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ABSTRACT It is common to find multiple metaheuristics to solve continuous optimization problems.
However, choosingwhat optimizermay obtain the best results for a given task requires exhaustive evaluations
that are highly application-dependent. Besides, it is necessary to find sufficiently good tuning parameters
to achieve satisfactory performance with the selected approach. In this context, the automatic design of
algorithms, particularly those based on heuristics, has been increasing in popularity in the previous years
due to its undoubted relevance nowadays. This paper explores a novel approach based on hyper-heuristics
to carefully select population-based search operators and their tuning parameters to generate metaheuristics
capable of dealing with a given practical engineering problem. The proposed strategy is assessed using three
highly relevant and illustrative problems: training Artificial Neural Networks, designing PID controllers,
and modeling a calorimetric phenomenon based on fractional calculus. In addition, we implement three
well-known optimization metaheuristics to compare achieved solutions via the proposed hyper-heuristic
strategy, namely Particle Swarm Optimization, Genetic Algorithm, and Cuckoo Search. Results from
extensive numerical tests prove that the customized metaheuristics are generally superior to the three well-
known algorithms, taking only a few iterations to converge to an optimal solution. This is an excellent
indicator of alleviating the effort and expertise required to choose the proper methodology when dealing
with real-valued optimization problems.

INDEX TERMS Metaheuristics, hyper-heuristics, PID controllers, artificial neural networks, fractional
model design, control theory, fractional calculus.

I. INTRODUCTION
Optimization methods have become a research topic of great
interest, especially when designing complex engineering
systems [1], [2], [3]. This may be something other than a
trendy topic shadowed by sophisticated Artificial Intelligence
techniques nowadays. Still, they are the theoretical and
practical cornerstones of many modern applications, even
those sophisticated methods. Technological advances have
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enabled it to develop new engineering processes, leading
to further optimization applications. From a practical point
of view, optimization consists of adjusting or fine-tuning
system design parameters based on one or more performing
functions. Unfortunately, this task is not trivial in many cases,
especially when the estimated searching space is complex,
nonlinear, discontinuous, or presents high dimensionality
[4], [5], [6], [7]. Indeed, most real-world engineering prob-
lems present high design complexity, nonlinear constraints,
and vast solution domains. These issues justify using modern
techniques capable of dealing with challenging optimization
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case studies. One family of these techniques comprises
Metaheuristic (MH) algorithms. MHs have become an alter-
native to gradient-based optimization methods, especially
when the latter evolves into ill-conditioned scenarios during
the running time in the application. Thereunto, MHs are
characterized by their flexibility, versatility, and algorithmic
simplicity when dealing with optimization models [8].

Nevertheless, MHs are not magical. One must know
how to select the most suitable, stable, and fast (if so)
MH for a given case study. Notwithstanding, it is often
necessary to know how to configure its internal parameters
efficiently to obtain the highest method performance in
terms of accuracy and the number of iterations required
for global convergence. The levels of expertise and prob-
lem knowledge of the designer, engineer, or practitioner
play a crucial role in successfully implementing these
methodologies. No matter its flavors, the No-Free-Lunch
theorem still reigns [9]. Various MHs have been proposed
and evaluated over the last decades to solve a colorful
palette of challenging problems [10]. However, some of the
newly developed metaheuristics do not differ substantially
from the general structures of well-reputed and conventional
MHs such as Simulated Annealing (SA) [11], Differen-
tial Evolution (DE) [12], Genetic Algorithms (GA) [13],
Grey-Wolf Optimizer (GWO) [14], and Particle Swarm
Optimization (PSO) [15], to mention a few.

This study considers these robust MHs as basic heuristics
for being analyzed and extracting their Search Opera-
tors (SOs) or simple heuristics to generate metaphor-less
MHs automatically. In particular, we observe that many
SOs are straightforward methodological or mathematical
variations of fundamental optimization blocks, e.g., mutation,
crossover, fitness functions, stopping criteria, and random
searches. Some previous studies have used distinctive func-
tional blocks of impressive methods to develop procedures
to select two or more simple heuristics to obtain improved
MHs in specialized applications [16]. However, finding a
particular MH model with the proper tuning parameters
is complex, and developing new strategies allows us to
coin problem-specific methods or algorithms for problems
sharing certain features. Hence, contemporary engineering
design challenges requiring robust optimization algorithms
are why combinatorial algorithms have emerged in this
direction [17]. The fast progress of hybrid MHs has led to the
development of a new optimization sub-area known asHyper-
Heuristics (HHs) [18]. These also heuristic-based algorithms
deal with high-level problems by selecting and modifying
simple (or low-level) heuristics to, in consequence, find a
good quality solution in the low-level problem domain [19].
In other words, HHs focus on automating the model design
and adapting the existing heuristic methods to address the
search task more efficiently. In addition, these approaches
aim to develop the level of generality at which search
methodologies can operate [20]. Because of such versatility,
HHs have been efficiently implemented in the literature,
such as in combinatorial problems [21]. Looking in this

direction, it is worth highlighting reports implementing HH
models that rely on simple heuristic-based algorithms such
as the so-called SA. The grand reception of Simulated
Annealing as a high-level solver is undoubtedly explained
by its characteristic simplicity, low computation burden, and
remarkable effectiveness [18]. For example, Bai et al. devel-
oped a HH framework for solving two problems related to
flexible decision support, i.e., scheduling university courses
and packing garbage cans [22]. Their results showed that the
SA-based HH improved the performance considerably over a
Tabu-based HH strategy. Likewise, Garza-Santisteban et al.
proposed a high-level solver based on SA for selecting
the best heuristic sequence that fulfills the requirements of
multiple instances of Job Shop Scheduling problems [23].
Moreover, several hybrid approaches incorporating SA-based
processes are easily found in the literature [24], [25], [26]. For
example, Mosadegh et al. presented a hyper-heuristic based
on Q-Learning and Simulated Annealing for dealing with
the mixed-model sequencing problem, including stochastic
processing times in a multi-station assembly line [27].
Nevertheless, we find challenging to find reports in the
literature that address practical engineering applications
with continuous domains as low-level problems using any
hyper-heuristic framework. Still, only a few approaches
have been reported on benchmark continuous optimization
problems [28], [29].

This work studies the implementation and feasibility of
an automatic algorithm design strategy for generating meta-
heuristics tailored for practical engineering applications. In
that regard, we use the hyper-heuristic framework proposed
in [29] and [30] , which contains a collection of search
operators extracted from common metaheuristics and an
SA-based high-level solver. For the practical problems, we
consider trainingArtificial Neural Networks (ANNs), design-
ing Proportional–Integral–Derivative (PID) controllers, and
modeling calorimetric processes via Fractional Calcu-
lus (FC). Therefore, we can structurally select the operators
to generalize a solution and obtain optimal results for the
conditions of each application. Moreover, it counts on high
repeatability and performance to standardize operators for
each task.We observe from the results that theMHs generated
by the HH approach outperform basic MHs. Therefore,
we provide the practitioners with an automatic methodology
for finding MHs to deal with real optimization problems.
So, the principal innovation of our proposal is that the users
require a minimum level of expertise in metaheuristics to find
one suitable for their needs. Plus, the main contributions of
this study can be summarized as follows:

1) Prove the feasibility of the HHs for automatically
designing solvers to deal with practical problems.

2) Illustrate an alternative way, based on metaphor-less
MH, to tackle three dissimilar problem families.

3) Analyze the performance of the generated MH in terms
of accuracy, the number of steps, and repeatability.

This document is organized as follows. Sect. II presents
the theoretical foundations supporting all methods this work
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covers. Sect. III describes the implemented framework to
analyze the case studies. Sect. IV presents a theoretical
overview of the proposed applications and how the imple-
mented methodology deals with them. Finally, Sect. V gives
the most relevant conclusions.

II. THEORETICAL FOUNDATIONS
A. OPTIMIZATION
Optimization, also called mathematical programming,
is focused on estimating the best model parameters that
fit the available data, following some criteria among
existing alternatives. Therefore, an optimization problem
maximizes or minimizes an objective function, achieving the
best outcome in practical scenarios. Strictly speaking, the
optimization methods search and select the best available
values of an objective function, supported mathematically by
the following definitions.
Definition 1 (Arbitrary Problem Domain): Let X ⊆ S

be a feasible domain since S is an arbitrary domain. This
arbitrary domain can be defined according to the problem
one is solving. It depends on the level of abstraction, such
as continuous, combinatorial, and mixed.
Remark 1 (Particular Problem Domains): For continuous

problem domainsS = RD, whereD stands for the number of
dimensions, which is usually fixed and represents the number
of design variables in design problems. For combinatorial
problems S = Zϖ , with ϖ is also the number of dimensions
or cardinality. Formixed domains, we say thatS = RD

×Zϖ .
Lastly, a particular case from the combinatorial domains is
the heuristic space, such that S = Hϖ is the heuristic
space.
Definition 2 (Minimization Problem): Let f (x⃗) be a

function defined on the set X ̸= ∅ such as f (x⃗) : x⃗ ∈ X ⊆
RD
→ R. Therefore, the minimization problem is stated as

x⃗∗ = argmin
x⃗∈X

{f (x⃗)} , (1)

where x⃗∗ ∈ X is the optimal solution that minimizes
the objective function, i.e., f (x⃗∗) ≤ f (x⃗), ∀x⃗ ∈ X. For
the sake of simplicity, we refer to a minimization problem
with the tuple comprising its domain and function, such
as (X, f ).

B. HEURISTICS
A heuristic is a procedure or operator capable of modifying
or generating new potential solutions for optimization
problems. Although one can find several definitions in
the literature, most describe heuristics in combinatorial
optimization domains [31]. However, there are a few cases
in continuous domains [19]. In general, heuristics can
be classified into three groups: low-level, mid-level, and
high-level heuristics [19], [31], which are also known as
Simple Heuristics (SHs), Metaheuristics (MHs), and Hyper-
Heuristics (HHs). In the following lines, we briefly describe
each of these groups; one can find further details in [29]
and [32].

C. SIMPLE HEURISTICS
Simple heuristics are a fundamental part of search techniques.
SHs directly address the problem domain, and usually are
constructive or perturbative. Constructive heuristics generate
novel solutions from scratch, whereas perturbative heuristics
modify or perturb current solutions [33]. However, at the MH
control level, we require that SHs can validate whether the
process should be stopped or continued. In simple terms,
the finalizer is an essential pillar controlling the search
procedure many authors use to define MH [34]. Bearing this
in mind, we briefly describe simple heuristics and their three
categories. These concepts apply to an arbitrary problem
domain S.
Definition 3 (Simple Heuristic): Let H be a set of simple

heuristics, or heuristic space, with a composition operation
◦ : H×H 7→ H. Let Hi, H0, Hf ⊂ H be subsets of heuristics
that produces, modifies, and chooses between two operators,
respectively.
Definition 4 (Initializer): Let hi : S 7→ X ⊆ S be a

simple heuristic that generates a candidate solution x⃗ ∈ X
within the feasible domain from scratch, i.e., x⃗ = hi{X}.
Definition 5 (Search Operator): Let ho : X 7→ X be a

simple heuristic that obtains a new position x⃗(t+1) ∈ X from
the current position x⃗(t) ∈ X, since t indicates the current
iteration. A search operator mostly comprises two basic
operations: perturbation and selection. Hence, let hp, hs ∈
Ho be also simple heuristics (perturbator and selector) that
modify and update the current solution x⃗(t), respectively; then
y⃗ = hp{x⃗} and x⃗(t + 1) = hs{y⃗}. A perturbator always
precedes a selector, so ho = hs ◦ hp.
Definition 6 (Finalizer): Let hf : X × Z2 7→ H be a

simple heuristic that evaluates the current solution quality
and chooses which search operator to apply. To do so, it uses
information about the iterative procedure in a criteria function
cf : (Z+, R, X, . . .) 7→ Z2. Then, hf ∈ Hf is a finalizer given
by

hf (h0) {x⃗} ≜

{
he{x⃗}, if cf (t, f ,X , . . .) = 1,
hf ◦ h0{x⃗}, otherwise,

(2)

since h0 is a search operator and he is the identity operator.

D. METAHEURISTICS
Metaheuristics are commonly defined refined strategies that
control simple heuristics. MHs are in vogue in the literature
due to their proven performance in different challenging
scenarios, outperforming traditional gradient-based strate-
gies [10], [35]. MHs are widely recognized because of their
capabilities and performance in optimally solving complex
engineering models [35]. Some representative MHs include
the Differential Evolution [12], Particle Swarm Optimiza-
tion [15], Cuckoo SearchAlgorithm [36], Spiral Optimization
Algorithm [37], and Grey-Wolf Optimization [14], among
others [38]. Definition 7 formally describes the general
scheme for a metaheuristic according to [32].
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Definition 7 (Metaheuristic): Let MH be an iterative
metaheuristic procedure that renders an optimal solution x⃗∗
for a given optimization task using an objective function f (x⃗)
(cf. Definition 2). This procedure is represented as a finite
sequence of simple heuristics (cf. Definition 3) to be applied
iteratively until fulfilling a stopping criterion, i.e.,

MHo ≜
〈
hi, ho, hf

〉
= hf (ho) ◦ hi, (3)

since hi ∈ Hi is an initializer, hf ∈ Hf is a finalizer, and
ho ∈ Ho is a search operator.

E. HYPER-HEURISTICS
The literature describes hyper-heuristics as high-level heuris-
tics that control simple heuristics in optimization solving
a given case study [18]. A HH either selects or generates
low-level heuristics used to propose hybrid algorithms to
address optimization tasks better. They differ from most MH
applications because they typically work with the solution
search space. So, a HH can be defined, according to Pillay
and Qu [19], as follows.
Definition 8 (Hyper-Heuristic): Let h⃗ ∈ H ⊆ Hϖ be a

heuristic configuration from a feasible heuristic collection H
within the heuristic space H. Let perf(h⃗ | X, f ) : H ×X 7→ R
be a metric that measures the performance of h⃗ when it is
applied on (X, f ). Therefore, a hyper-heuristic is a technique
that solves

h⃗∗ = argmax
h⃗∈H

{perf(h⃗ | X, f )}. (4)

Hence, this technique searches for the optimal heuristic
configuration h⃗∗ that best approaches to the solution of (X, f )
with the maximal performance.
Remark 2 (Performance Metric): There is no unique

expression for determining the performance, perf(h⃗ | X, f )
since it depends on the desired requirements for the heuristic
sequence h⃗. A numerical and practical way to assess this
measurement, due to the stochastic nature of almost all the
heuristic sequences, is to combine different statistics from
several independent runs of h⃗ over the same problem (X, f ).
In this work, we employed the performance metric

perf(X∗) = −(med+ iqr)
({
∀ x⃗r,∗ ∈ X∗|f (x⃗r,∗)

})
, (5)

which comprises the negative sum ofmedian and interquartile
range of the last fitness values f

(
x⃗∗,r

)
achieved in Nr runs,

r = 1, . . . ,Nr , of the same solver.

III. METHODOLOGY
All the experiments in this work were carried out in
Python v3.9 running on an ASUS TUF Gaming F17 with
AMD Ryzen™ 7 Processor 5700G @ 8 CPU Cores, 16GB
RAM, and Windows 10 64-bit. We used the framework
CUSTOMHyS v1.0 at https://github.com/jcrvz/customhys
and described by Cruz-Duarte et al. to implement the HH
search [30]. Figure 1 summarizes the proposed methodology
for obtaining optimal metaheuristics for three case studies.
For this purpose, we employed Simulated Annealing (SA) to

FIGURE 1. Hyper-heuristic methodology implemented to generate
optimal metaheuristics for three practical problems.

TABLE 1. Collection of search Operators employed as the heuristic space.
These are composed by a perturbator, its tuning parameters, and a
default selector, which can be changed.

power our approach, which has been widely implemented as
a high-level solver for hyper-heuristic applications and is also
coded in CUSTOMHyS [30].

This SA-based HH requires the initial hyper-parameters
(such as initial temperature, cooling rate, number of steps, and
stagnation count), the low-level optimization problem (X, f ),
and the heuristic space (collection of search operators). For
the hyper-parameters, we have utilized those provided by
default in CUSTOMHyS [30]. Concerning the high-level
problem domain, we employed the heuristic space summa-
rized in Table 1. These search operators are composed of a
perturbator and a selector.
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Their names are often related to the MH from which they
were extracted.

Now, in the high-level problem domain, we utilized a
collection of 205 SOs as the heuristic space. This domain is
briefly shown in Table 2, where we regard different variations
and predefined values for the heuristics tuning parameters
according to the data summarized in Table 1. In Table 2, each
row groups four versions of the same operator but with a
systematic variation of the selector, such as Direct, Greedy,
Metropolis, and Probabilistic, except the first row, Random
Search, which has a predefined Greedy selector. For the eager
reader, Cruz-Duarte et al. provide further details about this
collection [30].

In addition, Pseudocode 1 describes the procedure asso-
ciated with the proposed methodology shown in Figure 1.
Consider that all the terminology, symbols, and concepts
employed are coherent with the theoretical foundations
presented in Sect. II. In simple words, the automatic design
strategy of metaheuristics proposed in this work corresponds
to the well-known Simulated Annealing as a hyper-heuristic.
Such a fact is easy to notice from the backbone of
Pseudocode 1, where the first block stands for initialization.
Then the candidate heuristic sequence is modified and
evaluated in the low-level problem in the main loop, followed
by the Metropolis selection criterion. All is repeated until the
temperature variable reaches a minimal value or the overall
procedure is stagnated. The slight but substantial difference
between this SA implementation with a typical one is the
heuristic space exploration. This process is carried out by
performing a randomly selected action from an action set (i.e.,
add, delete, and perturb) to find a candidate neighbor. Addi-
tional details about this implementation can be found in [29]
and [30]. Bear in mind that for this work, we slightly adjusted
the methods provided by the CUSTOMHyS framework to
study the feasibility of this strategy on practical engineering
problems, represented by (X, f ).
Lastly, the three case studies chosen for this work

were applications related to Feedforward Neural Networks,
Control Systems, and Thermal Modeling based on Fractional
Calculus. Each of these cases is detailed in the next section.
Nevertheless, it is essential to highlight that each case study
has different problem dimensionality. Besides, we repeated
each optimization process 50 times to ensure statistical
significance, and we used a population size of 30 and a
maximum of 30 hyper-heuristic steps. Plus, we analyzed
the performance of MHs generated by the hyper-heuristic
approach against three traditional MHs from the literature for
each of the three case studies. These metaheuristics are Par-
ticle Swarm Optimization (PSO), Cuckoo Search (CS), and
Gravitational Search Algorithm (GSA). We selected these
MHs due to their implementations in similar applications
[39], [40], [41], [42], [43], [44], [45], [46], [47].

IV. PRACTICAL APPLICATIONS
This section describes the three case studies we selected to
illustrate the automatic design of metaheuristics. We carried

TABLE 2. Collection of 205 search operators employed in this work. Each
row systematically groups four versions of the same operator, varying the
selector (such as Direct, Greedy, Metropolis, and Probabilistic), except for
the first row that corresponds to Random Search with a Greedy selector.

out all the experiments from these cases following the
methodology described above, and particularities are speci-
fied when necessary.

A. TRAINING FEEDFORWARD NEURAL NETWORKS
The first practical case study concerns a Machine Learn-
ing application, as follows. A Feedforward Neural Net-
works (FNN) is a particular architecture type of Artificial
Neural Networks (ANNs) [48], [49], [50]. Their main
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Pseudocode 1Automatic Design of Metaheuristics Based on
Simulated Annealing for Practical Engineering Applications
Input: Practical problem’s domain X and objective function f (x⃗). Heuristic

space Ho, initializer hi, finalizer hf , performance metric perf (X∗),
population size N , and action set A. Initial 20 and minimal 2min
temperature, cooling rate δ, maximum cardinality ϖmax, maximum
number of iterations tmax, and stagnation threshold nmax.

Output: Best metaheuristic ⟨hi, h⃗∗, hf ⟩

1: h⃗← Init(Ho) ▷ Initialize with uniform randomly selected heuristics
2: h⃗∗ ← h⃗, n← 0, and 2← 20 ▷ Initialize other variables
3: Q← EvalPerformance(h⃗)

4: while 2 > 2min and n ≤ nmax do
5: a← Choose(A) ▷ Choose randomly an action considering ϖ

6: h⃗c ← a{h⃗} ▷ Apply the action to find the candidate neighbor
7: Qc ← EvalPerformance(h⃗c)

8: n← n+ 1 ▷ Increase the stagnation counter
9: if r ∼ U (0, 1) ≤ e−(Qc−Q)/2 then ▷Metropolis selection
10: h⃗∗ ← h⃗c and Q← Qc ▷ Update the current solution
11: n← 0 ▷ Reset the stagnation counter

12: 2← 2(1− δ) ▷ Decrease the temperature

13: return ⟨hi, h⃗∗, hf ⟩ ▷ Return the best metaheuristic

14: function EvalPerformance(h⃗)
15: X∗ ← ∅ ▷ Initialize the set of solutions
16: for r = 1 to Nr do ▷ Perform repetitions required in (5)
17: x⃗r,∗ ← EvalMH(h⃗c) ▷ Use ⟨hi, h⃗c, hf ⟩ to solve (X, f )
18: X∗ ← X∗ ∪ {x⃗r,∗} ▷ Save the current solution

19: return perf (X∗) ▷ Return the performance using (5)

20: function EvalMH(h⃗)
21: t ← 0 ▷ Initialize iteration counter
22: X ← {hi{X} | ∀ n = 1, . . .N } ▷ Initialize population
23: F ← {f (x⃗n) | ∀ x⃗n ∈ X} ▷ Obtain fitness values
24: x⃗∗ ← x⃗k ∈ X since k = argmin{F} ▷ Current best
25: while hf {x⃗∗} do ▷ Apply the finalizer
26: t ← t + 1 ▷ Increase iteration counter
27: for o = 1 to ϖ do ▷ Apply the ϖ = #h⃗ search operators
28: hp, hs ← ho ∈ h⃗ ▷ Read perturbator and selector
29: X ,F ← hp{X} ▷ Apply the oth perturbator
30: x⃗∗ ← hs{X} ▷ Apply the oth selector

31: return x⃗∗(ϖ ) ▷ Return the best candidate solution

attraction remains in letting us perceive the computational
models structurally to simplify their analysis. So, the
neuronal interconnections in this architecture generate a
unidirectional information flow, i.e., the signal never passes
more than once through a neuron before generating the output
response, as shown in Figure 2.

FNNs have become famous for several reasons. First, they
usually generalize well in practice [51], i.e., when trained
with a large data set, they often provide a correct output for
an input not contained in such a training set. Second, the
neural training is performed with a reliable algorithm, the
well-known Back-Propagation, in a reasonable number of
iterations [52]. This algorithm is used to compute the gradient
of all weights errors for a given input by propagating the error
backward throughout the network. In the end, the training
process concludes by determining the optimal weights and
biases in the neuronal architecture.

FIGURE 2. Illustrative example of a Feedforward Neural Network.

Keeping this in mind, in the first case study, we considered
the problem of generating an optimal metaheuristic algorithm
for training an FNN; i.e., for computing the optimal network
weights and biases. In this case, the objective function
to minimize is the Negative Log-Likelihood function [53],
defined as follows,

L = −
n∑
i=1

(
yi log ŷi + (1− yi) log

(
1− ŷi

))
. (6)

This function computes the error between actual values yi and
the predictions ŷi.
In this case study, we estimated the weights and biases of

the neural network architecture using the new metaheuristics
generated by the HH framework to obtain repeatable results
and good classification accuracy. Firstly, the IRIS dataset
containing three classes of IRIS species (setosa, virginica,
and versicolor) is loaded. This dataset is quite balanced,
containing 50 samples per class. Besides, each sample is
represented by a four-feature vector (sepal length, sepal
width, petal length, and petal width). Moreover, Figure 3
shows the analyzed neural network architecture, which was
composed of an input layer with four neurons, a hidden
layer with 20 neurons using the tanh activation function, and
an output layer with three neurons employing the softmax
function.

The cost function in (6) was limited to using 30 steps in
the HH framework as a computing budget, so we obtained
different responses for each step performed. Figure 4 shows
the first visualization of the preliminary experiments from the
HH searching procedure.

The HH procedure generally tends to achieve a meta-
heuristic solver with great fitness statistics, represented by
a lower dispersion and median of the fitness values. This
trend is observed in the upper-right chart, where the violin
plot shows the fitness output after running 50 times for each
MH candidate. In particular, Figure 4 (upper left) depicts
how the first MH candidate evolves over time, presenting
the most significant dispersion and high stagnation. The
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FIGURE 3. Architecture of the Feedforward Neural Network implemented for solving the IRIS
classification problem as the practical application of automatic design of metaheuristic algorithms.

FIGURE 4. Fitness evolution throughout the optimization procedure. The
upper-right figure shows the violin plot for each HH step, whereas the
others display the MH iterations while tuning the neural network. These
MHs correspond to the candidate sequences at the HH steps 0, 6,
and 26.

intermediate Step 6, Figure 4 (lower-left), exhibits how the
MH candidate improves its solving procedure but cannot
reach a satisfactory and convergent fitness value under
the imposed number of iterations. After 26 steps, the last
MH candidate performance is significantly better, as shown
in Figure 4 (lower-right). In this case, each replica in
the 26th hyper-heuristic step (each MH run) converged to
the performance value of 0.146897252. Recall that this
performance metric is associated with the combination of
statistics: the sum of the median and the interquartile range of
the last fitness values generated in several independent runs
on the same problem (cf. (4)).

TABLE 3. Statistics in terms of accuracy of the different neural network
training tests with the IRIS database performed with the classical MH and
the MH∗ generated by the HH framework for 50 repetitions.

From these results, the best metaheuristic for tuning
the studied neural network corresponds to {h116, h22, h168}
(cf. Table 2), where these search operators are:

• h116–Perturbator: Genetic Crossover with coefficients
equal to 0.5 and a mating pool factor of 0.4; Selector:
Metropolis.

• h22–Perturbator: Differential Mutation with a scale
factor of 1.0; Selector: Metropolis.

• h168–Perturbator: Random Search with a scale factor of
0.01 and a uniform distribution; Selector: Metropolis.

Once a candidate MH is generated, we test its performance
by carrying out 50 repetitions with a population of 30 agents
and up to 250 iterations. Furthermore, three classical MHs,
PSO, CS, and GSA, were selected for comparison purposes.
For these MHs, the same values of agents and number of
iterations were also assigned.

Table 3 displays the statistics for the accuracy achieved
from the classical MHs and the one tailored for this case
study. In the case of MH∗, an accuracy value of 0.9932 was
achieved, surpassing those obtained by PSO, CS, and GSA.
In addition, when repeating the experiment, the standard
deviation presented a value of ±6.6633× 10−4, indicating
a low value of the dispersion of the data. With these
results, we can ensure that the generatedmetaheuristic (MH∗)
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FIGURE 5. Accuracy for the classical metaheuristics (PSO, CS, and GSA)
and the tailored MH∗ from the hyper-heuristic procedure during the
neural network training.

substantially exceeds the classical MH for the case of neural
network training.

This degree of repeatability obtained is desired for this
type of application. To have a clearer view of this test,
we can observe Figure 5. This box plot shows the accuracy
of data obtained in the different repetitions. MH∗ presents
the same accuracy value in almost all the repeats except
for one occasion, which gave a value of 0.98. If we look
at the classical MHs, we can see good results for CS and
PSO with an average accuracy of 0.89 and 0.94, respectively.
Although the accuracy values of this MH are good, they
do not guarantee that we will obtain the same result when
repeating the experiment. Finally, the algorithm that brought
the worst results was GSA which presented an accuracy of
0.73, a positive asymmetry of its data, and a high dispersion
of values between 0.6 and 0.98. These results verified what
we observed in Figure 4, where the fitness function converges
to a value close to zero at step 26.

B. DESIGNING CONTROL SYSTEMS
The second practical engineering problem lies in control
theory, the cornerstone of almost all modern technologies.
Automating industrial processes requires reliable method-
ologies to control systems to increase production and
perform tasks efficiently. The correct implementation of these
controllers indeed ensures desired performance for the auto-
mated systems. In general, Proportional Integral and Deriva-
tive (PID) controllers are themost widely used in the industry,
mainly because they can handle systems with various plants
with Multiple Inputs and Multiple Outputs (MIMO) [54].
PID controllers frequently work well in relatively simple
industrial processes, but problemsmay appear when handling
complex nonlinear systems. For this reason, optimization
methods have become significant in control design, allowing
the adaptive tuning of control parameters so that the systems
respond efficiently to uncertainties [2]. In this context,
various Metaheuristics (MHs) have been implemented for
tuning control gains to obtain the desired performance.
For example, Particle Swarm Optimization [55], Genetic
Algorithm [56], and Cuckoo Search [57] have proven to be
great alternatives that outperform traditional control design

FIGURE 6. Response of a simple uncontrolled Mass-Spring-Damper
System to a step input.

methods. Although MHs usually give good results, they
only sometimes succeed in fitting every type of controller.
In addition, inadequate fitting can cause problems in the
analysis of stability and repeatability of the results. Hence,
one can use a hyper-heuristic procedure for tailoring the
MH that best fits as the problem solver to guarantee the
stability and repeatability of the estimated solutions for any
well-described model.

In the context of this case study, we considered the tuning
problem for controlling a simplemechanical system, such as a
Mass-Spring-Damper (MSD) arrangement, which is modeled
via a second-order differential equation as shown,

m
d2y
dt2
+ b

dy
dt
+ ky = fext, (7)

where m [kg] is the mass, b [kg/s] is the damping coefficient,
and k [N/m] is the stiffness. Before continuing, let us consider
the numerical solution of an uncontrolled MSD system,
with m = 2 kg, b = 0.6 kg/s, and k = 1.2 N/m,
while facing an impulsive force fext = δ(t) N, as depicted
in Figure 6. We chose these values only for illustrative
purposes. To analyze better this resulting signal, we must
consider the characteristic features such as the settling time
Ts [s], the estimated overshoot at the current controller
L1 [%], the reference overshoot L0 [%], the relative error
between the input and output of the current controllerEss [%],
and the relative error between the actual and reference settling
time ETs [%]. The behavior from Figure 6 reveals a high
overshoot L1 = 58%, a long stabilization time Ts = 28 s,
a steady state error Ess < 0.1%, with a simulation time of at
least 40 s.

With this simple simulation, we easily evidence the need
to control the dynamic system using a PID controller. So,
we implemented a hyper-heuristic approach for finding the
optimal metaheuristic algorithm for tuning this controller.
Figure 7 presents the overall process we carried out using a
signal flow diagram. Using this methodology, we aimed to
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FIGURE 7. Overall hyper-heuristic process implemented for generating a
metaheuristic for tuning a PID controller.

FIGURE 8. Numerical simulation of the damped spring-mass model with
a PID controller.

achieve significant efficiency and stability for both the MH
and the controller. The gains KP, Ki, and Kd are determined
by the metaheuristic automatically designed by the hyper-
heuristic procedure. Each potential solution for this PID
controller is simultaneously tested in the dynamic system to
obtain the characteristic output features (i.e., L1, Ts, ETs, and
Ess). To do so, we implemented the following cost function,

f (L1,Er1,Er2) = α
|L1−Lo|

Lo
+ β|ETs| + γ |Ess|, (8)

since α, β, γ ∈ R+, such that α + β + γ = 1, are
regularization parameters to balance the relevance of each
output feature error.

The MSD system is regulated by tuning a PID controller
to obtain an overshoot of 5%, a settling time of 3 s, and
zero steady state error for a Heaviside step input. Thus,
the corresponding MSD model was analyzed with Simulink
using the diagram shown in Figure 8.
Once the HH procedure has been implemented, we analyze

the cost function defined in (8). This will allow us to optimize
the PID controller parameters and thus obtain the requested
system characteristics (overshoot, settling time, and steady-
state error).

We then proceed to find a custom metaheuristic for this
problem. Each generated MH uses a population size of
30 and a maximum of 50 iterations. Besides, a maximum of

FIGURE 9. Fitness evolution throughout the HH procedure. The
upper-right graph shows the violin plot for each HH step, while the others
display the MH iterations while tuning the PID controller. These MHs
correspond to the candidate sequences at steps 0, 14, and 23,
respectively.

30 steps is used during the HH search to achieve the optimal
solver. Figure 9 shows a reliable hyper-heuristic tendency
to obtain a performing MH solver. First, the upper-right
plot of Figure 9 exhibits each step’s dispersion profile
during the hyper-heuristic search. It is worth noting that
the interquartile measure started at step zero with a value
of 0.84 and finalized with a remarkable 0.02 at step 23.
Figure 9 (upper left) reveals the MH behavior given by
the HH framework’s first step. As expected, this generated
MH presents the most significant dispersion in all the HH
evolution. The lower-left plot in the figure displays the MH
tailored from step 6, remarking a considerable improvement
in its performance. Lastly, Figure 9, lower-right plot, depicts
the results evaluation of step 26, corresponding to the tailored
MH with the best performance.

Once the steps and replicas in the HH process are
completed, the final customized MH for this case study is
defined by the sequence {h141, h144, h108} (cf. Table 2), which
is detailed as follows:
• h141–Perturbator: Random Flight with a scale factor of
1.0 and a Lévy distribution; Selector: Probabilistic.

• h144–Perturbator: Random Flight with a scale factor of
1.0 and a Uniform distribution; Selector: Metropolis.

• h108–Perturbator: Genetic Crossover with coefficients
equal to 0.5 and a mating pool factor of 0.4; Selector:
Metropolis.

Now, concerning the best metaheuristic achieved from this
hyper-heuristic search, we test it to verify the performance
of the tuned PID controller. Table 4 shows the results in
estimating the KP, KI , and KD coefficients of the PID
controller. To gather this information, we repeated the
experiment 100 times to check the numerical stability and
high accuracy of the generated MH. From that, we noticed a
very low standard deviation. This behavior guarantees a high
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TABLE 4. Statistical analysis for PID Control Parameters obtained by
implementing the tailored metaheuristic.

FIGURE 10. Cost function profile versus the number of repetitions. The
blue dotted line represents the maximum obtained value, while the green
line is the smallest value. The red dotted line represents the average of all
experiments.

degree of repeatability, which is sought after when tuning this
type of controller. In addition, Figure 10 shows the statistical
information related to the cost function values. From this
information, we notice a low dispersion in all the replicas
carried out, i.e., a mean value of 4.7564×10−5 and a standard
deviation of 1.2337× 10−9.

Next, the designed PID controller is applied to the Mass-
Spring-Damper system to verify that the controlled response
satisfies the requirements. Plus, we implemented PSO and
CS to solve the design problem of this case study, employing
the same specifications of iterations and population as in the
tailored metaheuristic MH∗. Figure 11 illustrates the curves
corresponding to the behavior achieved by implementing the
PID controllers obtained from each metaheuristic algorithm.
In this figure, the horizontal red dotted line limits the
observed overshoot of the controlled system, reaching a value
of 4.9991%. Note that the vertical red dotted line corresponds
to the settling time with a value of 2.996 s, representing a
zero steady-state error. Moreover, Figure 11 shows a zoomed
oval at the results precisely in the overshoot. Here, we quickly
observe that the controllers generated by PSO and CS achieve
overshoots of 5.1352% and 5.145%, respectively. Although
the results obtained by PSO and CS were good, the tailored
metaheuristic MH∗ presents higher precision and accuracy
than the classical MHs.

C. MODELING FRACTIONAL THERMAL SYSTEMS
This work’s last but not least case study comprises the
fractional-based modeling of a non-conventional calorimetric
process for electronic thermal management applications.

FIGURE 11. Transient profile of the system controlled by a PID controller
tuned with classical metaheuristics (PSO, CS) and the tailored
metaheuristic MH∗.

FIGURE 12. Schematic of the non-conventional calorimeter for assessing
the thermal heat power that a microelectronic device produces.

We used the ordinary model and the prototype device of
this non-conventional calorimeter originally reported in [58].
Figure 12 shows a schematic of the non-conventional
calorimeter, and the model corresponding to the temperature
of the working fluid is given by

dθ

dt
+

θ

RC
=
Q̇
C

, (9)

where θ [◦C] is the temperature, R [K/W] is the equivalent
thermal resistance, C [J/K] is the heat capacity, and Q̇ [W] is
the heat power generated by the Device Under Test (DUT).
Regard that a DUT can be a prototype electronic device or a
simple breadboard circuit, among others.

It is easy to notice that the model in (9) is an ideal-
istic approach for a practical device with a multi-physics
behaviour. For this reason, Cruz-Duarte et al. developed a
sophisticated signal processing algorithm to effectively mea-
sure entering the working fluid [58]. Therefore, we propose
a different alternative to model this process, starting from
this simple model but taking advantage of fractional calculus.
This area has proven its strength in describing practical and
noisy engineering scenarios [59], [60].
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Fractional Calculus (FC) is considered a generalization of
the well-known integer-order calculus because it comprises
derivatives and integrals with non-integer orders. Indeed,
these operators go beyond orders with real numbers, such
as complex quantities [61]. As we mentioned before, this
tool has helped model sophisticated phenomena or systems,
for example, those related to thermal processes [62] and
ultracapacitor discharging cycles [63]. Different fractional-
based operators have been proposed in the literature. Some
of the most popular ones are Caputo-Dzhrbashyan [64],
Riemann-Liouville [65], and Grünwald-Letnikov [66]. Each
of these operators has different mathematical properties,
which one needs to examine and adjust to align with the
problem under analysis.

In this work, we used the Caputo-Dzhrbashyan deriva-
tive [67], a variant of the Riemann-Liouville operator. This
operator is formally defined by

CD
0 Dα

t z(t) =
1

0(1− α)

∫ t

0
(t − τ )−α dz

dt

∣∣∣∣
t=τ

dτ, (10)

where z(t) : R → R is an arbitrary real function and
α ∈ [0, 1] is the fractional-order. Expression (10) is used
because it adds a versatile transformation kernel, widening
the number of applications involving fractional-order differ-
ential equations [68].

Keeping the simple model using heat transfer concepts and
traditional calculus and the Caputo-Dzhrbashyan derivative,
we can easily restate the equivalent fractional-order model
such as,

CD
0 Dα

t θ +
θ

RC
=
Q̇
C

, θ(0+) = θ0. (11)

To find the solution for this fractional differential equation,
we utilized the Mittag-Leffler function, which is considered
as an natural extension to the Euler function [69]. The
resulting expression, the fractional-order model, is given by

θT (t) = θ0 + RQ̇tαEα,α+1

[
−

(
t
RC

)α]
, (12)

since the relative temperature θ (t) = θT (t)−θ0 is included to
consider variations at room temperature θ0, this leads to real
temperature θT (t) estimation.

Lastly, the fractional model in (12) describes the tem-
perature behavior of the working fluid contained in the
calorimeter’s reservoir during a microelectronic heat power
estimation analysis. The problem in this case study is finding
the optimal value for the fractional order α to fit the
experimental temperature data better and, naturally, describe
the calorimeter plant. This is possible via the so-called least
squares problem, such as

x⃗∗ = argmin
x⃗

{
m∑
i=1

[
θ̂i − θT (x⃗, t̂i)

]2}
, (13)

where x⃗∗ stands for the design vector comprising the
parameters that describe the calorimeter’s model. In our
particular case, x⃗ = (θo, Q̇,R,C, α)⊺. Moreover, 2̂ ∋ θ̂i is

FIGURE 13. Distribution of temperature sensors used by the
non-conventional calorimeter to measure the temperature inside the
working fluid and the air in the main chamber.

FIGURE 14. Average temperature behavior recorded by sensors inside the
working fluid.

the dataset with experimental measurements of the working
fluid temperature during the analysis of a particular DUT;
T̂ ∋ t̂i corresponds to the temporal stamps associated
with temperatures 2̂. These data were achieved using the
prototype presented in [58] and the distribution for the
temperature sensors depicted in Figure 13. Plus, Figure 14
shows an illustrative example of the raw temperature data
captured from a 150 � resistor with 10 W power and
energized with a 45 V voltage source as the DUT.

It is well-known that the problem stated in (13) is a
non-linear regression easy to solve via a soft-computing
methodology such as a metaheuristic (MH). The challenge
was finding the proper method to solve the low-level
problem, which was possible by employing the methodology
described in the previous section. To solve the fitting problem,
we defined a population of 40 agents performing up to
100 iterations and using up to three search operations per
iteration. Figure 15 shows the HH search in tailoring the
optimal MH (the upper-right plot), and the other three
curves detail particular HH steps from the perspective of
the metaheuristic evolution. Likewise the previous case
studies, this HH procedure follows the same pattern toward
minimizing the mean squared error. As one may notice,
the HH evolution is faster in this practical application than
in other case studies. For example, we rapidly observe
that 30 iterations are enough for reaching a good fitness
value in the 10th step of the hyper-heuristic search; cf. the
lower-left plot in Figure 15. Finally, this process obtained
the best results at the 17th step, where the dispersion of
the fitness values (mean squared error) is substantially
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FIGURE 15. Evolution of the mean squared error values when finding an
optimal metaheuristic that fits the fractional-based calorimetric model.
The upper-right plot stands for the HH perspective, and the others for the
MH one.

TABLE 5. Estimated parameters of the fractional-based calorimetric
model using the optimal metaheuristic automatically tailored by the
hyper-heuristic methodology.

smaller when compared to the initial candidate metaheuristic.
Quantitatively speaking, the interquartile range of the fitness
values started at 12.05 in the first HH step and ended at 0.12,
with the last step corresponding to the optimal MH for this
problem.

Once the steps and replicas in the HH process are com-
pleted, the final generated MH is defined by {h4, h148, h101}
(cf. Table 2), corresponding to the following search operators:

• h4–Perturbator: Central Force Dynamic as the perturba-
tor; Selector: Metropolis.

• h148–Perturbator: Random Flight with a scale factor of
1.0 and with Gaussian distribution as the perturbator;
Selector: Direct.

• h101–Perturbator: Genetic Crossover with coefficients
equal to 0.5 and a mating pool factor of 0.4; Selector:
Metropolis.

The experiment mentioned above was repeated 50 times to
guarantee statistical robustness, so we estimated the param-
eters of the fractional-based calorimetric model summarized
in Table 5. For each model’s parameter, we present the best,
mean, and standard deviation values since the best column
corresponds to that configuration rendering theminimalMSE
of 0.1903.

FIGURE 16. Comparison of fractional and traditional models against the
experimental data.

FIGURE 17. Performance evaluation of some classical metaheuristics
(such as PSO, CS, and GSA) and the tailored MH∗ via the hyper-heuristic
procedure. All the metaheuristics were employed for estimating the
parameters of the fractional-based calorimetric model.

Furthermore, Figure 16 displays the comparison between
the fractional model achieved by the generated meta-
heuristic and the traditional model achieved via the
Levenberg-Marquart optimization method. We also show
the experimental data for contrasting these behaviors.
We obtained the traditional model by solving a first-order
differential equation, whose solution is a trivial exponential
function. Figure 16 shows a close-up of the final part of the
graph, where the fractional model can fit the experimental
data more accurately.

Lastly, as we did in the previous case studies, we imple-
mented three well-known metaheuristics from the literature
to compare their performance against the designed algorithm
for this problem. The new generated MHs showed a better
performance regarding the number of iterations andminimum
error, as shown in Figure 17 (blue line). Also, we detected no
stagnation due to the stoppage of this MH. It is noteworthy
that the PSO, CS, and GSA were tuned and conditioned
according to the literature. Besides, the population size was
increased from 30 individuals to 60 for the classical MHs
to compare the algorithms satisfactorily. The minimal fitness
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achieved by the generated MHwas 0.1903, while PSO, GSA,
and CS reached 0.2301, 0.2542, and 0.2683.

V. CONCLUSION
This paper proposed a novel and practical methodology to
automatically design Metaheuristics (MHs) through a Hyper-
Heuristic (HH) procedure for solving practical optimization
engineering problems. The HH process is powered by the
so-called Simulated Annealing algorithm, which searches
within the heuristic space for a sequence that, at a lower
level, explores the continuous problem domain to find the
optimal solution. Therefore, we provided the practitioners
with an automatic methodology for finding MHs to deal with
real optimization problems. So, due to the nature of these
algorithms, one can achieve excellent performance when
using an MH tailored for a particular scenario on a similar
problem. Even if the solution goodness is limited, such an
MH serves as a seed algorithm for further adjustments. The
principal innovation of our proposal is that the users require
a minimum level of expertise in metaheuristics to find one
suitable for their needs.

To illustrate the advantages of the proposed automatic
design methodology, we selected three case studies from
different fields. Such problems are the training of neural
networks for image classification, the design of PID con-
trollers for mechanical systems, and the modeling of a
non-conventional calorimetric system via fractional calculus.
We proved that the hyper-heuristic methodology is a reliable
alternative for designing population-based metaheuristics
that solve continuous engineering problems and exhibit a low
computational cost. These optimal metaheuristics can be used
in similar applications to those they were designed for or be
taken as the initial seeds for more sophisticated techniques.

It is evident that this is only an hors d’oeuvre to
several astonishing research and innovative applications. So,
we expect to expand upon the number of real engineering
applications and verify the standardization of the generated
algorithms for similar problems. It is necessary to have
real engineering problems that serve as benchmark test
functions for these generated metaheuristics. In particular,
we plan to work on problems related to renewable energy
sources, representing an excellent research field with lots of
potential for noteworthy contributions. We are moving ahead
to study a more autonomous way to explore the heuristic
space, an extended heuristic space, which includes the simple
heuristics and their tuning parameters. For that purpose,
a solid theoretical basis is required.
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