environment. The
takeover situation in the rural area yielded lower RT and
MaxSWA values. Since both takeover situations were differ-
ent, results confirm that RT and MaxSWA are relevant metrics
to distinguish drivers’ takeover behaviour in two different
situations. Besides, a higher number of crashes occurred in
the urban environment. It seems that the takeover situation
was hard to handle for some drivers. This also suggests that
7 seconds before a collision might not be enough to warn the
driver for taking over control in an urban environment with
traffic while performing a cognitive task.

D. TRUST AND USER EXPERIENCE

The Supervision module also increased the participants’ trust
in the automated vehicle. This may fall within the domain
of explainable Al. Indeed, participants mentioned appreci-
ating receiving information from the vehicle about what it
perceived in the environment. This appreciation is thus well
confirmed by the significant results obtained on the STS-AD
ratings.

The statistical analysis also shows a significant impact of
the type of environment on the driver’s trust in the system.
Indeed, the results reflect greater trust in rural areas. The
urban environment, on the other hand, offers many more lane
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changing, changing routes at intersections, stopping at red
lights, etc...In addition, the participants received no infor-
mation about the intention of the vehicle which sometimes
seemed a bit rough.

Concerning the user experience, the hedonic component is
higher with the Supervision module. This may mean that the
experience in the car is more exciting and interesting while
receiving notifications. Moreover, the vehicle might also be
perceived as more innovative and leading-edge with new
interaction modalities that do not exist in conventional cars.
(H2) is thus partially verified for drivers’ trust. The Supervi-
sion module shows a positive trend for system acceptance.

A merely significant positive effect of the Intervention
module was found on drivers’ trust. Adapting the TOR
modality shows a tendency to increase trust in the automated
system. This would need to be confirmed in further research
as the effect was almost significant here.

No effect was found for the Intervention module on the
user experience in the car. The TOR modality was only
seen twice and did not change between the 2 scenarios for
some participants. Thus, contrary to the Supervision module
for which the transmitted information changed more often,
the participants rather evaluated the theoretical aspect of the
Intervention module than its practical aspect on the user
experience. Thus, (H3) is partially refuted regarding drivers’
trust and user experience.

E. LIMITATIONS AND FURTHER WORK

Limitations and prospects for further work are mentioned first
for each module, then for the AdVitam system, and finally for
the empirical study.

For the Driver State module, the choice of the four risk
factors to be predicted was justified. However, it is question-
able and the prediction of other risk factors could be included,
such as alcohol or drug use. Furthermore, other approaches
for fusion at the level of prediction blocks or reconstruction of
the global driver state could be tested. Finally, the continuous
predictions of the driver state module were only evaluated
qualitatively, but they should also be evaluated quantitatively
in future studies. For the Supervision module, a training
phase would have been useful for drivers to better understand
the information transmitted by the car. A longitudinal study
testing the use of this module at regular intervals could further
demonstrate the larger benefits of this user-centred system on
drivers’ SA and trust. Also, the choice of rules defining the
rule-based model was made based on previous experiences
evaluating each interface independently [47], [63]. However,
the definition of the rules could be modified, after analysing
the results of the empirical experiment presented here or other
future experiments. For the Intervention module, it could
predict more than 3 combinations of TOR modalities. This
would imply collecting more data to train the module.

For the AdVitam system, more variables could be used
from the Driver State module in the predictions made by
the Supervision and Intervention ones. Also, the robustness
has not been measured quantitatively, and this should be
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done in a further study. Concerning the empirical study, one
main limitation is that the AdVitam system has only been
tested with young drivers in a static driving simulator. Thus,
the study can only be considered a preliminary study for
the evaluation of the system. The latter should be tested in
real driving conditions and different scenarios of varying
duration, involving other takeover situations and other Limi-
tations than erased lane markings or obstacles. It should also
be tested with drivers of different age and gender groups,
as both factors influence the physiological state and takeover
time [89], [90], [91]. Besides, the order of driving scenarios
was not randomised, mostly because there were already three
experimental factors. This may have induced a learning effect
and slightly skew the results. This should be tackled in further
experiments.

IX. CONCLUSION

This paper describes the design and implementation of an
adaptive system named AdVitam system. The role of this sys-
tem is to assist the driver in conditionally automated driving
and to optimize the shared control between the driver and
the vehicle according to the driver’s state and the situation.
This system is composed of three Modules. The Driver State
module predicts four risk factors (fatigue, mental workload,
affective state, situation awareness) as well as the driver’s
global state. The Supervision module transmits information
related to the context according to a combination of modal-
ities depending on the situation and the state of the driver.
Finally, the Intervention module adapts the modality of con-
trol resumption according to the situation and the physiolog-
ical data of the driver. The design and implementation of the
three modules are also described in this paper.

In order to evaluate the AdVitam system, a study with
35 drivers was conducted in a fixed-based driving simulator.
Participants experienced two conditionally automated driving
scenarios in a rural and urban environment. They encountered
different limitations and were tasked with taking over control
of the vehicle on demand. A higher mental workload was
induced when drivers were engaged in an NDRT during
some driving periods. Stress was also manipulated by the
type of environment. Measures of driver’s state (workload,
sleepiness, ...), situation awareness, takeover quality, trust
and user experience were assessed.

Firstly, module 1 (Driver State) returns a prediction consis-
tent with the driver’s experimental manipulation. We observe
that the predicted mental workload increases during the
NDRT phases (in particular during the rural scenario) and
that the predicted affective state is closer to stress during the
urban scenario. Moreover, we do not see a major change in
fatigue due to the short duration of the experiment. Secondly,
receiving contextual information about the car’s environment
through the multimodal interfaces increases (or at least main-
tain) Situation Awareness but do not improve takeover qual-
ity. We also observe an increase in driver trust and a good
acceptance of the Supervision module. Thirdly, the intelligent
adaptation of the Take-Over Request modality (Intervention
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module) does not improve the takeover quality but tends to
increase the driver’s trust as it increases the transparency
and personalisation of the vehicle. Finally, driving with the
full AdVitam system (Supervision x Intervention) do not
increase participants’ mental workload and fatigue.

To conclude, this adaptive system increases the driver’s SA
in automated driving while robustly and continuously assess-
ing the driver’s state. Implementing this kind of system could
lead to better acceptance of the release of L3-SAE vehicles
by increasing driver confidence in autonomous systems.

SUPPLEMENTARY MATERIAL
All the data collected to build the AdVitam system as well
as the data from the experiment presented in this article are
available on the Zenodo repository: https://doi.org/
10.5281/zenodo.7319612.

The attached video illustrates the concept proposed in this
article and the experiment performed.
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