IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 December 2022, accepted 9 January 2023, date of publication 13 January 2023, date of current version 19 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3236917

== RESEARCH ARTICLE

A Generative Verification Framework on
Statistical Stability for Data-Driven Controllers

SUWON LEE

Department of Future Mobility, Kookmin University, Seoul 02707, Republic of Korea

e-mail: suwon.lee @kookmin.ac.kr

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government [Ministry of

Science and ICT (MSIT)] under Grant RS-2022-00165635.

ABSTRACT This study proposes a novel framework for evaluating the stability of data-driven controllers
and the concept of statistical stability. The proposed framework can be used when it is challenging to show
stability through conventional control theory. The novelty of this paper lies in that it provides a method for
scientifically analyzing the stability of data-driven controllers, thereby improving the quality of data-driven
controllers. The proposed framework consists of three parts: the generative model, controller optimizer,
and verification model. A variational autoencoder is used to classify and randomly generate data, and the
generated data are used to train the controller. A support vector machine is used to classify areas where the
controller is statistically stable. The statistical stability of an optimal controller designed using a deep neural

network structure is analyzed using the proposed framework.

INDEX TERMS Data-driven analysis, deep neural network, nonlinear controller, nonlinear system verifi-
cation, optimal control, performance analysis, statistical stability, variational autoencoder.

I. INTRODUCTION

A mathematical relationship between the control input and
system output must be derived to design controllers for
dynamic systems. Next, based on this relationship, a con-
troller that can achieve the desired control performance and
control goals is designed. Stability is an essential require-
ment for all control systems. In addition to stability, control
systems must meet requirements including tracking given
reference signals and suppressing disturbances and noise [1].
A suitable controller must ensure the stability of the control
system and be able to follow a given reference signal with
small error. For linear time-invariant systems, analysis of
the stability can be conducted algebraically [2]. For nonlin-
ear systems, stability analysis can be more challenging and
differs for the system’s dynamic characteristics [3]. Several
methodologies exist for analyzing the stability of nonlinear
systems, including locally linearizing the system and using
bifurcation theory [4]. The methodologies require analyz-
ing the system’s differential equations and often conducting

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi

VOLUME 11, 2023

input-output analysis. Because various types of nonlinearities
exist, different mathematical tools are required for stability
analysis [5].

Another objective of the control system is to achieve opti-
mal performance. The optimal control of dynamic systems is
often conducted using the calculus of variations and solving
the two-point boundary value problem (TPBVP) to obtain
the optimal trajectory [6]. This approach is also known as
trajectory optimization. The benefit of trajectory optimiza-
tion is that the optimal trajectories of the state and control
input can be calculated, and the boundary conditions and
path constraints can be considered [7]. However, in many
cases, analytically solving the TPBVP is very challeng-
ing, and numerical methods are often utilized to solve the
TPBVP [8]. Therefore, the process often requires high com-
putational power and is time-consuming. Another limitation
of the trajectory optimization approach is that the method
uses open-loop control. For a linear system, the optimal
controller design is based on solving system matrix equa-
tions assuming full knowledge of the system. The optimal
controller is designed offline by solving Hamilton-Jacobi-
Bellman (HJB) equations such as the Riccati equations [9].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 5267

https://orcid.org/0000-0002-6573-6348
https://orcid.org/0000-0002-7973-6357

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

Therefore, although the controller is in the shape of the
feedback control, it is an open-loop control. In practical appli-
cations, it is often important to be able to design controllers
online without having complete knowledge of the plant
dynamics. Modeling uncertainties may exist, such as param-
eter inaccuracy, unmodeled dynamics, and disturbances.

The feedback control approaches are used to compensate
for the limitations of the open-loop control approach. In the
case of linear systems, proportional-integral-derivative (PID)
controllers can be designed for transfer function models. For
nonlinear systems, various types of nonlinear controllers such
as sliding mode control (SMC) [10], feedback linearization
(FL) [11], and backstepping control [12] can be designed
and applied depending on the characteristics of the control
system [13]. However, controllers designed using conven-
tional controller design methodologies have a limitation in
that they must be designed to have a specific structure to
ensure stability and optimality from a mathematical perspec-
tive. For example, LQRs can only consider the cost function
of the quadratic form, and in the case of backstepping control,
it can only be applied if the control system is in cascade
form. To ensure stability using Lyapunov stability theory, it is
necessary to find a suitable Lyapunov function, and a general
methodology for finding the Lyapunov function does not
exist. Thus, the stable region is often conservatively presented
using quadratic functions [14]. A conservatively designed
Lyapunov function may unnecessarily limit the performance
of the nonlinear controller.

In this study, a new methodology that can overcome the
limitations of the conventional controller design methodolo-
gies described above is proposed, and the statistical stability
of the control system is analyzed. To this end, a gener-
ative verification model is proposed, and the stability and
performance of data-driven control systems are statistically
verified. Because deep neural networks are available to
approximate and express arbitrary functions, feedback con-
trollers consisting of deep neural networks can be designed
by designing deep neural networks as a function for the
state variable [15]. Furthermore, deep neural networks have
flexibility in designing input-output structures such that it is
possible to design arbitrary forms of information and state
variables as inputs. Traditional model-based controller design
methodologies derive the dynamic relationship between state
variables and control commands, and then a design method-
ology for control is selected based on the relationship. Unlike
conventional controller design methods, deep neural net-
work controllers have no restrictions on the controller’s
mathematical form, which can improve the control system’s
performance.

The contribution of this study is to propose a concept of the
statistical stability and binary stability conditions for nonau-
tonomous systems with reference signals and to propose a
framework to verify them. The binary Lyapunov stability
condition is designed so that the definition of stability in
conventional control theory can be applied to finite time

5268

intervals. Although it is impossible to show asymptotic sta-
bility using the proposed stability analysis method, stability
for time intervals long enough for practical use can be statis-
tically guaranteed. The theorem on permutations of multisets
is proven to satisfy the statistical stability of arbitrarily length
time-series data.

This study is organized as follows. In Section II, the
design of feedback controllers using deep neural networks
is described. In Section III, the proposed framework is
introduced, and the design methods for each element that
makes up the proposed model and the role of each element
are introduced. In Section IV, an example of implementing
the proposed model and its results are shown. Finally, in
Section V, the conclusions are described.

Il. DEEP NEURAL NETWORK-BASED CONTROLLERS
Let us consider the following control system.

X = f(x,u)
y = h(x, u) (D

where X is the state vector, u is the control input, and y is the
system output. The trajectory of the state vector is represented
as follows.

1
x(1) = X0 + / ff (x, w)dt 2
0]

In general, feedback controllers u(x) are designed in the
form of functions for system state variables. Linear feedback
controllers (including the PID controller and linear quadratic
regulator) and nonlinear feedback controllers are examples
of controllers in the form of functions for state variables.
In particular, backstepping control [16] and extended state
observer-based control [17] may use state variables created
using a dynamic extension or similar methods.

Moreover, since the deep neural network can be used to
approximate and express arbitrary functions, it is also possi-
ble to design a feedback controller consisting of only deep
neural networks if the deep neural network is designed as a
function for state variables. For example, if a linear activation
function is used for a neural network of fully connected layer
Np without a bias node and the state variable vector X is used
as the input of \p, then the output of Ap can be expressed as
a linear equation using one matrix W, such as Np(x) = Wx.
Therefore, if the output of Ap is used as a control command,
Np(x) = u has the same form as a linear controller.

Similar to Np, a deep neural network C can represent a
feedback controller that is a function of the state variable.
Thus, the input to the deep neural network is a state variable
x, and the output can be expressed as u = C(x). Nonlinear
functions such as the rectified linear unit (ReLU) or sig-
moid functions can be used as the activation function of C.
Moreover, C may not be simply a fully connected layer but a
deep neural network with arbitrary structures. Thus, C(x) can
be used as a nonlinear feedback controller with an arbitrary
structure.

VOLUME 11, 2023

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

IEEE Access

C(x) A
R Simulator S
Network

Z

|

| Loss Function 1 H

!

Z | Generative R Controller H
Model Optimizer
[t
Dataset - Z"| Verification 4J
Concatenation |— | Model <

FIGURE 1. Generative verification model for DNN-based controller schematic.

Deep neural network structures are designed with various
types of structures according to the goals to be learned.
For example, deep neural networks that process images,
which are two-dimensional data, use convolutional layers to
extract feature points, and deep neural networks that process
time-series data can use structures such as recurrent neural
networks (RNNs) and long short-term memory (LSTM) [18],
[19]. Likewise, deep neural network controllers for use as
nonlinear feedback controllers should be designed as struc-
tures to improve control performance.

Ill. GENERATIVE VERIFICATION MODEL
In this study, a generative verification model (GVM) is pro-

posed as a methodology for verifying the performance and
stability of nonlinear deep neural network controller models.
Since nonlinear deep neural network controller models are
nonlinear functions with arbitrary shapes, techniques such as
Lyapunov stability analysis methodologies used for stability
analysis in conventional nonlinear controller design method-
ologies cannot be applied. Since the GVM proposed in this
study is applicable to all controllers given in the form of
arbitrary nonlinear functions, it is versatile based on the fact
that it can be utilized even if it is not a deep neural network
controller.

The GVM structure for the controller stability analysis is
shown in Figure 1. The controller stability analysis struc-
ture using GVM consists of three parts: controller optimizer
(CO), generative model (GM), and verification model (VM).
In Fig. 1, the input for CO is the set of time-series data R,
which is used as the reference signal for the controller. The
output of the CO is the simulation result and its evaluation,
including some labels, H. The inputs for the VM are the set
of feature vectors Z distributed in the latent space and the
corresponding set of labels H. A new set of feature vectors
Z* is sampled in VM. GM generates a set of time-series
data R for dataset Z during every iteration. More detailed
explanations of each block represented in Fig. 1 are provided
in the corresponding sections.

VOLUME 11, 2023

Controller Optimizer)

A. CONTROLLER OPTIMIZER

In the CO, the DNN-based controller is trained to have
optimal performance for a given reference trajectory. Thus,
the input of CO is a set of reference inputs. Since the
reference input is a target to be followed by the control
system’s output, it is time-series data with various trajec-
tories. For example, when designing a linear system con-
troller such as a PID controller, a unit step function can be
used as a reference trajectory to evaluate the time response.
Additionally, since LQR aims to regulate the output to zero,
it can be understood that the reference trajectory is a zero
function.

In this study, it is assumed that any shape of time-series
data is given as a reference input, such as a unit step function
or a zero function, rather than a specific shape of refer-
ence trajectories. Thus, CO considers time-series data with
arbitrary shapes of a particular length as a reference input.
The right of Fig. 1 shows a block diagram of CO. R is a
batch of reference inputs given in the form of time-series
data. The CO is implemented as a DNN, where the simulator
network contained in CO performs numerical simulations on
R. The simulator network includes a deep neural network con-
troller model C(x). The time-series dataset S obtained from
numerical simulation is used in the loss function calculation
with R. The deep neural network controller model C(x) is
trained to minimize the loss function. Then, the numerical
simulationresults € S performed with respect to all reference
trajectories r included in the set R, i.e., r € R, are evaluated
and classified. If the simulation result s is satisfactory, then
s € §, C S. Otherwise, s € §¢ C S§. The classifica-
tion result is labeled to obtain A € [0, 1]. H is the set of
labels A.

Meanwhile, the controller model C(x) is optimized by CO
for a given R, and its optimal performance is determined
by the loss function. For example, a loss function can be
designed as Eq. (3). If the DNN-based controller model C(x)
is designed as a fully connected layer without bias and a linear
activation function is used, then the CO-learned C(x) = Wx

5269

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

_______ - (
[/ Pre- \\
1 processing :
! I
! 1
.| Digitize | !
| ! Dense K \
' l 5 Residual %}atent
Input ! I / ector
P : One-hot J | LSTM o
| | Encoding | !
! I
! 1
!]
\\ //
&

Softmax
Dense f Movi - .
Residual l oving 1meseries
Average Output
LSTM
One-hot

Encoding

Variational AutoEncoderj

FIGURE 2. Variational autoencoder.

will be an LQR controller.

1

J =x(t7)Fx(ty) + / ! (xTQx + C(X)TRC(X)) i (3)
4]

However, the proposed CO in this work has versatility
because it allows the consideration of an arbitrary nonlinear
DNN-based controller model C(x) and arbitrary loss func-
tions depending on the control purpose.

A tracking controller is often designed by defining an error
between the signal to be followed and the system output and
designing a regulator for the error dynamics. This method
can also be adopted when designing a deep neural network
controller, but in this study, the state variables x and the
reference signals to be followed r are used as input to the
controller to emphasize the flexibility of the deep neural net-
work controller structure. That is, u = C(x, r). This implies
that any beneficial input to a deep neural network controller
can be used.

Figure 1 shows that the GVM has a structure that iterates
along the direction of the arrow. An R output from the GM is
given as an input to the CO, where a DNN-based controller
model C(x) is trained whenever a new R is given in each
iteration. Meanwhile, the nonlinear DNN-based controller
model trained by the CO results from learning about a given
dataset R and is an arbitrary nonlinear function, so its stability
is not guaranteed by CO alone. In other words, the tracking
performance cannot be guaranteed if new time-series data
¥ ¢ R not included in the dataset used for training are
given as reference input. In this study, GVM, including CO,
is proposed by designing GM and VM to overcome this.

B. GENERATIVE MODEL

GM generates a set R of time-series data. Since R is a training
dataset that CO learns, it contains various forms of time-series
data, making it valuable. GM is a kind of generative model.
The generative model refers to a model that can generate new
data that did not exist previously based on various input data.
For example, training a generative model with time-series
data as input data can generate new data similar to the training

5270

data but not included in the training dataset. These generative
models are usually trained using structures such as generative
adversarial networks (GANs) [20], variational autoencoders
(VAEs) [21], and adversarial autoencoders (AAEs) [22].

GM not only needs to generate new time-series data but
also needs to have a feature space because the VM must
have a vector space to learn the stability region. A machine
learning technique that can create a feature space based on
given data is called feature learning or representation learning
[23]. Representation learning is widely used in fields such as
speech recognition [24], object recognition [25], and natural
language processing [26]. Since the VAE can obtain feature
space by automatically performing representation learning
while training the generative model, VAE is adopted in this
study.

The GM is designed with a VAE structure to generate
arbitrary shapes of time-series data. A VAE is a type of
autoencoder, a structure in which an encoder and a decoder
are connected. The encoder of the VAE has a structure in
which the given input data are compressed and distributed
on a multivariate vector space. Multivariate vector spaces are
referred to as latent spaces or feature vector spaces. Each
input data point is mapped to a point on the latent space,
which is restored by the decoder in the same form as the
input data. Figure 2 shows the structure of the VAE used
in this study. The VAE is trained to minimize reproduction
errors between input data and data restored by the decoder,
such as a typical autoencoder [21]. The difference between
a typical autoencoder and a VAE is that the latter adds a
normalization term to the loss function so that the feature
vectors obtained through the encoder follow a predetermined
distribution in the latent space. Since the Gaussian distri-
bution is considered in this study, the encoder structure,
as shown in Figure 2, includes a node that outputs the aver-
age and standard deviation of the Gaussian distribution. The
decoder of the VAE may be used as a generative model.
Therefore, arbitrary time-series data can be generated by
extracting any point in the latent space and passing it through
the decoder. Meanwhile, output data obtained by decoding

VOLUME 11, 2023

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

IEEE Access

wavelength phase

1]

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

[[
(0] (0]

(a) Colored along wavelength (b) Colored along phase

FIGURE 3. Feature vectors distributed in latent space (n; = 2) of VAE
trained on sinusoidal time-series data.

vectors located at similar positions in the latent space are
similar.

In the VAE, the time-series data given as an input are
compressed and converted into a feature vector on the latent
space. The dimension of the latent space, n; € N, is a hyper-
parameter that may be arbitrarily determined when designing
the VAE. The larger the dimension of the latent space, the
higher the classification performance of the VAE because the
feature vector can contain more information as the dimension
increases. Therefore, using a higher n; is recommended.

In this study, we leverage these VAE features to generate
a set R of reference trajectories. In other words, the role
of GM is to generate various reference trajectories in an
arbitrary form for the control system of CO to learn. The
shape of time-series data that is suitable may vary depending
on the type of control system. To obtain a good GM, a set of
time-series data suitable for the reference trajectory must be
used as training data. This study uses sinusoidal time-series
data with various wavelengths, amplitudes, and initial phases.

In GVM, GM uses a decoder from a pretrained VAE.
Unlike the process of CO learning a new controller in every
iteration, GM 1is not retrained in every iteration. After the
VAE is trained, only the decoder part of the VAE may be
used as a GM. Thus, as shown in Figure 1, for GM, the input
Z is a set of vectors distributed in the latent space. The set
Z is concatenated with the output Z * of the VM, and the
number of elements gradually increases. GM generates a set
of time-series data R for a new Z*, including an existing Z
every iteration.

C. VERIFICATION MODEL

The latent space of the VAE is a vector space from which
the characteristics of time-series data are extracted, and the
distribution of the data on the vector space reflects the charac-
teristics of time-series data. Therefore, decoding two different
feature vectors at similar locations in the latent space results
in time-series data with similar forms of time response. Since
the VAE automatically classifies the feature vectors obtained
by encoding input data, the physical meaning of each dimen-
sion cannot be specified in advance. For example, if a VAE
learns sine waves with various wavelengths and amplitudes
and maps them to a two-dimensional feature vector space,

VOLUME 11, 2023

time-series data with similar wavelengths and amplitudes
may be distributed at similar locations in the feature vector
space. However, the corresponding two-dimensional vector
coordinates do not precisely represent the wavelength and
amplitude.

Figure 3 shows an example of classifying different
sinusoidal time-series data with different wavelengths and
amplitudes into a two-dimensional latent space. It can be seen
that time-series data with similar characteristics are mapped
to similar positions. Moreover, structured data such as sinu-
soidal time-series data can be classified into parameters with
physical meaning, such as wavelength and amplitude. In con-
trast, time-series data with arbitrary shapes cannot be classi-
fied as a finite number of parameters with physical meaning.
However, the VAE automatically extracts statistically similar
features and classifies time-series data.

In this study, the performance region of the control system
is derived by performing binary classification in the latent
space F, utilizing the VAE’s characteristics that it can classify
time-series data with arbitrary forms. The latent space is a
set of reference trajectories Z,(€ F, C F) that the system
output can follow using the deep neural network model con-
troller C(x) and a set of reference trajectories that cannot be
followed.

Subspaces F, and F; of latent space JF represent areas
where the system output can and cannot follow the reference
trajectory using the controller C(x), respectively. If C(x) varies
for the same latent space, then subspaces F,, Fr can change.
Therefore, we express them as F,|¢ and Fr|c.

The inputs of the VM in Figure 1 are Z and H. Here,
Z is the set of vectors z; in the latent space, and H is the
set of labels X; assigned for each vector z;. This label is
determined by evaluating numerical simulation results using
a CO-trained controller C(x). Given an ordered pair (z;, A;) of
data and labels, a binary classification model D(z) that bisects
the latent space using a support vector machine (SVM) can
be derived. D(z) receives the feature vector z; and outputs a
predicted value p;(€ [0, 1]). Since the label A; corresponding
to a given z; in the learning dataset (z;, A;) can vary with the
controller C(x), the D(z) that is learned also depends on the
controller. Thus, it can be expressed as D|¢(z).

Finally, D|¢(z) is used for the performance analysis of the
controller. Since any reference trajectory can be converted to
the feature vector z, D|c(z) evaluates this feature vector to
derive whether it is traceable. The latent space is bisected
by D|¢(z) into Fp|c and Fr|c, where the followable region
Fplc within the latent space F is the performance region of
controller C(x). It can be argued that the tracking performance
and stability of the controller C(x) are statistically guaranteed
within F,|c. The statistical stability is addressed in the fol-
lowing section.

Meanwhile, the output of the VM shown in Figure 1 is
Z*, which is a newly extracted sample set from the latent
space. This new set of samples is obtained by performing
active sampling based on a classification model D|¢ trained
on the VM. Since a new set of samples Z* is added to each

5271

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

iteration of the GVM and accumulates on the entire dataset,
the performance of the controller C(x) trained by the CO
and the classification model D|¢(z) trained by the VM can
gradually increase using more iterations.

IV. STABILITY OF DNN-BASED CONTROLLERS
A. STABILITY FOR NONAUTONOMOUS
SYSTEMS REVISITED
The conventional definition of stability for nonautonomous
systems is revisited to set up the definition of statistical stabil-
ity of DNN-based controllers. A system is described as stable
if starting the system somewhere near its desired operating
point implies that it will stay around the point ever after [3].
In this study, the stability for nonautounumatic systems is
considered because the reference tracking controller u =
C(x, r) includes a predefined reference signal r(¢), which is
a time-varying variable, i.e., an explicit function of time.
Definition 1 (Stability for Nonautonomous Systems): The
equilibrium point 0 is stable at ty if for any R > 0, there exists
a positive scalar r(R, to) such that

Ix()ll <7 =Xl <R Vt =19 “

Otherwise, the equilibrium point 0 is unstable.

The stability in Definition 1 is also known as the stability
in the sense of Lyapunov, and defines the uniformly bound-
edness of the solution.

Definition 2 (Uniformly Ultimately Boundedness for
Nonautonomous Systems): The solutions x(t) of nonau-
tonomous system are uniformly ultimately bounded with
ultimate bound b if there exist positive constants b and c,
independent of to > 0, and for every a € (0, ¢), there is
T = T(a, b) = 0, independent of to, such that

lx(to)ll <a= x|l <b,Vt =19+ T.)

The solution is globally uniformly ultimately bounded if (5)
holds for arbitrarily large a.

In general, the stability in the sense of Lyapunov is insuf-
ficient, and asymptotic stability is required to guarantee the
performance of controllers.

Definition 3 (Asymptotic Stability for Nonautonomous Sys-
tems): The equilibrium point 0 is asymptotically stable at
time ty if the system is stable and 3 r(tg) > 0 such that

Ix(to)ll < r(to) = Ix(D)]| > 0ast — oo 6)

Note that to guarantee the asymptotic stability of the sys-
tem, the time interval of infinity needs to be considered. How-
ever, the verification model can only cover time-series data
of finite length. The concept of statistical stability and binary
stability conditions are proposed in this study for data-driven
controllers and verification models in the following sections.

B. STATISTICAL STABILITY
The definition of statistical stability is presented in
Definition 4.

Definition 4 (Statistical Stability): Consider a domain F,
which is a set of finite-length trajectories x(t), t € [to, tr],

5272

and the initial state x(ty) € U C X, where U is a
bounded set in the state space X of an autonomous control
system in Eq. (I). The control system with a DNN-based
controller u(t) = C(x(t),r(t)) is statistically stable in
Fp C F with respect to a binary stability condition function
Ar(?), h(x(1), u(?))) if M(x(2), y(t)) = true Vr(t) € F, and
X(t1) € U Vt € [, tr].

The binary stability condition function A(r,y) : F —
[true, false]is afunction that evaluates the binary stabil-
ity between two different trajectories of the same time interval
and returns a binary label. If A(r,y) = true, then the two
trajectories are binary stable. If A(r,y) = false, then the
two trajectories are not binary stable, i.e., binary unstable.

Binary stability conditions are proposed to consider the
stability of nonautonomous systems based on time-series data
of finite length. The binary stability conditions can be defined
in various ways. One of the binary stability conditions can be
defined from the stability in the sense of Lyapunov.

Definition 5 (Binary Lyapunov Stability Condition): The
binary Lyapunov stability condition of two different trajec-
tories a(t) and b(t) on the same finite time interval t €
[t0, tr] is considered to be satisfied when the error between
two trajectories, e(t) = a(t) — b(t), satisfies the following
condition.

Vi € [to, 5], lle@] < lle(O)]l)

If the trajectories a and b are vectors, the binary stability
condition is evaluated in an elementwise manner. Note that
the binary Lyapunov stability condition is defined for a finite
time interval. As stated in the previous section, the Lyapunov
stability only guarantees the boundedness of the signal. The
asymptotic stability condition is required for the performance
of the tracking controller. However, asymptotic stability is
only applicable for infinite time intervals, which is inappli-
cable for data-driven controllers that utilize time-series data
of finite length. Another binary stability condition is defined
to overcome this inapplicability. The definition of the binary
integral stability condition is given in Definition 6.

Definition 6 (Binary Integral Stability Condition): The
binary integral stability condition of two different trajectories
a(t) and b(t) on the same finite time interval t € [tg, ty]
is considered to be satisfied when the mean error e(a, b)
between the two trajectories is below a constant threshold .

1

e(a, b) = PA—-

1,
/ ! (a(t) — b(1))%dt < ¢ 8)
fo

The binary integral stability condition requires the integral
error to be smaller than the given threshold, €. The threshold
is a design parameter that the designer can set to obtain a
stability region of satisfactory tracking performance. That is,
it is possible to obtain a stability region of the system that
has a specific supremum value of the integral error. When
the binary integral stability condition is invoked in defining
the statistical stability, the mean error between the reference
trajectory r(¢) and the output trajectory y(¢) is considered.

VOLUME 11, 2023

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

IEEE Access

The term statistical stability implies that the stability is
satisfied in a statistical manner. The binary integral stability
condition in Definition 6 only guarantees the boundedness
of the tracking error during a finite time interval. It seems
insufficient, superficially. However, the statistical stability
is sufficient to guarantee the boundedness during a much
longer length of time for a data-driven controller with a split
invariant loss function.

C. SPLIT INVARIANCE OF A LOSS FUNCTION
Consider a trajectory r(¢), t € [fo, tr]. Splitting r(z) in N;
time intervals gives short trajectories r;(¢) as follows.

ro(1), t € [1, 1]

ri(t), t €[t 1]
r(t) = :)]

ry,—1(t), t € [tn—1,tN, = tf]
Then, the corresponding state trajectory x(¢), ¢ € [19, tr] is
also split as follows.

Xo(1), t € [t, 1]

x1(1), t €[t 1]
x(t) = : (10)

XyN,—1(2), t € [tn—1, tn, = 7]

The split invariant loss function is defined as follows.

Definition 7 (Split Invariance of a Loss Function): For a
reference trajectory x(t), t € [to, tr] and the corresponding
state vector X(t) of the control system in Egs. (1,2) using a
DNN-based controller u = C and the split set of time series
in Egs. (9,10), a loss function J(x(t), X(t)) is split invariant if
the following equation is satisfied.

Ny—1

Z J(xi@), Xi(O)refy,t001 = J(O0@), X)) lrefsg,y,) - (11)

i=0

Definition 7 represents the fact that if a loss function is
split invariant, then the summation of the loss value evaluated
on every split time interval is equivalent to the loss value
evaluated on the concatenated time interval. Therefore, if a
DNN-based controller C is trained for a split invariant loss
function, training with a reference trajectory r(¢), t € [to, tf]
and the initial state X(fp) is equivalent to training with a set of
split time intervals {r;(f)|i = 0, --- , Ny — 1} and the set of
initial states {x(fp), - - - , X(tv,—1)}.

Definition 8 (Permutations of Multiset): For a domain F
that is a set of time-series data of finite length, the set of time-
series data, which is a concatenation of a finite number of
elements from F allowing repetition, is defined as Pyi(F).

Note that F C Pp(F) by definition. The statistical stabil-
ity of a system on a given domain F is expanded to Pp(F)
with the following theorem.

Theorem 1 (Statistical Stability for Permutations of
Multiset): If a control system in Eq. (1) with a DNN-based
controller w = C is statistically stable in a domain of trajec-
tories F and a domain of state vector U C X, then the system
is statistically stable in the domains Py (F) and U.

VOLUME 11, 2023

Proof: Consider a trajectory r(t) € Pyvi(F), t € [to, tf]
constructed by concatenating Ny elements r;(¢), i € [0, Ny —
1] from the domain F. If an arbitrary initial state {o € U is
chosen, then the resulting state trajectory of the system for
the pair (r(), {o) is x(¢), t € [to, tr], where &y = X(fo).
The statistical stability for a pair of trajectory and initial state
(r(?), ¢o) is satisfied if and only if the statistical stability is
satisfied for all of the pairs (r;(¢), & = x(¢)).

Assume that the system is statistically stable for a pair
(ri(1), &) € (F, U). The resulting state trajectory is X;(¢), t €
[#, tir1]. If we choose ¢i+1 = X(ti+1), then ¢4y € U
because of the statistical stability. Then, the system is also
statistically stable for the pair (ri+1(?), &iy+1). Meanwhile,
the system is statistically stable for the trajectory ro(¢) €
F, t € [ty,t1] and the initial state {y = x(fg) € U.
By mathematical induction, the system is statistically stable
for every pair (ri(t), §; = x(t;)) Vi € [0, N; — 1]. There-
fore, the system is statistically stable for domains Pyy(F)
and U. O

Theorem 1 suggests that a DNN-based controller can be
effectively trained with a batch of short time-series data
for the statistical stability of the control system, which is
often operated over a longer timespan. Statistical stability and
binary stability conditions should directly evaluate stability
conditions for time-series data of a given length. However,
the statistical stability of the control system can be secured
for a time interval with an arbitrary length by Theorem 1.
Theorem 1 extends the time interval length to make more
practical use of the statistical stability and binary stability
conditions defined in Definitions 4 to 6.

V. RESULTS

In this section, the entire design framework proposed in
Fig. 1 is realized one by one and interconnected. First, the
DNN-based controller is designed and optimized for the sys-
tem represented in Egs. (1) and (2). Next is realization of the
generative model. Then, the verification model is trained to
obtain the stability region of the system in the latent space of
the GM. SVM is used to train the decision boundary of the
stability region. The training data for VM are labeled using
the binary integral stability condition from Eq. (8). Finally,
the process is iterated as described in Fig. 1 to increase the
performance of the DNN-based controller and reliability of
the stability region. After the process, the resulting optimal
controller can be utilized for a much longer time interval than
the length of the time-series data utilized in the controller
optimization process, as described in Theorem 1. The longer
time-series data are constructed as represented in Egs. (9)
and (10).

A. DEEP NEURAL NETWORK-BASED CONTROLLER
DESIGN AND NUMERICAL SIMULATION

In this study, the proposed deep neural network controller
is trained by applying it to linear systems, and the tracking
performance for reference inputs is analyzed.

5273

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

1) PLANT
The standard second-order system is considered as follows.
Y 2
©) _ On (12)

U(s) s2+2¢wy + o?

The state-space representation of the standard second-order
system can be written as follows.

X = 0 ! X+ 0
T | —w? —2¢w, w? “

= Ax + Bu
v=[01]
= Cx (13)

2) DNN-BASED CONTROLLER

The objective of the controller is to make the output y(¢) track
the given reference signal r(¢). Therefore, the state vector x(¢)
and reference signal r(¢) are given as inputs for the controller.

u(t) = C(x(1), r(1)) (14)

The model structure of the DNN-based controller is shown
in Fig. 4. The model includes fully connected layers with
scaled exponential linear units (SELUs) and sigmoid activa-
tion functions.

In the conventional controller design methodology, it is
necessary to mathematically define the input/output rela-
tionship of the system and then design a control command
that can guarantee mathematical stability and performance.
Therefore, conventional controller design methodologies can
only be used to design controllers by clearly deriving math-
ematical relationships between specific variables and system
outputs. In contrast, DNN-based controllers can select what-
ever information is available as input to deep neural networks,
and it is not necessary to derive mathematical relational
expressions directly for control commands.

Note that the information between the system output y and
state vector X is not given to the DNN-based controller. The
controller is only trained to generate the control command u
minimizing the loss value, a function of the reference signal r
and state vector X. The loss function considered in this study
is given in Eq. (15).

1 rTr
J“”:EA(WP“M% (15)

Note that Eq. (15) is split invariant. Additionally, Eq. (15)
can be directly used for the binary integral stability condi-
tion in Eq. (8). Because the objective is to train a track-
ing controller, the loss function in Eq. (15) minimizes the
error between the reference signal r(¢) and the output y(¢).
Here, the system output is included in the loss function.
However, the system output is not provided as an input for
the DNN-based controller. That is, it can be stated that the
DNN-based controller can achieve the control objective with
limited information.

5274

[Dense Layer (linear)]

A
b ¢
[Dense Layer (linear)]
1 repeat

[Dense Layer (selu)
A

[Dense Layer (sigmoid)]
4

& O

FIGURE 4. Neural-network structure for tracking controller.

Training data example

2
—
0
I E———————
—2
0.0 0.2 0.4 0.6 0.8 1.0
time (sec)

FIGURE 5. Example of training data.

3) TRAINING DATASET

In this study, the DNN-based controller of the structure
described in Fig. 4 is trained. The training data are a set of
fixed-length sinusoidal reference signals with random mag-
nitudes and initial phases. The parameters for training are
summarized in Table 1. Figure 5 shows some example signals
from the training dataset. The different colors in the figure
represent different training data. The number of data points
in the training dataset is 1024.

4) TRAINING RESULT

Figure 6 shows the simulation results for performance verifi-
cation of the trained controller C(x). Several results for ran-
domly generated sinusoidal reference signals are displayed
at once. The different colors in the figure represent different
example cases, and the data with the same color represent
the same case. The training data are time-series data with a
time interval of 0.1 sec and a length of 1 sec. In contrast,
the verification data are time-series data with a length of
20 sec and the same time interval. The validation reference
signals are sinusoidal time-series data with random mag-
nitudes, wavelengths, and initial phases. The training data
have signals with a fixed wavelength of 10 sec only, but
the validation data have signals with various wavelengths.
It can be seen from the simulation result that the DNN-based
controller can track the given reference signal in a small range
of error.

VOLUME 11, 2023

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

IEEE Access

2

1

0

_1)

2700 25 50 75 100 195 150 175 200
time (sec)
(a) Output

60

30

0

~30

—00750 25 50 75 100 125 150 175 200
time (sec)
(b) Control

0.06

0.03

0.00 s

—0.03 “‘

0065025 50 75 100 125 150 17.5 20.0

time (sec)
(¢) Tracking error

FIGURE 6. Tracking simulation examples for trained controller C(x).

TABLE 1. Parameters for system, controller, and training dataset.

Category Parameter (Range of) Value
System ¢ 0.25
Wn 1
Controller Number of repeat blocks 5
Dataset Magnitude of r €[1,2]
Wavelength of r (sec) 10
Time length (sec) 1

In this section, it has been shown that it is possible to train
a tracking controller with good performance using the pro-
posed DNN-based controller structure. However, the tracking
performance cannot be guaranteed for reference signals not
included in the training dataset. In this study, an approach
of performance region analysis using GVM is proposed to
overcome the limitations of DNN-based controllers.

B. REALIZATION OF GENERATIVE MODEL

In this study, the VAE is used for the representation learning
of time-series data and to generate arbitrary time-series data.
The latent space is set to be 3-dimensional. The latent space’s
dimension n; is set in three dimensions because the sinu-
soidal time-series data used for VAE’s training are generated
according to three different characteristics, i.e., magnitudes,
wavelengths, and phases. However, in general, the VAE may
be trained using other types of time-series data, which may
have more complicated features depending on the applica-
tions of the control system. Because it is difficult to visualize

VOLUME 11, 2023

the performance region classified using the SVM in the latent
space where the dimension of latent space is 4D or higher
(n; = 4), n; = 3 is considered in this study. If visualization
is not considered, then it is generally desirable to set n; to
a larger value to enhance the performance of representation
learning.

The latent space of the trained VAE is shown in Fig. 7,
and each feature vector is colored according to the wave-
length and amplitude of the time-series data used for training.
In this study, 215 time-series data with random magnitudes,
wavelengths, and initial phases are used to train GM. The
magnitude is normalized to have values in the range of
[—1, 1]. Note that the feature vectors are classified according
to the wavelength and amplitude. Figure 8 shows a com-
parison between the time-series data (encoder input) used
as input and the time-series data (decoder output) obtained
by reconstruction to check the performance of the trained
VAE. The trained VAE successfully reconstructs the input
data. The decoder part of the trained VAE is used as the GM.
The GM can generate random time-series data in the shape
of a sinusoidal wave with various magnitudes, wavelengths,
and initial phases. In Section V-A3, the training data for CO
included sinusoidal data with a fixed wavelength of 10 sec.
In contrast, in this section, the time-series data generated from
the GM are used to construct the training data for the CO.

C. PERFORMANCE REGION ANALYSIS USING
VERIFICATION MODEL

The performance region analysis using the GVM should be
conducted to guarantee the stability and performance of the
DNN-based controller. The DNN-based controller is repeat-
edly trained with increasing data, and its performance is
improved using the GVM. The performance region in which
the DNN-based controllers’ performance and stability are
guaranteed is also derived.

1) BINARY VERIFICATION USING SUPPORT VECTOR
MACHINE

The VM is designed using the SVM in the latent space of
the VAE. In Fig. 1, the inputs for the VM are the set of
feature vectors distributed in the latent space and the corre-
sponding set of labels. The labels are obtained by evaluating
the simulation results. In this study, the label is determined by
thresholding the loss value from Eq. (15). When the threshold
value is J7, the label A; for feature vector z; is determined as
follows.

if J(ri, yile) < Jr

1
P = 16
! ’ 0 otherwise (16)

where r; is the reference signal decoded from z;, and y;|c is
the tracking simulation output on r; using controller C. The
trained SVM L is directly used to analyze the performance
region of C. Note that Eq. (16) with Eq. (15) is interpreted as
a binary stability condition function from Definition 4 using
the binary integral stability condition on Definition 6.

5275

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

magnitude
1

A

(b) Colored along phase

5 5 » wavelength
10

9

(c) Colored along wavelength

FIGURE 7. Feature vectors distributed in 3D latent space.

~—— encoder input
decoder output N

4 6 4 6 4 6
time (sec) time (sec) time (sec)

FIGURE 8. Reference signal examples generated using GM.

The VM is a machine learning model trained on the latent
space. The true performance region .7-'1’," that satisfies the
statistical stability condition from Definition 4 in the latent
space F exists. However, the true performance region cannot

5276

be attained analytically. Therefore, the VM is proposed in
this study and is utilized to approximate the true performance
region and attain an approximated performance region .

2) ACTIVE SAMPLING

The VM consists of the SVM and an active sampling process.
After training the SVM L using the given dataset (Z, H),
a new set of feature vectors Z ™ is actively sampled. Fig. 1
shows that the output of the VM is Z+. The newly sampled
set ZT is concatenated to the previous set Z to construct a
new set with more elements. Then, H is updated by GM and
CO, and the SVM is trained again. This process is iterated to
retrain the controller C and the SVM L.

The active sampling algorithm is a technique to extract
samples that can make the most significant model change to
the current model £. The sample points can be extracted more
efficiently than the random sampling algorithm using the
active sampling algorithm. Random sampling is conducted
at the very first iteration of the GVM because the active
sampling algorithm requires a trained model £. Refer to [27],
[28], [29], and [30] for detailed explanations of the active
sampling algorithm and its applications on nonlinear system
verification.

3) PERFORMANCE REGION
The performance region of the deep neural network controller
is derived using the GVM in the latent space for reference
signals. The parameters for GVM are summarized in Table 2.
The generated time-series data are multiplied by the magni-
tude scaling coefficient to consider the reference signals of
magnitudes larger than 1. The loss function from Eq. (15) is
used. The time-series data used for training the controller in
Section V-A are sinusoidal signals of features summarized
in Table 1. In contrast, the time-series data used for training
the controller in this section are randomly generated using
the GM. Therefore, the reference signal may not be perfectly
sinusoidal, and the range of wavelength and magnitude differ.

Figure 9 shows the convergence to the correct performance
area of the controller according to the number of iterations.
The sample points used to train £ are shown in the figure. The
label for training the SVM is determined by Eq. (16). The
decision boundary of the SVM is visualized in 2D planes
that are orthogonal to each axis. In the figure, data points
classified to belong to F, are indicated by red circles, and data
points classified to belong to 7 are indicated by blue circles.
The decision boundary of the SVM that divides the stability
region (performance region) J, and the instability region F
is indicated by a dotted line. The threshold J7, which deter-
mines whether each sample is successful or unsuccessful,
selects a value that ensures that only 10% of the total samples
are classified as successful in the first iteration.

An increasing number of samples are used in each iteration.
In each iteration, it can be seen that the newly added samples
using active sampling are extracted near the performance
boundary of £ in the previous iteration. Since the controller

VOLUME 11, 2023

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers I E E E ACC@SS

(c) Iteration 2

(e) Iteration 4

FIGURE 9. Time evolution of SVM decision boundary and labeled samples in latent space.

C is retrained for a given sample in each iteration, labels from Figure 10 shows the feature vectors distributed in the latent
Eq. (16) for a particular sample may vary from one iteration space by coloring according to the log loss value of Eq. (15).
to another. It can be seen that the stability region of the controller is

VOLUME 11, 2023 5277

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

log(Loss)

z2

FIGURE 10. Log loss value of feature vector for trained controller.

TABLE 2. Parameters for training GVM.

Category Parameter (Range of) Value

GVM z € [-5,5]

Time length (sec) 1.5

Magnitude scaling coefficient 10

Plant ¢ 0.25

Wn 1
Controller Number of repeat blocks 5

saturation [-30, 30]

determined according to the characteristics of the reference
signal when comparing this result with the result in Fig. 7.
In other words, the SVM is trained to classify the feature
vectors of small magnitude and long wavelength belonging
to F, and the others belong to Fy.

D. SIMULATION CASE STUDY

In this section, numerical simulations are conducted to inves-
tigate whether the control stability region of the optimal
controller trained using the proposed framework has been
properly derived. In general, it is difficult to analytically
derive the control stability region with linear control theory
due to nonlinearity, such as controller saturation. In this case,
the stability region is often derived through Monte Carlo
simulations. Since the control system considered in this study
is a linear second-order system, it is possible to design a
global optimal controller using a linear controller. However,
it becomes difficult to obtain the boundary of the stability
region of the global optimal controller because the entire vec-
tor space becomes the stability region. Therefore, controller
saturation is considered in this study, and the boundary of the
stability region can be obtained.

In this study, sinusoidal time-series data are used as a
reference signal, so it is possible to check how the data are
classified in the latent space, as shown in Fig. 7. In the figure,
the magnitude of the signal shows a distribution proportional
to the value of zp. Figure 11 shows the simulation results

5278

z =10, 1.0, 2.0]

z=[10, 1.0, -2.0]
z=[10, 1.0, -1.0]

7z =[1.0, 1.0, 0.0]
z=[10,10, 1.0]

error
|
|
|

0.0 2.0 4.0 6.0 8.0 10.0
time (sec)

FIGURE 11. Simulation results for various magnitudes.

for various magnitudes. The tracking error is small for the
reference signals of relatively small magnitudes, and the error
increases as the magnitude increases.

In Fig. 7, the initial phase changes as the location of
the sample point rotates along the circumference of a circle
centered on the origin of the (zg, z1) plane. Figure 12 shows
the simulation results for various initial phases. As expected,
the magnitudes of the tracking error are similar for given
reference signals of various initial phases.

In Fig. 7, the wavelength depends on the distance from
the origin. Figure 13 shows the simulation result for various
wavelengths. As the wavelength of the reference signal short-
ens, the tracking error increases because of the control input
saturation.

When the distribution in the latent space according to the
physical characteristics of the signal is known, it may be
possible to predict or analyze the stability region based on the
information. The stability region shown in Fig. 9 is distributed
for areas with small magnitudes and long wavelengths and
does not seem to be affected by the phase. However, in gen-
eral, the shape of signals trained in GM may not be classified
according to physical characteristics in advance. In contrast,
in this case, by analyzing the stability region obtained through
the GVM, the reference signal characteristics that make it
easier for the controller to follow can be analyzed. Such
characteristics may vary greatly depending on the control
system.

From Fig. 7, it can be seen that the reference signals
are classified in the feature vector space according to the
characteristics of the time series. From Figs. 11-13, it is
shown that the reference signal extracted from the latent
space can be followed using a DNN-based controller, and its
tracking performance depends on the physical characteristics
of each reference signal. Figure 9 shows that the proposed

VOLUME 11, 2023

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

IEEE Access

2z =[1.0, 0.0, 0.0]

7 =[05, 087, 0.0] 7 =[0.5,-0.87, 0.0]
2 =[0.5, 0.87, 0.0] 7 =[10, 0.0, 0.0] 2 =[0.5,-0.87, 0.0]

uv"\ M N ,w»wx
‘Qm v

CRAYIN
Tty

.0 8.0 10.0

error
f=}

0.0 2.0 4.0 6.0 8.0 10.0
time (sec)

FIGURE 12. Simulation results for various phases.

z=[00,00,00]
z=[05,00,00]

z =10, 00, 0.0]
z =15, 00, 0.0]

z =20, 00, 0.0]
z=[2.5,00, 0.0]

error
o

time (sec)

FIGURE 13. Simulation results for various wavelengths.

GVM framework further enhances the performance of the
DNN-based controller while simultaneously deriving the per-
formance domain of the controller. Eventually, the GVM
framework can be used as an effective tool to analyze the
performance of DNN-based controllers.

VI. CONCLUSION

In this study, a novel design framework that can design a
controller using a DNN structure was developed, and the sta-
bility and performance of the designed DNN-based controller
were analyzed using statistical stability. The controller can
be designed as a DNN of arbitrary structures. To derive a
latent space for analyzing stability and performance, repre-
sentation learning of time-series data was performed using a
VAE. The controller can derive a stability region by training

VOLUME 11, 2023

the classification model in this latent space. The proposed
GVM structure uses more data in every iteration to train
the controller and the classification model, improving the
controller’s performance and deriving accurate performance
regions. The proposed controller verification technique dif-
fers from the existing mathematical method and has high
versatility, as there are no constraints on using a specific
type of controller. Since this study focused on proposing a
novel controller design framework, only state variables and
reference values were used as input values for conciseness,
as in the conventional controller design frameworks. As a
further study, a DNN-based controller that uses more types
of input data other than state and reference signals and the
techniques proposed in this study can be implemented to eval-
uate the utility of the DNN-based controller and the proposed
framework.

REFERENCES

[1] C.-T. Chen, Linear System Theory and Design, 3rd ed. New York, NY,
USA: OUP, 1998.

[2] A. Bacciotti, Stability and Control of Linear Systems. Cham, Switzerland:
Springer, 2019.

[3] 1.-J. E. Slotine, Applied Nonlinear Control. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1991.

[4] D. Kim, G. Oh, Y. Seo, and Y. Kim, “Reinforcement learning-based
optimal flat spin recovery for unmanned aerial vehicle,” J. Guid., Con-
trol, Dyn., vol. 40, no. 4, pp. 1076-1084, Apr. 2017, doi: 10.2514/
1.G001739.

[5] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[6] D. E. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs,
NJ, USA: Courier Corporation, 2004.

[7]1 H.-S.Kimand Y. Kim, “Trajectory optimization for unmanned aerial vehi-

cle formation reconfiguration,” Eng. Optim., vol. 46, no. 1, pp. 84-106,

Jan. 2014, doi: 10.1080/0305215X.2012.748048.

S. Lee and Y. Kim, “Optimal output trajectory shaping using Bézier

curves,” J. Guid., Control, Dyn., vol. 44, no. 5, pp. 1027-1035, May 2021,

doi: 10.2514/1.G005887.

[9] E. L.Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. Hoboken, NJ,
USA: Wiley, 2012.

[10] Y. Lee, Y. Kim, G. Moon, and B.-E. Jun, ‘“Sliding-mode-based
missile-integrated attitude control schemes considering velocity change,”
J. Guid., Control, Dyn., vol. 39, no. 3, pp. 423436, 2016, doi: 10.2514/
1.G001416.

[11] J. Lee and Y. Kim, “Neural network-based nonlinear dynamic inver-
sion control of variable-span morphing aircraft,” Proc. Inst. Mech. Eng.
G, J. Aerosp. Eng., vol. 234, no. 10, pp. 1624-1637, Aug. 2020, doi:
10.1177/0954410019846713.

[12] S.Lee, Y. Kim, Y. Lee, G. Moon, and B.-E. Jeon, “Robust-backstepping
missile autopilot design considering time-varying parameters and uncer-
tainty,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4269-4287,
Dec. 2020, doi: 10.1109/TAES.2020.2990819.

[13] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, vol. 10.
New York, NY, USA: Springer, 2013.

[14] M. Kim, B. Jung, B. Han, S. Lee, and Y. Kim, “Lyapunov-based impact
time control guidance laws against stationary targets,” [EEE Trans.
Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1111-1122, Apr. 2015, doi:
10.1109/TAES.2014.130717.

[15] K.-I. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural Netw., vol. 6, no. 6,
pp. 801-806, Jan. 1993, doi: 10.1016/S0893-6080(05)80125-X.

[16] Y. Yueneng and Y. Ye, ‘“‘Backstepping sliding mode control for uncertain
strict-feedback nonlinear systems using neural-network-based adaptive
gain scheduling,” J. Syst. Eng. Electron., vol. 29, no. 3, pp. 580-586, 2018,
doi: 10.21629/JSEE.2018.03.15.

[17] S. Jung and Y. Kim, “Low-power peaking-free extended-observer-based
pitch autopilot for morphing unmanned aerial vehicle,” J. Guid., Control,
Dyn., vol. 45, no. 2, pp. 362-371, Feb. 2022, doi: 10.2514/1.G005998.

[8

5279

http://dx.doi.org/10.2514/1.G001739
http://dx.doi.org/10.2514/1.G001739
http://dx.doi.org/10.1080/0305215X.2012.748048
http://dx.doi.org/10.2514/1.G005887
http://dx.doi.org/10.2514/1.G001416
http://dx.doi.org/10.2514/1.G001416
http://dx.doi.org/10.1177/0954410019846713
http://dx.doi.org/10.1109/TAES.2020.2990819
http://dx.doi.org/10.1109/TAES.2014.130717
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.21629/JSEE.2018.03.15
http://dx.doi.org/10.2514/1.G005998

IEEE Access

S. Lee: Generative Verification Framework on Statistical Stability for Data-Driven Controllers

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

5280

Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent
neural networks: LSTM cells and network architectures,” Neural
Comput., vol. 31, no. 7, pp.1235-1270, 2019. [Online]. Available:
https://direct.mit.edu/neco/article/31/7/1235-1270/8500

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp.1735-1780, Nov. 1997, doi:
10.1162/neco0.1997.9.8.1735.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Commun. ACM, vol. 63, no. 11, pp. 139-144, Oct. 2020. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3422622

D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” Found. Trends Mach. Learn., vol. 12, no. 4,
pp- 307-392, Jan. 2019. [Online]. Available: https://ieeexplore.ieee.
org/document/9051780

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “‘Adversarial
autoencoders,” 2016, arXiv:1511.05644.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6472238/

L. Deng, M. L. Seltzer, D. Yu, A. Acero, A.-R. Mohamed, and
G. Hinton, “Binary coding of speech spectrograms using a deep auto-
encoder,” in Proc. Interspeech, Chiba, Japan, Sep. 2010, pp. 1-4. [Online].
Available: https://www.microsoft.com/en-us/research/publication/binary-
coding-of-speech-spectrograms-using-a-deep-auto-encoder/

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., Stateline, NV, USA, 2012. [Online]. Available:
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68
c45b-Abstract.html

R. Socher, E. Huang, J. Pennin, C. D. Manning, and A. Ng,* “Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection,”
in Proc. Adv. Neural Inf. Process. Syst., Granada, Spain, 2011. [Online].
Available: https://papers.nips.cc/paper/2011/hash/3335881e06d4d230913
89226225e17c¢7-Abstract.html

(27]

(28]

[29]

(30]

S. Lee, Y. Lee, S. Lee, Y. Kim, Y. Han, and J. Park, ‘“Data-
driven capturability analysis for pure proportional navigation
guidance considering target maneuver,” Int. J. Aeronaut. Space

Sci., vol. 22, no. 5, pp. 1209-1221, Oct. 2021. [Online]. Available:
https://link.springer.com/article/10.1007/342405-021-00387-7

S. Lee, S. Lee, and Y. Kim, “Active sampling-based data-driven
reachability verification for proportional navigation guidance
law,” [FAC-PapersOnLine, vol. 52, no. 12, pp.1-6, 2019, doi:

10.1016/j.ifacol.2019.11.060.

J. F. Quindlen, U. Topcu, G. Chowdhary, and J. P. How, “Active sampling-
based binary verification of dynamical systems,” in Proc. AIAA Guid.,
Navigat., Control Conf., Kissimmee, FL, USA, Jan. 2018, p. 1107, doi:
10.2514/6.2018-1107.

J. F. Quindlen, U. Topcu, G. Chowdhary, and J. P. How, “Active sampling
for constrained simulation-based verification of uncertain nonlinear sys-
tems,” 2017, arXiv:1705.01471.

SUWON LEE received the B.S. and Ph.D. degrees
in mechanical and aerospace engineering from
Seoul National University, Seoul, Republic of
Korea, in 2015 and 2021, respectively.

He is currently an Assistant Professor with the
Department of Future Mobility, Kookmin Uni-
versity. His research interests include planning,
guidance, and control systems of missiles, UAVs,
and UAMs.

VOLUME 11, 2023

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.ifacol.2019.11.060
http://dx.doi.org/10.2514/6.2018-1107

