
Received 22 November 2022, accepted 2 January 2023, date of publication 13 January 2023, date of current version 19 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3236665

Development of an Adaptive Linear Mixture
Model for Decomposition of Mixed Pixels to
Improve Crop Area Estimation Using
Artificial Neural Network
ARUN KANT DWIVEDI 1, ARUN KUMAR SINGH 2, (Member, IEEE),
DHARMENDRA SINGH 2, (Senior Member, IEEE), AND HARISH KUMAR 3
1Department of Computer Science and Engineering, IIT Roorkee, Roorkee 247667, India
2Department of Electronics and Communication Engineering, IIT Roorkee, Roorkee 247667, India
3Department of Computer Science, College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia

Corresponding author: Dharmendra Singh (dharm@ec.iitr.ac.in)

This work was supported in part by the Drone Research Centre, IIT Roorkee; and in part by the Deanship of Scientific Research at King
Khalid University, Abha, Saudi Arabia, under Grant R.G.P. 2/198/43.

ABSTRACT Precise spatial information of crop distribution is vital for government and research
organizations to monitor agriculture activities like crop health monitoring, crop yield prediction, and food
security. Mapping of crop area is challenging in smallholder farming like India, where crop parcels are
smaller than two hectares. With an extension of artificial intelligence, an artificial neural network has ability
to learn the spectral feature of multispectral satellite images and map them to a land cover class. However,
mixed pixel is a challenging problem in pixel wise classification of coarse resolution satellite images. The
linear mixture model is successfully utilized to unmix the signals of a mixed classes. The success of linear
mixture model is depending on the selection of endmembers of a mixed class. Therefore, this paper presents
an adaptive approach for automatic selection of endmembers of a mixed pixel in linear mixture model using
spectral and spatial information. The proposed approach is capable of extracting the fraction area cover of
each class by using a constrained least-squares error solution. The GPS field surveys, and drone images are
employed to create reference data for the accuracy assessment of proposed algorithm. The experimentation
results indicate that the solution of the proposed approach outperformed recent baseline methods in terms of
efficiency and accuracy of pixelwise estimated area and overall estimated area of various land cover classes.

INDEX TERMS Smallholder farming, area estimation, artificial neural network, linear mixture model,
mixed pixels, precision agriculture monitoring.

I. INTRODUCTION
Sustainable agriculture information system is important for
agricultural activities by providing services like crop area
estimation which helps in precise utilization of agricultural
inputs like fertilizers and pesticide. It also helps to max-
imize productivity per drop of water which is a scarce
resource these days [1]. Crop area estimation and crop
yield prediction in advance of harvesting ensures the smooth
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market management and food security [2]. Precision agri-
culture is an important weapon against poverty and hunger
and consistently making life better for billions of people
across the globe. In recent time, agriculture is facing stiff
challenges in the form of climate change, global warming,
soil erosion, desertification, shrinking landholdings, crop
failures etc. Agriculture information system (AIS) employs
modern technologies like information and communication
technology [3], wireless sensors [4], internet of things [5],
satellite data [6], and drone images [7] become vital to
keep agriculture sustainable, viable, smart and adaptive
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to future challenges. A traditional agriculture information
system uses global positioning system (GPS) for accurate
mapping of agricultural fields [8]. Another cost optimized
solution - Differential Global Positioning System (DGPS)
uses localized data for robot guidance [9]. UAVs although
provide high resolution data required for smart agriculture
but cost and ease of controlling them are major roadblocks
in their widespread use [10], [11]. Similarly, IoT provides
live tracking of vital parameters like temperature, humidity,
and soil moisture, but installation and maintenance of
sensors for this is unviable especially for small landholders
practicing subsistence farming [12]. In developing countries
like India, the average size of operational holdings has
decreased to 1.08 hectares according to latest Agriculture
Census [13]. Amongst these around 86.2% farmers are
marginal cultivating less than one-hectare land. This situation
results in low upfront investment in agriculturemodernization
as there is no economies of scale. Thus, AIS technologies
mentioned above apart from satellite imagery are unaf-
fordable for this large farming community [14]. Satellite
image processing techniques are also important component
of AIS to identify, analyze, and manage diverse crop fields.
In [15] the author reviews how interpreting satellite images
for key aspects of farming like water stress, time and
quantity of farm inputs, crop diseases and accessing yield
quality is less tedious, economical and efficient compared
to expert recommendation or physical laboratory testing.
Satellite images are most popular source that is suitable for
providing land cover information which is economical and
feasible [16].

Satellite data predominately used for land cover mapping
due to its high temporal data acquisition and wide spatial
coverage [17]. Nowadays, several earth observation satellites
have been launched with numerous spatial, spectral, and
temporal resolutions [18]. These freely available satellite
imageries are widely used in crop type classification [19].
Due to the limitation of optical imagery in adverse weather
condition, Synthetic Aperture Radar (SAR) imagery is used
in differentiating multiple land cover classes [20], [21].
With generous resource of satellite imagery and artificial
intelligence techniques provide a major enhancement in
satellite image classification [22], [23]. Area estimation of
agriculture land for precision agriculture monitoring is done
using various machine learning algorithms [24]. Crop type
identification using object based classification and decision
tree (DT) algorithm is done by using texture and spatial
feature of satellite images [25]. Agriculture crop like rice,
sugarcane, and cotton are classified using spectral signature
library created by space borne hyperspectral data [26].
Satellite imagery is used for estimating fractional vegetation
cover, shrub lands and grasslands in arid and semiarid
areas for desertification monitoring [27], [28]. Apart from
these, satellite images also find application in intra class
classification using drone and satellite data fusion [29]. For
precision crop monitoring, sparse and dense sugarcane crop
areas are segregated in Landsat 8 imagery using adaptive

thresholding method [30]. In small landholding, mixed pixels
are the major problem in classification of coarse resolution
satellite imagery [31], [32]. These mixed pixels are present
on boundary of land cover classes, and contain more than
one land cover class. Therefore, in order to improve the
accuracy of the land cover classification, there is a need for
decomposition of these mixed pixels.

An artificial neural network (ANN) is widely employed to
classify satellite images in various land cover classes [33],
[34]. In [35], an adaptive neuro-fuzzy (ANF) algorithm is
developed for mixed pixel decomposition, wherein expo-
nential normalized output of neural network is used as a
membership criterion of each class for a mixed pixel. But
exponential normalized output of neural network is not
exact same as fractional values of all membership classes
of mixed pixel. Similarly, spectral mixture analysis (SMA)
techniques are widely employed for sub-pixel analysis of
mixed land cover classes [36]. In linear mixture model
(LMM), the reflected radiation from mixed land surface
is the linear combination of reflected radiation of its
endmember classes [37]. However, the limitation of LMM
is that it cannot give solution when number of unknowns
(endmembers of mixed pixel) are greater than the number
of equations (spectral bands) [38], [39]. Moreover, linear
mixture model also requires spectral variability of endmem-
ber spectra [40], [41]. Too many endmembers and spectrally
similar endmembers leads to error in fractional distribution
among endmembers [42], [43]. Accordingly, the success
of linear mixture model is depending on the selection of
endmembers [44].

Recognizing this paradox, the objective of this paper is
to develop an adaptive method for selecting endmembers in
linear mixture model and the aim of proposed method is
to estimate the crop area that is more accurate and more
optimal compared to alternate methods that have been carried
out with a similar cost. The major contributions of proposed
work are summarized as follows: firstly, several supervised
classification algorithms were explored to classify satellite
images in various crop classes, and it was observed that
artificial neural network performed well. Secondly the output
of artificial neural network is used as a spatial constraint
for mixed pixel extraction. Mixed pixels and pure pixels
are extracted from Satellite images in order to decompose
them to improve accuracy of crop area estimation. Thirdly,
the proposed adaptive linear mixture model is employed
for decomposition of mixed pixel into relevant classes
using least square error solution. The performance of the
proposed adaptive linear mixture model is evaluated with
various performance metrics and comprehensive comparison
were conducted with other state-of-the-art area estimation
algorithms.

The organization of this paper is in the following manner.
The study area and dataset description are given in Section II.
Section III presents the methodology and proposed adaptive
linear mixture model for crop area estimation. Section IV
presents the simulation results and accuracy assessments.
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FIGURE 1. (a) Google earth imagery of study region, (b) Sentinel-2 imagery of agriculture field, and (c) subset of Sentinel-2 image of study area.

Finally, Section V conclude the paper and present future
scope of the study.

II. STUDY AREA AND DATASET PREPARATION
In this section, we define our study area, dataset used for
developing and validating the proposed algorithm.

A. STUDY AREA
The study area selected for experimentation is an agricultural
farm land situated in Roorkee region of the Haridwar district
in Uttarakhand state of India. This region predominantly
contains small farm lands that are less than two hectares.
The most agricultural task in this region is carried out in
the monsoon season and winter season, which are most
agricultural growing season of this area. The most prominent
crops that are cultivated in Roorkee region is sugarcane
and paddy which are grown in the monsoon season. The
selected study area is shown in Fig. 1(a) with center latitude
78◦3’3’’ E and longitude 29◦49’48’’ N, mostly contains the
bare soil, sugarcane and paddy land cover classes. For the
experimentation purpose various field survey of study area
is conducted to obtained the actual ground information that
are utilize as knowledge base in addition of satellite image
and drone image.

B. SATELLITE DATA USED AND PREPROCESSING
Satellite images were extracted from Sentinel-2 MSI dataset
using a JavaScript written in Google Earth Engine’s code
editor. The script specified which image collection to be
used, what date range to be used for image extraction, and
how to export region-specified images to a google drive. For
preparing images to be used for our study, the cloud and
cirrus granules had to be removed to filter out the noise. This
was consequently done by setting bit masks of cloud and
cirrus to 0 and using a pre-filter in the image to set cloud
pixel percentage to be 20%. This filter indicates that the map
generated by adding layers should be clear, with little to no
cloud granules to be present in the map generated. The study
area mark in Fig. 1(b) is acquired from the sentinel data

on October 7, 2018. This particular duration is chosen for
this study because all the crop of winter season is grown in
this duration which provide an equitably rich discrimination
for classification of crop type. Images extracted from Earth
Engine script were used as an input dataset for this study.
These images were extracted in accordance with the crop
classes used for this study, which were Bare Land, sugarcane,
and paddy pixels were grouped into one image, with the
dimensions of the image being 47 × 38, with a total of
1786 pixels with either being of bare land, sugarcane, and
paddy. Since images are extracted fromSentinel-2MSI image
dataset, each pixel has more than 3 bands (due to the usage
of multi-spectral image instruments being used). The images
contain pixels having 12 bands, with each band displaying
different information. 1st band represents Aerosols, 2nd, 3rd,
and 4th band represent Blue, Green and Red spectrum bands
respectively, 5th band represents Red edge 1 (Wavelength of
approximately 703.9 nm), 6th band represents Red edge 2
(Wavelength of around 740.2 nm), 7th band represents Red
edge 3 (around 782.5 nm), 8th band implies of Near Infrared
values, 8Ath band represents Red edge 4 (wavelength of
approximately 864.8 nm), 9th band represents Water Vapour
values, 11th band represents Short Wave Infrared (SWIR 1)
values wavelength of around 1613.7 nm and 12th band
represents SWIR 2 values of wavelengths around 2202.4 nm.
Images downloaded were of Tagged Image Format (.tif)
format, hence they were read using GDAL library. The
data read from images were in the form of a 3-D NumPy
array, consisting of rows, columns and each pixel containing
12 values (from the 12 bands mentioned). The array was of
the format M × N × 12 (Where M × N are total number of
pixels and the 12 mentions the 12 bands worth of information
present in that pixel). The Sentinel-2 image have spatial
resolution of 10m to 60m and temporal resolution 5 days.
Sentinel-2 image bands are resampled to particular spatial
resolution of 10m based on nearest-neighbor resampling
process using ESA’s sentinel applications platform (SNAP).
The resulting preprocessed Sentinel-2 image of desired study
area where drone images are acquired is shown in Fig. 1(c).
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FIGURE 2. Ground truth data: (a) drone image with grids of 200 × 200 pixels with zoomed segments of pure and mixed pixels (1-4),
(b) classified drone image of study area (bare soil (red), paddy(green), sugarcane(blue)), and (c) upscaled drone image to 10m
spatial resolution.

C. GROUND TRUTH DATA PREPARATION
The reference data for ground truth is prepared using drone
and GPS field survey on the same date of satellite passing
from study area. The quadcopter DJI phantom 3 professional
which have Sony 4K camera with 12.4-megapixel sensor
is utilize as the image acquisition system. The quadcopter
is operated at height of 120 m that acquire images with
size of (4000 × 3000) pixels. The navigation path of the
quadcopter drone is set such that it acquired images of study
region with 65% forward overlap and 40% side overlap. This
overlap of images provides good result in feature matching
points while mosaicking the acquired images to obtained the
high-resolution image of study area. The processing of the
acquired drone images is done in lab using Pix4d software
tool to obtain the single mosaic image of study area of size
9400 × 7600. The spatial resolution of the obtained mosaic
image is 0.05mwhich is orthorectified and georeferenced that
signifies that projection of every pixel is corrected and have
location information of every pixel in the image. The acquired
mosaic image is utilized for the ground truth data preparation.
A gridding of 200× 200 pixels is made over the drone image
in order to make same area corresponding to each pixel of

Sentinel-2 image as shown in Fig. 2 (a). Gridded segments of
mosaic drone image contain bare soil, sugarcane, paddy and
mixed classes which is lies in the particular grid area shown
in the zoomed segment (1 - 4) in Fig. 2. The zoomed segment
1 to 3 are example of pure pixel class while 4 is of mixed class
pixel. This high resolution mosaiced drone image is classified
using maximum likelihood algorithm in various land cover
classes shown in Fig. 2 (b). In order to make the reference of
Sentinel-2 image, the classified drone image is upscale to the
size of Sentinel-2 image pixel using pixel aggregate method
as shown in Fig. 2 (c).

III. PROPOSED METHODOLOGY AND IMPLEMENTATION
Spectral and spatial information have been used to develop
an adaptive linear mixture model for decomposition of mixed
pixels to improve area estimation of land cover classes.
The proposed methodology includes three major steps:
classification of satellite images based on spectral values
of pixels, mixed pixel extraction and decomposition using
automatic endmembers selection in linear mixing model with
the help of spatial information, and finally, area estimation
and accuracy assessment is done using reference ground truth
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FIGURE 3. Flowchart of the proposed methodology.

FIGURE 4. ANN model with one hidden layer and Softmax function [35].

data. The flowchart of proposed method of land cover area
estimation is presented in Fig. 3.

A. CROP LAND CLASSIFICATION
An artificial neural network (ANN) is considered as a
potential machine learning method to solve various real-
world problems which are hard to solve using traditional
programming. In wide range of network architecture, land
cover classification can be achieved with multi-layer-feed-
forward network. A network with one hidden layer is shown
in Fig. 4. A multi-layer-feed-forward network is trained with
reference dataset generated by GPS field surveys and high-
resolution drone images using back-propagation algorithm.
The back-propagation algorithm is generalization of gradient
descent learning algorithm. On each iteration, the back-
propagation algorithm recursively computes the error and
modifies the network weights in order to minimize the
error between actual outputs and network outputs. Once the
network is trained, the weights of the network are stable and
the network can be used to classify the input into various
output classes. Let S is a multispectral satellite image of size
m × n pixels with p features (bands). A multi-layered-feed-
forward network is employed for the classification of these
satellite image pixels in k = 1, . . . , q land cover classes using
spectral features l = 1, . . . , p. The output layer of multi-
layered-feed-forward network produces Z = (z1, . . . , zq)

non-normalized q real numbers. The exponential function
σ is used to normalize Z into probability proportional
F = (f1, . . . , fq) for q classes. The exponential function σ

is formulated as

σ (z)i =
ezi∑q
j=1 e

zj
, for i = 1, . . . , q and Z = z1, . . . , zq (1)

After applying exponential function σ , output f =

f1, . . . , fq will be in the range of o to 1. This output vector
f shows the membership of q classes into satellite image
pixel S(x, y). A max function is applied to assign a classy =
(y1, . . . , yq) to each pixel S(x, y) of satellite image based on
their maximum membership in F = (f1, . . . , fq).

B. PROPOSED LINEAR MIXTURE MODEL
The linear mixture model aims to unmix the mixed pixels that
arises when low-resolution satellite images are employed for
mapping small agricultural crop fields. The basic assumption
of the linear mixture model is that photon reaches the
sensor, interacts with all endmembers of land cover classes
and the received energy can be considered as a simple
sum of the energies received from all endmembers [45].
Each endmember in the scene will contribute an amount
to the received signal which are the characteristics of all
endmembers of that scene and proportional to the area
covered. The mathematical representation of linear mixture
model can be expressed as

Rl =
q∑

k=1

fkrlk + el (2)

where l represents the spectral bands range from 1 to p
and k represent endmembers in the range from 1 to q. Rl
represent the reflectance of a mixed pixel from band l that
contains multiple endmembers.fk represents the fraction of
endmember k within a mixed pixel. rlk represent the spectral
signature of endmember k for band l. el represent the residual
error in the linear mixture model.

The unconstrained, partial constraint and fully constraint
are three methods applied to solve the linear equation
problem. In unconstraint method, the values of fractions
fk of all endmembers in the mixed pixel are permitted to
pick any values that are required to minimize the residual
error el . In partial constraint method, sum of fractions fk
of all endmembers in the mixed pixel leads to one. These
two methods are allowed to pick any positive or negative
values of fractions fk to solve the linear equations. However,
in fully constraint method, the values of fractions fk of all
endmembers in the mixed pixel are in the range of zero to
one and sum of all fk must be one. The conditions of fully
constraint method are shown in equation 3.∑q

k=1
fk = 1 and 0 ≤ fk ≤ 1 (3)

However, we can observe from equation (2) and (3) that
there will be p linear equations for p spectral bands of satellite
image and one sum of fractions fk of all endmembers within
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FIGURE 5. (a) S′(x, y ) and shaded spatially local pixels’ area, (b) S′(x, y )
and local member in same class and (c) S′(x, y ) and local member in
different classes.

a mixed pixel to one equation. From these P + 1 equations,
we need to compute fraction fk of q endmembers.

f1r11 + f2r12 + . . . fqr1q = R1 (4)

f1r21 + f2r22 + . . . fqr2q = R2 (5)

f1rp1 + f2rp2 + . . . fqrpq = Rp (6)

f1 + f2 + . . . fq = 1 (7)

The theory of linear equation suggests that there will be
a unique solution exist if q = p+1, and if q < p + 1 there
will be no exact solution. Finally, when q > p + 1 there will
an infinity of exact solutions and there is no clear way in
which we should define any of exact solution. The important
condition is q ≤ p+1 that can give a solution for mixed pixel
decomposition using least square error method.

fk = min
fk
∥ rlk fk − Rl ∥2 (8)

The success of linear mixture model is depending on the
selections of endmembers. Therefore, we need to develop
an approach for automatic endmember selection for linear
mixture model.

1) SPATIALLY LOCAL MEMBERS
A spatially local member is a set of pixels in a certain window
in a classified satellite image S ′. In Fig. 5 (a), a pixel S ′(x, y)
is shown in an arbitrary location of a classified satellite image
S ′, and the small shaded region of 3× 3 pixels is a local search
window and points are spatially local member of S ′(x, y).
This local search window shift pixel to pixel in the image
to extract the pure pixel and mixed pixel endmembers of the
image by applying bitwise logical operation on the classified
masked image.

2) MIXED PIXEL AND PURE PIXEL EXTRACTION
In coarse spatial resolution satellite images, mixed pixels
are the challenges for accurate land cover area estimation.
To extract mixed pixel and pure pixel a specific local
search window is used. This local search window is applied
throughout the image and compute if all pixels within local
search window belong to same land cover class, then central
pixel is defined as a pure pixel, otherwise it is a mixed pixel.
Let y = (y1, . . . , yq) be a set of q classes, k represents number
of a class (1 ≤ k ≤ q) and yk represents a pixel belongs
to class k . Fig. 5 (a) shows the location of a pixel S ′(x, y)

and shaded area shows the spatially local search window.
Fig. 5 (b) and (c) show the classified pixels in classes yk .
In Fig. 5 (b) all the pixels are belongs to the same class
that is y1, so pixel S ′(x, y) count as pure pixel. In Fig. 5 (c)
local members are belonging to different classes that is y1, y2
and y3, so pixel S ′(x, y) count as mixed pixel. In order to
identify these mixed pixel and pure pixel, we can use logical
operators.

Logical ‘OR’ operation of localized pixels of S ′(x, y) in
class k is defined as

Ck (x,y) = ∨
i=x+1,j=y+1
i=x−1,j=y−1S

′(i, j) (9)

Ck (x,y) describe the existence of class k within localized
pixels of (x, y).{

Ck (x, y) = 1 Class k is exist
Ck (x, y) = 0 Class is not exist

(10)

Logical ‘AND’ operation of localized pixel of (x, y) in class
k is defined as

Dk (x,y) = ∧
i=x+1,j=y+1
i=x−1,j=y−1S

′(i, j) (11)

Dk (x, y) describe the existence of pure and mixed pixel of
class k at pixel (x, y).{
Dk (x, y) = 1 Pixel (x, y) is a pure pixel of class k
Dk (x, y) = 0 Pixel (x, y) is a mixed pixel of class k

(12)

These logical operators are able to identify mixed pixel
and pure pixel in the satellite images using spatial
constraints.

Algorithm 1 ALMM (S’, E)

Input: Satellite image S ′ and Endmember spectra E
Output: Area cover A = (a1, a2, . . . , aq)
Begin

1 Initialize a window of 3 × 3 pixels;
2 For i← 1 to m
3 For j← 1 to n
4 E′ = ∅
5 For k ← 1 to q
6 If Ck (i, j) = 1
7 If Dk (i, j) = 1
8 ak (i, j) = 1;
9 Else
10 E ′← Ek ;
11 Else
12 ak (i, j) = 0;
13

End
14 ak (i, j) = min

fK
∥ rlk fk − Rl ∥2 where k ∈ E ′

15

End
16

End
17 Return A;

End
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3) ADAPTIVE LINEAR MIXTURE MODEL
In order to improve the accuracy of land cover area
estimation, mixed pixels should be decomposed. A fully
constraint linear mixture model may be used to decompose
these mixed pixels. However, the performance of the linear
mixture model is depending on the selection of appropriate
endmembers. To overcome this problem, we can use logical
operators to extract mixed pixels and their endmembers to
unmix the mixed pixel using least square error solution in
linear mixture model. Let S ′ is classified satellite image
and E is a set of spectral signatures of q classes. Logical
‘AND’ operator and logical ‘OR’ operator is used to extract
mixed pixels and their potential endmember spectra E ′ for
decomposition of mixed pixels to improve accuracy of crop
area cover of each class. The area covers A = (a1, a2, . . . , aq)
of q classes is computed using Algorithm 1.

C. AREA ESTIMATION AND ACCURACY ASSESSMENT
Area cover of various land cover classes are computed
by ALMM algorithm. For estimation of area of class k,
multiply area cover ak of the class k with spatial resolution
of the satellite image. The approximate area of various
land cover classes is computed using Sentinel-2 image. The
accuracy assessment of ALMM algorithm for land cover
area estimation are done with the help of reference data,
which are prepared with the help of drone and GPS field
survey. For this purpose, drone was flown in study area
and after preprocessing and mosaicking reference image was
generated. This high-resolution drone image is classified and
upscale to equivalent satellite image for pixel wise and class
wise accuracy assessment of ALMM algorithm.

IV. RESULTS AND DISCUSSION
To evaluate the performance of various crop area estimation
algorithms, a field experiment was conducted in agriculture
field near Roorkee, Uttarakhand, India. The proposedALMM
algorithm and traditional ANN, fuzzy and ANF algorithm
are applied to Sentinel-2 image of study area. A reference
image of study area created by drone and GPS is used to
evaluate the performance of traditional ANN, fuzzy, ANF
and proposed ALMM algorithm. The experimental results of
land cover area estimation of various land cover classes like
bare soil, sugarcane and, paddy using ANN, fuzzy, ANF and
ALMM algorithms are shown in Fig. 6. The color variation
in the output image represents the membership of land cover
classes, ranging from 0 to 1.

The accuracy assessment of mixed pixel and pure pixel
extraction using proposed ALMM algorithm is illustrated
by confusion matrix shown in Table 1. Sensitivity and
specificity are two measure that are used to evaluating the
performance of a classification algorithm when there are two
classes. Sensitivity is defined as the number of positive pixels
extracted out of total positive pixels in study area shown in
(13). On the other hand, Specificity is the number of negative
pixels extracted out of total negative pixels in study area

FIGURE 6. Land cover information of bare soil, sugarcane, and paddy in
column (a), (b), and (c); Rows 1 to 5 represent the output results of ANN,
fuzzy, ANF, ALMM, and reference image, respectively.

TABLE 1. Mixed pixel and pure pixel classification matrix.

shown in (14).

Sensitivity =
TP

TP+ FN
× 100% (13)

Specificity =
TN

TN + FP
× 100% (14)
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TABLE 2. Class wise estimated area of various land cover classes.

In case of mixed pixel and pure pixel classification
algorithm true positive (TP) and true negative (TN) represents
the proportion where mixed pixel classified as mixed pixel
and pure pixel classified as pure pixel, respectively. Similarly,
false positive (FP) and false negative (FN) represents the
misclassification of algorithm identifying pure pixel as mixed
pixel and mixed pixel as pure pixel, respectively. The
accuracy of the area estimation for the land cover classes
are improved by the proposed ALMM algorithm through
decomposition of mixed pixels. For this purpose, high
sensitivity is required in the classification of mixed pixels.
It is depicted from the Table 1, the sensitivity for the mixed
pixel classification is computed as 100%

(
362
362 × 100%

)
and

the specificity is computed as 94.38%
(
1344
1424 × 100%

)
.

Because the sub-pixel analysis algorithm outperformed
pixel-based crop area estimation algorithm. Therefore, a
comprehensive comparison at pixel level decomposition of
mixed pixels were conducted between proposed ALMM
algorithm and traditional ANF algorithm. To measure the
performance of these algorithms, two common indicators, the
root mean square error (RMSE) and the average difference
(AD) were used. The RMSE measures the global error in the
area estimation algorithm for land cover classes, whereas AD
measures the bias of estimated area for land cover classes
in the presented algorithms. These accuracy metrics were
computed as follow:

RMSE =

√√√√ 1
N

N∑
i=1

(f̂i − fi)
2

(15)

AD =
1
N

N∑
i=1

(
f̂i − fi

)
(16)

where, N referred to the number of mixed pixels. fi is
reference fractional area of land cover classes and f̂i is
estimated fractional area of land cover classes from area
estimation algorithms for decomposition of mixed pixels.

Table 2 shows the mixed pixels decomposition results
for the proposed ALMM algorithm and traditional ANF
algorithm for various crop classes. The RMSE values of all
crops reached from 0.07 to 0.09 in ALMM algorithm and
0.10 to 0.13 in ANF algorithm. However, all ADs are positive
and negative values, which indicate that both the algorithms
are constrained with abundance sum to one constraints and
values are showing interclass biasness. From Table 3, we can

FIGURE 7. Scattered plot between reference and modelled fractions of
(a) bare soil, (b) sugarcane and (c) paddy using ANF algorithm.

TABLE 3. Pixel wise accuracy assessment of ANF and ALMM algorithms.

FIGURE 8. Scattered plot between reference and modelled fractions of
(a) bare soil, (b) sugarcane and (c) paddy using ALMM algorithm.

see that RMSE and AD (bias) are reduced using the proposed
ALMM algorithm compared to traditional ANF algorithm.

Furthermore, scatter plots were drawn to demonstrate the
association between the estimated area cover and reference
area cover for various land cover classes in the mixed pixels.
Fig. 7 and Fig. 8 illustrate that the proposedALMMalgorithm
gives better results than traditional ANF algorithm. However,
estimated crop area cover using proposed ALMM algorithm
are closer to 1:1 line in scatter plots which exhibit the
minimum RMSE and AD.

The class wise area estimation of various land cover
classes such bare soil, sugarcane and paddy using traditional
ANN, Fuzzy, ANF and proposed ALMM method are shown
in Table 3. The error in estimated area of land cover
classes using satellite images are calculated using ground
truth information collected by drone and GPS field surveys.
The error percentage of the computed area signifies that
accuracy is improved using proposed ALMM algorithm over
traditional ANN, Fuzzy and ANF methods. Further, the
efficiency of the proposed ALMM algorithm is tested for the
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multiple land cover classes in different satellite images and
it found that it outperforms the traditional ANN, Fuzzy and
ANF methods for finding the exact size of the land cover
segments.

V. CONCLUSION AND FUTURE WORK
In the present study, an adaptive linear mixture model
was proposed to improve the agriculture land cover area
estimation using Sentinel-2 image. Sentinel-2 image was
important for classifying land cover classes for the smallest
parcel (100 m2). The important advancement in this study
was utilizing spectral and spatial information to extract
optimal endmembers in linear mixture model. The neural
network is employed for learning of spectral features of
multispectral satellite images and classify each pixel into
relevant land cover classes. The output of neural network was
used as spatial constraints for mixed pixels extraction and
decomposition using proposed adaptive linear mixture model
to improve the accuracy of estimated crop area. Furthermore,
our results suggest that our proposed algorithm can be used
to accurately estimate the size of land cover classes. Finally,
in future we call an extension for land cover pattern prediction
of mixed classes in coarse resolution satellite images.
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