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ABSTRACT Non terrestrial networks (NTN) involving ’in the sky’ objects such as low-earth orbit satellites,
high altitude platform systems (HAPs) and Unmanned Aerial Vehicles (UAVs) are expected to be integral
components of next generation cellular systems. With the deployment of 5G services and beyond, NTNs are
leveraged to assist as aerial base stations in providing ubiquitous network connectivity and service to ground
users or be deployed as aerial users connected to the cellular network. NTN-aided wireless communication
offers multiple benefits such as mobility, flexibility, resistance to ground physical attacks and wide coverage.
However, due to their limited resources and the current design of terrestrial cellular systems that do not
account for aerial users, and other restrictions such as service requirements, limited available power and
storage resources on high-throughput satellites, resource allocation, location of the high altitude platform
base station and the flight trajectory of the UAVs need to be intelligently controlled to satisfy various
objectives both from an aerial base station and overall network perspectives. To achieve this, many works
have explored Reinforcement Learning (RL) techniques to allow aerial platforms in non-terrestrial networks
to learn from past observations and achieve some optimal control policy. In this paper and differently from
prior surveys, we contribute a comprehensive review of the control objectives required by non-terrestrial
platforms that have been solved using RL formulations. We provide an up-to-date overview of the latest
applications of RL techniques for different NTN-aided wireless communication aspects. The survey focuses
on Markov Decision Process (MDP) formulations in terms of states, actions, and rewards. We synthesize
a taxonomy from the surveyed literature and provide a comprehensive representation of the current usages
of RL in NTN-aided wireless communications. A qualitative analysis of the level of realism achieved in
the works presented in the literature is provided based on several factors that pertain to the simulation
environment, station deployment setting, wireless channel assumption, and energy considerations. We also
curate a list of challenges that remain to be considered by the research community in order to achieve more
efficient deployments and close the simulation-to-reality gap.

INDEX TERMS Reinforcement learning, non terrestrial networks, satellite communication, high altitude
platforms, NTN, NTN-aided communication, AI-enabled communications.

I. INTRODUCTION
NTNs have witnessed an increased interest over the last
few years and are expected to become a key part of
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next-generation wireless communication. With the rapid
growth of wireless communication systems, terrestrial base
stations are challenged to provide connectivity and per-
formance requirements including throughput, latency and
energy efficiency especially in rural areas, deserts and oceans,
harsh and remote environments [1].
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Many recent work has been published on the integration
of space and terrestrial networks that involve flying objects
including satellites, high altitude platforms, and UAVs [2].
Research has been mainly focused on the usage of NTNs
in general and UAVs in specific and their integration into
cellular networks as either NTN-aided wireless communi-
cations [3] or cellular-connected NTNs [4], [5]. Fig. 1
captures a comparative illustration of these two integration
scenarios into cellular networks. In NTN-aided wireless
communications, NTNs are deployed as aerial base stations
to assist the cellular network infrastructure that is required
to keep up with the exploding service demand for a
higher quality of wireless services. Cellular-connectedNTNs,
on the other hand, are deployed as user equipment in the
air, enabling an unlimited operation range and world-wide
accessibility through the cellular network. It is worth noting
that the majority of existing literature explores UAVs as part
of the latter two scenarios, while research interest is being
shifted towards aerial platforms in general.

Mobility of non-terrestrial base stations results in a
dynamic unstable environment imposing challenges in the
coverage optimization. Moreover, flexibility of aerial plat-
forms has led to carrying out more research to explore the
potential of NTNs in optimizing various performance metrics
in wireless communication such as SNR, data rate, power and
time consumption.

UAVs can be equipped with light-weight base station
equipment and act as aerial base stations in challenging
scenarios including hard-to-reach areas and emergencies
when terrestrial base stations are damaged. This is also appli-
cable to scenarios where the terrestrial network infrastructure
becomes incapable of meeting the stringent demand for wider
coverage, higher capacity, and better service quality such
as large crowd gatherings and hotspot areas. Hence, such
non-terrestrial platforms in general can be useful for the on-
demand assistance of cellular communication networks and
the mitigation of the unexpected surge in cellular traffic and
its implication on the network performance [6]. Meanwhile,
cellular-connected NTNs make use of the already available
cellular network infrastructure for various purposes such
as package delivery, search and rescue operations, building
inspections, security surveillance, live streaming of events,
and many others [7]. Thus, cellular-connected non-terrestrial
base stations can be controlled in a very wide operation range
without the need to build a new infrastructure dedicated to a
given service. This type of non-terrestrial platform integration
has therefore become a very attractive technology for the
industry due to the possibility of enabling a wide range of
applications [8].

In both of the aforementioned integration scenarios, non-
terrestrial platforms including satellites, HAPs and UAVs
face challenging objectives that need to be satisfied. These
objectives are, among others, maximizing quality of service,
minimizing energy consumption, guaranteeing connectivity
between the core network and ground users, and avoiding
interference. In this respect, UAVs, for example, are required

FIGURE 1. A comparative illustration of cellular-connected NTNs and
NTN-aided wireless communications.

to optimize their flying trajectory to deliver the desired ser-
vice andmeet the performance criteria, while being cognizant
of the system constraints. The need for sophisticated algo-
rithms to assist in the decision-making and achieving various
goals is therefore inevitable. However, the efficient control
of the non-terrestrial platform resources and mobility is a
complex problem, especially in highly uncertain scenarios
where user information cannot be predicted reliably due to the
unavailability of dedicated control channels for information
exchange, or simply due to the unavailability of information.
Conventional mathematical optimization approaches may not
converge within the desired time range to the optimal solution
of these problems that are in most cases non-convex, and
hence sub-optimal approaches are usually applied to obtain
results. Nonetheless, the latter approach may not be feasible
or practical after all due to the unavailability of its input
data in uncertain environments. Recently, reinforcement
learning (RL) algorithms have found their way into various
applications in both NTN-aided wireless communications
and cellular-connected NTNs. Most of the design problems
of NTNs in general can be formulated as a Markov Decision
Process (MDP). To solve this MDP, many works in the
literature have used a variety of RL techniques for different
objectives in NTN communications. This is shown in Fig. 1
where each non-terrestrial platform acts as an RL agent that
leverages past observations and rewards to reach an optimal
control policy.

We note that several surveys in the literature have
addressed different aspects of the integration of NTN-
platforms in cellular networks. Comprehensive tutorials
on non-terrestrial networks including space and air-borne
platforms in general were presented in [2], [9], [10], [11],
[12], [13], [14], and [15] and they illustrated how space-
air-ground networks can be integrated in 5G/6G systems
yielding a heterogeneous network architecture that involves
non-terrestrial stations (satellites, HAPs, UAVs) assisting
terrestrial ones. In [16], [17], and [18], the convergence of
satellite and terrestrial networks was surveyed and different
architectures were presented, while in [19], satellite com-
munication applications were explored. Related surveys in
[20] and [21] present a recent review of wireless
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communications involving High-Altitude Platforms (HAPs)
in rural areas exploiting cellular radio spectrum. In [22],
authors present services that could be provided by consid-
ering cloud-enabled HAPs as flying data centers. All of the
afore-mentioned surveys have no focus on RL. Few surveys
have considered machine learning (ML) techniques, those
of which include RL in the context of wireless IoT [23]
or 5G network slicing [24]. Others included subsections
related to RL as open issues and challenges [25]. In [26],
authors reviewed artificial intelligence techniques in general
as applied to satellite communications. By all means,
the literature is rich in surveys that study UAV-assisted
communications as compared to surveys addressing other
forms of non-terrestrial platforms, thanks to the agility and
practicality of deploying UAVs to assist terrestrial networks
in critical situations and in enabling novel services. Surveys
dedicated to UAV communications and their applications
were presented in [27], [28], [29], [30], [31], [32], and [33],
where they highlighted how UAVs are expected to be
integrated in fifth-generation (5G) wireless networks and
beyond. In [34], the challenges in UAVs standardization were
discussed, and a set of regulations were proposed for their
integration into society. An extensive overview of software-
defined networking and network function virtualization in
UAV-assisted systems is presented in [35]. The routing
demands and protocols required for UAVs are detailed
in [36], along with the associated challenges. In [3],
an overview of the networking architecture of UAV-aided
wireless communications is provided, along with key design
considerations. Surveys on trajectory design techniques for
UAVs are provided in [37] and [38]. However, these latter
surveys have limited focus on RL-based approaches and the
challenges associated with them. In [39], a survey on UAV-
aided Internet of Things (IoT) networks is presented. Game-
theoretic formulations for objectives in UAV communications
are reviewed in [40] while machine learning techniques
for UAV-based communications are presented in [41], [42],
[43], [44], [45], and [46], also with little focus on RL
techniques in specific. The scope of the existing surveys
in terms of their focus on RL-based problem formulations
is shown in Fig. 2. Surveys labeled with ’NTN’, ’S,’ and
’H’ respectively represent surveys related to non-terrestrial
platforms in general, Satellite in specific, HAPs in specific,
and UAVs in specific.

Additionally, surveys on the applications of RL in
communications and networking are provided in [47], [48],
[49], [50], [51], and [52], but they have a limited focus on
applications for non-terrestrial platforms.

While these many surveys have discussed the current state-
of-the-art of different non-terrestrial platforms and UAVs in
specific, no survey has previously addressed the applications
of RL for intelligent NTN communications. Specifically,
no survey has already provided a comprehensive review of the
control objectives required by satellites, HAPs and/or UAVs
in NTN-assisted communication problems that have been
addressed using RL formulations. In this regard, our survey

is the first to bridge that gap and present an up-to-date discus-
sion on RL for NTN-aided wireless communications as well
as cellular-connected NTNs. We cluster the literature around
different integration categories that constitute (i) improving
network key performance indicators (KPIs), (ii) maintaining
reliable integrated access and backhaul links, (iii) improving
data integrity and security, and (iv) minimizing the age of
information (AoI) in information dissemination and data col-
lection applications under NTN-aided wireless communica-
tions. In the context of cellular-connected NTNs, three main
categories are defined constituting (i) enhanced connectivity,
(ii) interference management, and (iii) spectral management.
We then synthesize a taxonomy from the literature based
on what control objective is considered in each RL problem
formulation. The developed taxonomy gives a complete
representation of what the current applications of RL are
in NTN communications. We, then, discuss challenges for
adopting RL for different objectives in NTN communications
and aim to set a basis for future directions and insights to
potentially further improve effective real-world deployment.

The rest of this survey is organized as follows: A brief
overview onRL is provided in Section II, covering some basic
fundamental concepts. In Section III, we briefly introduce
the control challenges in NTN-assisted networks and present
a taxonomy of RL objectives in NTN communications.
Section IV surveys the literature that employs RL techniques
for NTN-assisted wireless networks. Section V surveys the
works that propose RL-based solutions for various challenges
in cellular-connected NTNs. A qualitative analysis on the
level of achieved realism in the surveyed literature is
provided in Section VI. A discussion on remaining challenges
and insights for future research directions is presented in
Section VII with a focus on bridging the gap between
simulation and real-world environments. Finally, concluding
remarks follow in Section VIII.

II. AN OVERVIEW ON REINFORCEMENT LEARNING
Poised to be the next stage in the evolution of machine
learning algorithms that learn how to learn, RL is a subfield
within artificial intelligence where the learner, referred to
as an agent, learns how to map situations to actions in a
way that maximizes a numerically-defined reward function.
In an RL setting, the agent is not given any prior knowledge
on what actions it should take. Instead, it interacts with
the environment and explores different actions in different
situations, called states, to discover which decisions will
yield the most reward. Moreover, the concepts of delayed
reward and trial-and-error search are important as they allow
RL discount meaningless reward in anticipation of a longer
term gain and explore solutions without being fixated on the
exploitation of the knowledge it accumulated. Based on its
interactions with the environment, the agent learns from its
past actions and experiences and becomes better in future
decision making [53].

RL distinguishes itself from other learning paradigms, such
as supervised learning approaches, that rely on instructive
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FIGURE 2. Visualisation of the scope of related surveys in terms of increasing focus on NTN communications and RL formulations.

FIGURE 3. The interactions of the agent and the environment in an MDP.

feedback instead of evaluative feedback. Instructive feedback
indicates what action is correct to take, independently from
the action that has been taken, while purely evaluative
feedback gives insights on how good the action performed
by the agent was. Table 1 compares RL to other learning
approaches. RL is distinct from other machine learning
paradigms in that the lack of supervision for the optimal
solution is substituted by a choice and a feedback in a
dynamic environment which makes RL an active learning
process [54].

A mathematical idealization of the RL problem is the
Markov Decision Process (MDP), a discrete-time stochastic
control process that is generally used as a framework
for sequential decision-making algorithms. It satisfies the
Markov property which states that a future state relies
only on the present state and is independent of the past

states. An MDP is represented by a five-element tuple
(S,A,P,R, γ ) where:

• S represents the set of states s of the environment
• A represents the set of actions a that the agent can take
• P represents the transition probability function. Specif-
ically, at a time step t , P determines the probability
of going from state St to state St+1 when action At is
performed

• R represents the reward function that gives the agent a
reward when transitioning from state St to state St+1 by
performing action At

• γ is the discount factor that can take on a value between
0 and 1

The agent-environment interactions in an MDP are shown
in Fig. 3, where at each time step t , the agent receives a
representation of the environment’s state St ∈ S. Based on
this state, the agent performs an action At ∈ A. At the
subsequent time step, the agent receives a numerical reward
Rt+1 ∈ R and transitions into a new state St+1.
The solution of an MDP is a policy function π that maps

states to actions (π : s → a). The goal of the agent
is to find the optimal policy π∗ by maximizing the total
reward it receives, that is the cumulative reward and not the
immediate reward. The cumulative reward is represented by
the discounted expected return, denoted Gt , that is computed
using:

Gt = Rt+1 + γRt+2 + γ 2Rt+2 + . . .

=

∞∑
k=0

γ kRt+k+1 (1)
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TABLE 1. RL Compared to Other Learning Approaches.

where γ is referred to as the discount rate. The concept
of discounting is essential to make the agent select actions
that maximize the expected return E[Gt |s, π] by assigning
weights to the cumulative set of rewards. If γ is selected to
be 0, the agent is said to be myopic or short-sighted and only
focuses at immediate rewards. If γ becomes closer to 1, the
agent is said to be more far-sighted and weighs future rewards
more strongly in its decision making.

RL agents are categorized as (i) value-based that have
a value function and implicit policy, (ii) policy-based that
maintain a data structure of every state without storing
value function, or (iii) actor-critic that combine both policy
and value functions. As for RL algorithms they can be
categorized as (i) model-free where the agent learns directly
by collecting rewards from the environment then updating
their value function estimation thus figuring out the policy or
(ii) model-based where an RL agent is involved and no need
for direct environment interaction since the agent learns the
model which consists of state transitions and reward function.
Policy is then figured out with simple information about state
values. Note that in model-based scenario solution may fail if
the state space is too large [23], [54]. Meta-RL algorithms
including model-agnostic meta-learning (MAML), Simple
Neural AttentIve Learner (SNAIL) and ProximalMeta-Policy
Search (ProMP) algorithms are more recent RL algorithms
that emerged in years 2017 and 2018 where the agent
is trained over a variety of distributed tasks and tries to
solve new related unseen tasks from the knowledge it learns
[55], [56], [57]. Fig. 4 shows selected RL algorithms
from model-free and model-based categories where the
lower taxonomies in a branch are the most recent ones
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68],
[69], [70], [71], [72], [73], [74], [75], [76], [77].

Below we provide a brief overview on policy gradient
and Q-based learning which constitute the basics of RL
algorithms as indicated in Fig. 4

• Policy Gradient: In policy gradient based methods,
the policy is directly tuned after being parameterized
with respect to the expected long term cumulative
reward by gradient descent. By adopting a stochastic
policy, various actions that yield different trajectories are
sampled to check those that yield the best rewards and
update the policy direction parameters. Policy gradient
methods do not suffer from the lack of guarantees of
a value function, the intractability problem that results
from uncertain state information and the complexity
arising from continuous states-actions [78].

Policy Gradient was first introduced in 2014, and its
variants Asynchronous Advantage Actor-Critic, Prox-
imal Policy Gradient (PPO) and Maximum a Poste-
riori Policy Optimization (MPO) in 2016, 2017 and
2018 respectively. MPO combines the sample efficiency
of off-policy methods with the scalability and robustness
of on-policy methods. It achieves state of the art results
on continuous control tasks while using fewer order of
magnitude samples than PPO [61].

• Q-Based Learning is an off-policy temporal difference
(TD) learning algorithm. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP)
concepts. Q-learning is widely used for model free
problems. The learned action-value function, Q, directly
approximates the optimal action-value function, inde-
pendent of the policy being followed thus simplifying
the algorithm and enabling early convergence. However,
with large Q-tables or infinite spaces, the algorithm will
take long to converge and becomes impractical [53].
Deep Q- Networks which consist of Q-Learning with
deep neural networks as state-action value estimators
and use replay buffers to sample experiences from
previous trajectories were first introduced in 2013 [65].
Categorical 51 with Hindsight Experience Replay
(HER) were introduced in 2017. HER provides efficient
learning without the need for complicated reward
engineering [67]. Recurrent Replay Distributed DQN
(R2D2) was introduced in 2019 and was the first agent
to exceed human-level performance in 52 out of 57 Atari
games as demonstrated in [68].

Integration of non-terrestrial base stations (NT-BSs) with
terrestrial networks implies a heterogeneous dynamic envi-
ronment (due to NT-BSs mobility) imposing new challenges
different from terrestrial wireless communication require-
ments. Many recent work to solve NTN wireless control
and management problems such as channel estimation, joint
beam forming, resource allocation, multi-user access control,
trajectory and power optimization are being motivated by
and based on ‘‘RL Techniques’’ since the latter techniques
rely on systematic trial and error. Application of RL methods
have a showed an increased potential in building low latency,
ultra-reliable, and scalable systems for future wireless
generations including IoT networks [23], [50], [52], [79].
In [80] the RL approach outperformed benchmark learning
approach by 33.85% in terms of improving the network
throughput, and by 95% in terms of enhancing the energy
efficiency. Compared to a non learning-based approach,
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FIGURE 4. Selected RL Taxonomies.

RL improves the throughput and energy efficiency by 46.61%
to approximately 110%.

III. CONTROL CHALLENGES & TAXONOMY
As stated earlier, the main non-terrestrial platforms are
classified as satellites, HAPs and UAVs. To support various
applications in the 6G era, a wide area network integrating
non-terrestrial and terrestrial networks is needed to deliver the
desired control objective(s). Each NTN platform, however,
has its own significant role. In fact, to support orbit
or space Internet services and provide wireless coverage
for flight applications, low-Earth-orbit, medium-Earth-orbit,
and geostationary-Earth-orbit satellites are to be deployed.
Satellites with mm-wave communications are also utilized
for high-capacity satellite–ground transmission. Floating and
flying base stations known as HAPs and UAVs respectively
are, however, installed to provide coverage and reliability in
rural and hard-to-reach areas. Floating base stations (HAPs)
usually assist space networks and reachable UAVs [81].
Flying base stations (UAVs), on the other hand, are the most
significant NTN component platforms and are considered a
promising technology to assist future wireless communica-
tions due to their flexibility, swiftness and low-cost features.
UAVs have been regarded as a solution of aerial networking
and a complement of terrestrial communication infrastructure
by 3rd Generation Partnership Project (3GPP) Long Term
Evolution-Advanced (LTE-A). They have a stronger line
of sight connection with ground users, a better mobility
that provides real-time and on demand services in critical
situations as in floods and hurricanes, flexibility and lower

cost to enhance specific terrestrial links such as cellular
network links in sport stadiums, and others [82].

A. NTNs TO ASSIST WIRELESS NETWORKS
Non terrestrial platforms can be extremely useful in assisting
the wireless network as aerial base stations or relays, given
their ability to establish a dominant LoS feature to ground
users and their high agility and mobility features. However,
flying platforms with flexible routes including UAVs may
need to adjust their positions and trajectories to optimize
their intended service, such as ensuring that several areas
are receiving coverage and service for a specified duration.
The challenge of determining an adaptive trajectory becomes
more compound when the environment is stochastic, such
as having mobile users in vehicles, or users with dynamic
access demands. Additionally, when multiple non terrestrial
platforms are deployed, cooperative coordination needs to be
ensured among them to reach the desired objective. In this
regard, autonomous non terrestrial base station deployment
and trajectory optimization specifically of UAVs used as
aerial base stations or relays is extremely important for
the full exploitation of the potential of NTNs in assisting
cellular networks. Given their mobility, non terrestrial
platforms can adjust their locations to achieve various control
objectives. For instance, the HAP and/or UAV could be
required to optimize their/its trajectory to provide a target
coverage to ground users or adjust its location to maintain
favorable channel conditions and provide a better service and
experience to users. Another critical factor that needs to be
considered is the limited energy and storage resources of
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high throughput satellites (HTSs) where resource allocation
got to be optimized to enhance the performance of the
HTS based communication system. Nonetheless, battery-
powered UAVs cannot keep flying around for a long
duration before they need to move to a charging station.
The trajectory of the UAV also needs to be optimized to
maximize its utility while preserving energy resources and
prolonging network lifetime. It is worth noting that major
investments are dedicated to improving the endurance of
aerial platforms including extending their lifetime. Solar
energy harvesting and laser beaming are example techniques
to provide non terrestrial platforms with sustainable energy
sources.

B. NTNs AS AERIAL USERS
Nonterrestrial communications have emerged to support high
data rate communications among aerial platforms (satellites,
HAPS and UAVs) and cellular networks, achieving anywhere
and anytime connections. Cellular-connected NTNs lever-
age the ubiquitous accessibility of cellular communication
networks to enable various new NTN applications. These
applications include search and rescue operations, package
delivery, streaming of live events, security surveillance, edge
computing, and many others [11], [31]. Indeed, cellular-
connected NTNs are a promising technology that offers
many potential benefits. However, many practical imple-
mentation limitations exist including dynamic propagation
environment, overload energy consumption issues and high
probability of blockage [11] and other challenges [83] when
integrated into the existing cellular network infrastructure.
At present, terrestrial base stations are designed to provide
reliable connectivity to ground users, without considerations
for the aerial user equipment. The antennas of current
terrestrial base stations are down-tilted to maximize the
coverage probability for users on the ground level or
within buildings. Aerial platforms specifically UAVs are
required to cleverly optimize their navigation to coordinate
with HAPs and satellites and to take advantage of the
existing infrastructure to maintain reliable connectivity to
the network [84], which is critical for their command,
control, and data communications with terrestrial base
stations.

Since UAVs enjoy more favorable propagation conditions
as their altitude increases, their link to the serving base
station becomes stronger with the increase in altitude
[85], [86]. However, this fact is also a limiting factor
for cellular-connected UAVs. As UAVs hover at a higher
altitude, they also start receiving signals from an increasing
number of base stations that they have dominant LoS
links to. This leaves them prone to aggregate interference
which can dominate over the increased received signal
power from the serving base station [87], [88]. The LoS-
dominated links of cellular-connected UAVs also cause
another issue, that is the increased number of unnecessary
handovers [89]. This effect could be mitigated by opti-

mizing the altitude of the UAVs. Hence, cellular-connected
UAVs require intelligent navigation and height optimiza-
tion policies to assist them in achieving their objective
efficiently.

C. TAXONOMY OF RL FOR NTN COMMUNICATIONS
To address the aforementioned control challenges in both
non-terrestrial platform integration scenarios, many works
in the literature have leveraged RL techniques as effective
strategies in reaching optimal control policies. The richness
of the literature in RL formulations inspires the synthesis
of a taxonomy of RL objectives in NTN communications.
Our proposed taxonomy is presented in Fig. 5 and clusters
the objectives of RL under the two broad categories of
NTN-aided wireless communications and cellular-connected
NTNs.

The objectives of RL for designing the trajectory of non
terrestrial platforms specifically UAVs deployed to assist
wireless communication networks can be classified into five
main categories. These categories are namely improving
network key performance indicators (KPIs), maintaining
reliable integrated access and backhaul links, improving data
integrity and security, and minimizing the age of information
(AoI) in information dissemination and data collection
applications. The approaches for improving network KPIs
can be clustered into two sub-categories, which are enhancing
coverage for ground users or improving the quality of service
(QoS) or quality of experience (QoE) of the ground users.
Likewise, two sub-categories fall under the data integrity and
security category. These sub-categories separate the works
that focus on combating scenarios where terrestrial base
stations are jammed or aim to combat ground eavesdroppers
within the network.

In the context of cellular-connected NTNs, the objectives
of RL techniques can be classified into three main cate-
gories, namely enhanced connectivity, interference manage-
ment, and spectral management. The works that focus on
enhancing the connectivity of cellular-connected NTNs to
the wireless network are also separated into two classes
which are coverage hole avoidance, and hand-over rate
reduction.

IV. RL FOR NTN-AIDED WIRELESS COMMUNICATIONS
Various control objectives exist that require optimization of
the trajectory of the high and low altitude platforms acting
as base stations. To achieve the optimal trajectory design,
RL approaches have been explored in several works in the
literature and have shown great promise in reaching high
performance. In what follows, we present the literature that
leveraged RL algorithms for control objectives in NTN-
assisted cellular communications. We focus on the MDP
formulations proposed in terms of states, actions, and reward
functions. A summary of these formulations is provided in
Table 2 where we highlight which works addressed finite or
infinite state and action spaces.
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FIGURE 5. Our proposed taxonomy for the applications of RL in NTN Communications.

A. IMPROVING NETWORK KEY PERFORMANCE
INDICATORS
1) ENHANCED COVERAGE
Mobility of non terrestrial base stations (NT-BSs) and non
terrestrial user equipment (NT-UE) leads to a dynamic
non-stationary environment, and creates unique challenges
in the coverage optimization specifically in deployment
of multiple non terrestrial base stations. In this regards,
Lien et al. [90] proposed a reinforcement learning (RL)
scheme where multiple NT-BSs autonomously determine
deployment trajectories to maximize the number of NT-UEs
that can access NTBSs. Anicho et al. [91] work analyzes the
performance of Reinforcement Learning (RL) versus Swarm
Intelligence (SI) for coordinating multiple unmanned High
Altitude Platform Stations (HAPS) for communications area
coverage. It builds upon previous work which looked at vari-
ous elements of both algorithms. The main aim of this paper
is to address the continuous state-space challenge within this
work by using partitioning to manage the high dimensionality
problem. This enabled comparing the performance of the
classical cases of both RL and SI establishing a baseline
for future comparisons of improved versions. From previous
work, SI was observed to perform better across various key
performance indicators. However, after tuning parameters
and empirically choosing suitable partitioning ratio for the
RL state space, it was observed that the SI algorithm still
maintained superior coordination capability by achieving
higher mean overall user coverage (about 20% better than
the RL algorithm), in addition to faster convergence rates.

Though the RL technique showed better average peak user
coverage, the unpredictable coverage dipwas a keyweakness,
making SI a more suitable algorithmwithin the context of this
work. Another setting constitutes hybrid satellite networks
where UAVs serve as relay mobile base stations to enhance
satellite terrestrial communication. Moreover, lightweight
base station equipment can be mounted on UAVs to provide
coverage in areas of the cellular network where coverage is
poor, or when the terrestrial base station is down or non-
existent. Given the diverse distribution of users, the challenge
of the non terrestrial platform is to maximize the number of
users covered. Huang et al. [92] proposed a Deep Q Network
(DQN) model to optimize the navigation of 32 UAVs acting
as aerial base stations. The state space was represented by the
received signal strengths, while the reward was determined
by the Signal to Interference and Noise Ration (SINR) of the
UAVs. The SINR was chosen to determine the reward since
it varies with the change in location of the UAVs. Hence, the
UAVs will vary their locations in a way to maximize the long-
term expected reward. A three-dimensional user space was
considered by Liu et al. [93] where user equipment can have
various altitudes. Such a simulation environment is important
to model the real-world scenarios where users may be on the
ground level or in high buildings and skyscrapers. The double
Q-learning algorithm was used to maximize the total number
of served users and was selected over standard Q-learning
to overcome its drawback of overestimation. The state of
the UAV was represented by several vectors that describe
the situation of each user in terms of receiving service, the
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maximum time the user can wait for a service, and the time
a UAV needs to fly to a user. The action of the UAV is
specified as the provision of service to a user, while the
reward is the total number of served users. A Double Deep Q-
Network (DDQN) with Prioritized Experience Replay (PER)
was proposed byQiu et al. [94] to find the optimal locations of
UAV base stations that maximize the coverage rate, defined
as the number of ground users covered to the total number
of users, given the constraint of possible blockage in the
air-ground channel. The state of the UAV was defined by
a coverage bitmap that represents the spatial correlation
between the UAVs and the users and provides information
on the total coverage. The UAV changes its moving direction
to maximize the long-term expected reward. To prevent the
UAV from flying beyond the borders of the area considered
in the simulation, the authors defined a negative error function
in the reward to penalize the agent for such behavior.

Liu et al. [95] adopted a deep RL approach to enable
energy-efficient control of UAVs while providing fair cover-
age and connectivity to ground users. The DeepDeterministic
Policy Gradient (DDPG) actor-critic method was chosen to
handle the continuous control problem with an unlimited
action space. A network of multiple UAVs was controlled via
a deep RL agent that sends command signals to orchestrate
the UAVs based on the observations it receives. The state of
the agent was defined by the coverage score and coverage
state of each cell in the network, which are metrics defined
by the authors to represent whether a cell is receiving
fair coverage or not. Energy efficiency was ensured in
this formulation by considering the energy consumption
of each UAV as a part of its state. The authors assumed
that the UAV only consumes energy as it hovers from one
location to another. The action was defined as the angle or
flying direction of each UAV and its flying distance. The
reward was an energy efficiency equation that the agent
needs to maximize. This multi-UAV setting was extended
by Liu et al. [96], where each UAV not only acts as an
aerial base station to serve ground users but also as a hotspot
for the other UAVs. The state of the agent was modified to
include the positions of all UAVs, and their flying directions.
Additionally, the authors ensured the UAVs remain connected
to each other by including the UAV’s distance to the other
agents in its state and penalizing the agent, via the reward
it receives, when these distances fall behind a pre-defined
threshold.

Anicho et al. [91] a reinforcement learning method to solve
the coordination problem of multiple unmanned high altitude
platform stations (HAPs) is compared to swarm intelligence
where reinforcement learning showed better average peak
user coverage. The authors implement a classical Q-learning
method where HAPs are considered as agents and user
mobility is considered a part of the environment and states
are mapped to predefined fixed coordinates. HAPs adjust
their positions to achieve higher mean overall user coverage.
Lien et al. [90] authors propose k-step SR QD-learning
scheme where each NT-BS constituting either HAP or UAV

in a multiple NT-BSs scenario autonomously determines
the deployment trajectory to maximize the number of NT-
UEs that can access the non terrestrial base station. In [97],
Chen et al. first allowed optimal link selection via a designed
graph neural network (GNN), and then adjusted the UAV
locations by using model-free reinforcement learning (RL).
The state of the UAV is composed of its location, embedding
features, and energy consumption and the action consists of
its direction and moving distance. Whereas the instantaneous
reward received by a specific UAV is defined as the coverage
at time t.

2) ENHANCED QoS/QoE
Several RL problem formulations have been proposed to
improve the QoS and QoE of users. Yin et al. [98]
considered the maximization of the uplink sum rate using
the Deterministic Policy Gradient (DPG) with no access of
the UAV to user-side information such as transmit power or
location. The state of the UAV was represented by the time
difference between received signal strengths at each time slot.
The UAV changes its movement represented by spherical
coordinates (step size, elevation, and azimuth angles) to
maximize the long-term reward defined as the uplink sum
rate in each time slot. A similar Q-learning-based approach
was proposed by Bayerlein et al. [99] where the state of
the UAV is represented by its current position and time.
In this formulation, the agent moves its location in four
possible directions to maximize the reward signal defined as
the sum rate between the UAV and the users. Dai et al. [100]
used deep reinforcement learning to solve dynamic resource
allocation problem caused by the limited buffer of the
GEO satellite and the time varying parameter channel in
the NTN scenario to enhance long-term average throughput
performance. In [101] a deep deterministic policy gradient
(DDPG)-based algorithm was used to optimize the overall
uplink throughput and energy consumption where the state
constituted an HAP equipped with MEC server & multiple
UAVs. Cui et al. [102] also used deep deterministic policy
gradient (DDPG) algorithm for UAV trajectory design and
power allocation to maximize the downlink throughput &
service time considering UAVs as aerial base stations.

The remaining battery of the UAV was considered in the
agent’s state by Guo [103], in addition to several QoS and
QoE measures. Based on its state the UAV can choose to
continue serving in one area, move to serve in another area,
or move to recharge its battery at a charging station. The
reward included a penalty that relies on battery capacity.
In a different setting, Cui et al. [104] defined an energy-
efficiency constrained reward function for Q-learning based
multi-agent UAV resource allocation. To ensure the agent
will learn to optimize its trajectory while optimizing for
throughput maximization and energy efficiency, the authors
defined the reward as the difference between achieved
throughput and the power consumed. Hence, the agent would
be rewarded when this difference is increased, that is when
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throughput increases and energy consumption decreases.
Authors in [105] and [106] also worked on energy efficiency
optimization. Zhan et al. [105] modeled a joint design
problem of mission completion time, UAV trajectory, as well
as communication BS associations and solved it using
multi-step DDQN RL algorithm to minimize the energy
consumption of the UAV. In [106] a deep reinforcement
learning based online channel allocation and power control
algorithm in a Satellite-IoT uplink scenario was proposed.
The transmission channel and the power are determined
by the intelligent agent based on contextual information.
A reward to balance increased resource efficiency and met
QoS requirements was used.

A QoE-driven formulation was proposed by
Liu et al. [107], [108] where Q-learning was used to optimize
the trajectory of a UAV in three-dimensional space to
maximize the Mean Opinion Score (MOS) of users. The
convergence of the agent to an optimal policy was ensured
by defining a reward function that rewards the agent for
increased MOS at each time step and penalizes the agent
when the MOS decreases.

Another line of research focuses on leveraging the usage
of Intelligent Reflecting Surfaces (IRS) [109], [110] to assist
UAVs in their objectives. IRS have been receiving significant
research interest and are viewed as a promising energy-
efficient technology for 6G communication networks, as they
are capable of enhancing the transmission quality between a
sender and a receiver by the intelligent configuration of the
wireless environment [111]. In this regard, Zhang et al. [112]
considered the mitigation of attenuation in millimeter-wave
networks by deploying a UAV that carries an IRS. This
approach helps to compensate the N-LoS link by several
connected LoS links such as a base station to UAV-IRS
link and UAV-IRS to ground user link. Hence, the authors
proposed a formulation to optimize the UAV location and
the reflection parameters of the IRS using a deep Q-
Learning approach. The usage of RL in this context showed
effectiveness in reaching a higher average data rate compared
with a non-learning approach. Another line of work proposes
the placement of IRS on the facade of several buildings to
enhance the communication quality between ground users
and UAVs. For instance, the joint optimization of both the
UAV trajectory and the phase shifts of an IRS was considered
by Wang et al. [113] to maximize the overall weighted data
rate of all users in the network. A DQN approach was used
where the state of the UAV consists of its current coordinates
and energy level. The UAV can change its flying direction and
distance to maximize the weighted data rate and fairness of
all users.

B. INTEGRATED ACCESS AND BACKHAUL
Instead of acting as an independent aerial base station,
non terrestrial platforms can be equipped with wireless
transceivers for usage as aerial relays. In this setting, wireless
backhauling is employed in NTNs to act as nodes for

Integrated Access and Backhaul (IAB) operations. IAB
has been justified for usage over 5G infrastructure by the
3GPP [114] and is deemed as useful in enhancing capacity,
coverage, as well as connectivity. However, additional chal-
lenges are imposed on the UAV that needs to guarantee stable
backhaul and access links [115]. Cao et al. [116] proposed a
UE-driven deep reinforcement learning (DRL) based scheme,
in which a centralized agent deployed at the backhaul side
of NT-BSs is responsible for training the parameter of a
deep Q-network (DQN), and each UE is able to access a
proper NT-BS intelligently to enhance the long-term system
throughput and avoid frequent handovers among NT-BSs.
A local reward related to the transmission rate and handover
cost is collected autonomously by the UE. Integrating LEO
satellite and UAV relaying in [117]to maximize the end-
to-end data rate, satellite association and HAP location
were optimized using deep reinforcement learning where
correlation between system utility and achievable rate was
modeled by a sigmoid function to calculate the reward. The
problem considered the scenario of having a single satellite -
HAP link that could be extended in future research to consider
a multi-link scenario. Moreover, this same problem can be
tackled using a distributed deep learning architecture such as
actor-critic or multi-agent reinforcement learning (MARL) to
minimize complexity arising from additional communication
overhead.

Fotouhi et al. [118] proposed an RL method, based on
the brute force search, to optimize the heading direction
of the UAV given the locations of neighboring macro base
stations and ground users. The reward was defined as the
average user performance and was estimated through the
received signal power of associated users, interference signal
power of neighboring UAV IAB nodes, and the backhaul
link performance. A dynamic environment was considered
by Tafintsev et al. [119] where a UAV can switch to another
association node that can provide better performance as it
is moving from one location to another. The association
nodes could be ground base stations or other UAVs acting
as IAB nodes. In [120], the authors considered the problem
where low-Earth Orbits provide backhaul connectivity to
UAVs. The authors formulated the problem of maximizing
user fairness and minimizing of all terrestrial base stations
as a multi-armed bandit problem that can be solved using
Q-Learning.

C. DATA INTEGRITY & SECURITY
1) BASE STATION JAMMING RESISTANCE
Among non terrestrial platforms, UAVs have been proposed
as a strategy to resist jamming which cellular systems are
vulnerable to. Specifically, jamming occurs when replayed
signals are sent to the serving base station to block ongoing
communications. Smart jammers have made the problem
even worse, where the defense policy of the cellular system
is learned through machine learning techniques and smart
radio devices [121]. Given their LoS channels to the user
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FIGURE 6. Illustration of the usage of UAVs as Integrated Access and
Backhaul nodes.

equipment, in addition to their high altitude and mobility,
UAVs can help mitigate jamming effects by acting as relays
when a serving base station is heavily jammed. In this regard,
a UAV can be used to relay the traffic of users to a neighboring
backup base station. This relay solution is effective since
the UAV-to-user and UAV-to-backup base station links will
have better channel states than the link between users and
the jammed base station. Lu et al. [122] proposed a DQN
approach where the UAV is required to find an optimal power
relay policy in a way to reduce jamming while maximizing
its utility. The learned policy, therefore, allows the UAV to
adjust its relay power depending on its current state, which
was defined as the bit-error-rate (BER) values of messages
received by the jammed base station, and the ground users.
Zhou et al. [123] proposed a multi-agent double deep
Q-network (MADDQN) to solve channel selection problem
and a multi-agent twin delayed deep deterministic policy
gradient (MATD3PG) to jointly optimize trajectory design
and power control. The study considered an unmanned
aerial vehicle (UAV)-assisted downlink transmission and
solved the joint optimization problem to maximize the
average achievable channel capacity among the ground users.
It should be noted that the computational complexity of
the algorithm is higher than the general multi-agent deep
(MADRL) scheme but this comes at the expense of having
dynamic rather than static resource allocation.

2) COMBATING GROUND EAVESDROPPERS
Despite the benefits of the LoS-dominated channel links
of UAVs, they make it easier for ground eavesdroppers to
wiretap the UAV acting as an aerial base station [124],
[125], [126]. This fact threatens the security of UAV-aided
wireless networks. To solve this issue, UAVs have been
proposed as aerial jammers that send artificial noise to
the ground eavesdroppers, thus helping the serving UAV.
Zhang et al. [127] considered the scenario where the number
of UAVs is larger than the number of ground eavesdroppers,
requiring the UAV to optimize its flying trajectory in a way
to improve the secure rate. To achieve this, a cooperative
multi-agent deep deterministic policy gradient (MADDPG)
approach was proposed, where the agent could be a serving
UAV or a jammer UAV. The state of each UAVwas defined as
the locations of the other agents, the transmission or jamming

FIGURE 7. Illustration of the usage of UAVs for as aerial jammers for
combating ground eavesdroppers in the network.

power, and the secure rate of users. Based on this state, each
UAV adjusts its location and power level to maximize the
reward function, defined as the difference between the secure
rate and the jamming power penalty. Further adjustments to
this problem formulationwere provided by Zhang et al. [128].
The reward function was modified to penalize the UAV when
it changes its location beyond the specified map. The agent
is also rewarded when it minimizes its distance with the
ground users or ground eavesdroppers, depending on whether
the agent is a serving or jamming UAV respectively. The
authors also reduced the exploration space by the introduction
of an attention layer [129], [130] in the neural network
architecture of the MADDPG algorithm. Hence, the UAV
agent learns to pay attention to the location of ground
users and eavesdroppers, resulting in improved learning
efficiency.

The same problem was proposed in another setting
where information security of UAV-to-vehicle (U2V) com-
munications was considered. Authors in [131] proposed a
U2V communications subject to multi-eavesdroppers on the
ground in urban scenarios. The study aimed to maximize
the secrecy rates in physical layer security perspective
while considering both the energy consumption and flight
zone limitation, by jointly optimizing the UAV’s trajectory,
the transmission power of the UAV, and the jamming
power sent by the roadside unit (RSU). After modeling
the problem as an MDP problem, a curiosity-driven deep
reinforcement learning (DRL) algorithm was implemented
to solve the problem in which the agent is reinforced by an
extrinsic reward supplied by the environment and an intrinsic
reward defined as the prediction error of the consequence
after executing its actions. However, this study imposes
limitations on the number of UAVs & vehicles in the system.
Future work may consider multiple UAVs and vehicles
deployed.
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D. AGE OF INFORMATION IN NTN-AIDED INFORMATION
DISSEMINATION AND DATA COLLECTION
While many works focus on maximizing coverage and
enhancing various QoS measures, it is important to ensure
the freshness of information received when dealing with
time-sensitive applications. This is specifically needed when
UAVs are deployed to collect information from IoT devices
and sensors in the wireless network. Recently, the AoI was
introduced as a time-related metric that measures the time
elapsed since the generation of the last received update packet
by the destination node from a transmission source [132].
In real-time sensing applications, UAVs can be employed as
access points to collect and relay information from ground
nodes in IoT networks or wireless sensor networks. However,
due to their limited communication range, UAVs will have
to fly closer to their targets for better data collection.
This could result in lower throughput as the UAV moves
farther from the terrestrial base station to which it relays
information. In such settings, UAVs are therefore required
to optimize their flight trajectory in a way to minimize the
AoI [133], [134].

Abd-Elmagid et al. [135] proposed a deep RL approach to
minimize the weighted-sum AoI of update packets collected
from ground nodes while jointly optimizing the scheduling of
packet transmissions. A DQN with Experience Replay (ER)
was used where the state of the UAV was represented by
its location during a time slot, in addition to the difference
between the time left before its battery runs out and the
time needed to reach the recharging location. Accordingly,
the UAV can choose to move to an adjacent cell in the
next time slot or remain in its current position. This work
was extended in [136] where a neural combinatorial-based
deep RL algorithm was proposed using a DQN. To handle
a very large number of nodes, a Long Short-Term Memory
(LSTM) auto-encoder was used to reduce the dimensions
of the state space to a fixed-length vector. The reward was
defined as the reduction in the normalized weighted sumAoI.
A similar study was presented in [137] where UAVs were
deployed as virtual queues between base stations and low-
resource IoT devices to relay recent information. Aiming to
minimize the expected weighted sum AoI, a proximal policy
optimization approach was used to control the UAV’s altitude
and scheduling behavior. IRS were also made use of in the
context of AoI minimization by Samir et al. [138] where the
phase shifts of the IRS were optimized along with the altitude
of the UAV.

Yi et al. [139] tackled the AoI minimization problem with
UAV energy constraints. The state was represented by the
UAV’s location, the AoI value for each sensor node in the
network, the difference between the UAV’s remaining time
and energy, and the time, and energy needed to reach its
final destination. The UAV’s actions consist of its movement
and scheduling of a sensor node. A custom reward function
was defined to reward the UAV when the weighted sum
AoI is reduced, and penalize the UAV when several defined
energy, location, and scheduling constraints are violated.

Another energy-efficient trajectory optimization of a UAV
with considerations for data freshness was proposed by
Abedin et al. [140]. A DQN with ER approach was adopted
where the agent is required to minimize the AoI while
maximizing its reward that was defined as the instantaneous
energy efficiency function.

A multi-UAV approach for cooperative sensing and AoI
minimization was introduced by Hu et al. [141], where
a distributed sense-and-send protocol was presented. The
protocol defines several cycles that the UAV goes through
to complete its tasks of sensing and transmission of its
results to a base station. A set of UAVs was considered,
where each UAV acts as an RL agent. The state of the
UAV is represented by the number of considered cycles, the
amount of sensing data it will transmit to the base station,
its selected task, and its target sensing location. At every
state, the UAV takes the actions of selecting a task and a
sensing location. The reward was defined as the negative
average AoI of all tasks. However, due to the nature of
this formulation where the action space contains discrete
variables (task selection) and continuous variables (sensing
location), a compound-action actor-critic (CA2C) algorithm
was proposed to deal with this problem since traditional deep
RLmethods can either deal with purely discrete or continuous
action spaces [142]. This formulation was improved in [143]
where the the reward function was altered to become the
reduction in AoI when transitioning from one state to
another.

To investigate the benefits of integrating unmanned aerial
vehicles (UAVs) with reconfigurable intelligent surface (RIS)
elements to passively relay information sampled by Internet
of Things devices (IoTDs) to the base station (BS), an opti-
mization problem was proposed in [144] with the objective
of minimizing the expected sum Age-of-Information (AoI).
Proximal policy optimization algorithm was adopted to solve
the problem and optimize the altitude of the UAV, the
communication schedule, and phases-shift of RIS elements.
Simulation results showed that the proposed algorithm
outperforms all others in terms ofAoI. It is observed that if the
number of reflecting elements per RIS increase, the quality
of the communication link between the IoTD and the BS will
be enhanced thus improving SNR and expected sum of AoI.
A variant of this work maybe to consider multiple antennas
in source/destination nodes in the future and study overall
system performance.

V. RL FOR CELLULAR-CONNECTED NTNs
Multiple works in the literature have leveraged RL techniques
to aid cellular-connected non terrestrial platforms specifically
UAVs in optimizing their trajectory for various objectives.
In what follows, we present the applications of RL in
cellular-connected NTNs with a focus on the proposed MDP
formulations. A summary of these formulations is provided
in Table 3 where we highlight which works addressed finite
or infinite state and action spaces.
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TABLE 2. A Summary of research that uses RL algorithms for various objectives in NTN-aided wireless communications. Blue background coloring reflects
finite state or action spaces. Red background coloring reflects infinite state or action spaces.
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TABLE 2. (Continued.) A Summary of research that uses RL algorithms for various objectives in NTN-aided wireless communications. Blue background
coloring reflects finite state or action spaces. Red background coloring reflects infinite state or action spaces.

19954 VOLUME 11, 2023



T. Naous et al.: RL in the Sky: A Survey on Enabling Intelligence in NTN-Based Communications

TABLE 2. (Continued.) A Summary of research that uses RL algorithms for various objectives in NTN-aided wireless communications. Blue background
coloring reflects finite state or action spaces. Red background coloring reflects infinite state or action spaces.

A. ENHANCED CONNECTIVITY
1) COVERAGE HOLE AVOIDANCE
An important challenge for cellular-connected UAVs is
guaranteeing connectivity to the cellular network as they
hover to a specific destination [159]. This challenge is
imposed by the fact that currently, the existing terrestrial
base stations are designed to serve terrestrial user equipment.
Thus, the antennas of these base stations are typically down-
tilted [160]. A ubiquitous coverage in the sky for UAVs is
therefore not available by current cellular networks such as
Long-Term Evolution (LTE) networks [161]. This challenge
can be addressed by leveraging the UAV’s controllable
mobility feature to design a communication-aware trajectory
that can enhance connectivity to the cellular network.
Zeng et al. [162] proposed a model-free RL approach, based
on Temporal Difference (TD) learning, to avoid coverage
holes by minimizing the UAV’s disconnection duration from
the network. The state was represented by the location of
the UAV. At every state, the UAV can choose to change
its flying direction. The UAV is rewarded if it is in a
location that is connected to the cellular network and is
penalized otherwise. This problemwas extended to a deep RL
setting in [163], where the dueling DDQN was used.
To enable the UAV to learn how to avoid being disconnected
from the network, the authors modified their reward function
to penalize the UAV when it is in a location with a
certain outage probability. In the context of the internet
of connected vehicles a cooperative approach for content
caching and delivery is presented in [164]. A RSU with a
limited communication coverage collaborates with a UAV
to deliver contents to vehicles on a road segment. An MDP
problem is modeled with the goal of maximizing the number
of served vehicles and solved using a dual task reinforcement
learning method. The problem was modeled as a single-
cell scenario in which one RIS-aided air-to-ground uplink
is deployed. A more realistic and interesting problem might
be the case of having a multi-cell scenario, where the RISs
provide both signal enhancement and inter-cell interference
mitigation.

FIGURE 8. Illustration of the trajectory design of cellular-connected UAVs
for enhanced connectivity. LOS stands for Line-of-Sight. NLOS stands for
No-Line-of-Sight.

2) HANDOVER RATE REDUCTION
Another line of research focuses on reducing the potential
number of handovers which can lead to radio link failure and
signaling overhead [165]. By adopting an efficient handover
mechanism, the robustness of the connection between the
aerial platform and the cellular network can be improved.
A Q-learning approach was presented by Chen et al. [166]
to design the UAV’s trajectory in a way that optimizes
the number of handovers. In baseline handover schemes
the UAV connects to the cell that provides the strongest
received signal strength. In this formulation, this is not
always the case since the UAV may connect to a cell with
lower received signal strength but would go through fewer
handovers while maintaining reliable connectivity. The state
of the UAV was represented by its position, movement
direction, and the cell it is connected to. At every state,
the UAV can take the action of choosing what next cell to
connect to. The reward function was defined as a weighted
combination of the received signal power of the cell at the
next state and the handover rate. This work was extended
in [167] to a deep RL setting based on DQN that can
handle real-world scenarios where the state space becomes
too large, making it more appealing to approximate Q-values
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rather than relying on tabular Q-learning. Azari et al. [168]
formulated the handover reduction problem as a multi-armed
bandit problem, where the agent changes its movement speed
to reduce the disconnectivity time given additional energy and
link reliability constraints.

B. SPECTRAL MANAGEMENT
The rapidly increasing number of communication devices
that a network needs to handle has made the communication
environment highly complex. This problem is augmented
when limited spectral resources are available. Additional
burdens are imposed on this environment when cooperative
UAVs are deployed as aerial users in these networks [169].
Under limited available channels to serve these UAVs,
a robust dynamic channel allocation strategy is required to
maximize spectral efficiency [170]. Given the time-varying
and complex environment that UAVs need to operate within,
RL methods have been found useful in achieving an optimal
action strategy for spectral management. Zhou et al. [171]
proposed a DQN approach that incorporates an LSTM neural
network for dynamic channel allocation. In this approach,
several UAVs are deployed for various tasks and need to send
information to receiving nodes, but the number of channels
available is smaller than the total number of UAVs. Each
UAV was represented as an agent. The state was defined
as the channel occupancy status, residual channel capacity,
and collision of UAV access. The authors defined a reward
function that penalizes the UAV when a collision occurs,
that is when it tries to access a channel that is already
occupied by another UAV. Otherwise, the UAV receives a
reward that depends on its distance from the receiving node.
This work was extended in [172] to consider information
sharing among UAVs, where one UAV would broadcast
information to the rest of the UAVs in the network, allowing
the better accomplishment and survivability of the tasks.
In this setting, a strategy for dynamic allocation of time
slots is required since only one UAV needs to be in the
transmission state while the rest of the UAVs need to be
in the information reception state. The agent can decide at
every state whether to share information with the rest of the
UAVs or not, depending on the reward it receives which was
adjusted to be the MOS, which was defined to consider the
sending bit rate, frame rate, and total packet error rate. In the
afore-mentioned studies, authors were simulating the channel
using dominant/probabilistic empirical models since channel
state information (CSI) is unavailable due to UAVs mobility.
More realistic CSI estimations to get more accurate channel
models are performed through learning-based approaches.
Luong et al. [173] proposed a novel algorithm that employs
a deep Q-learning approach to tackle the issue of CSI
unavailability for determining UAVs’ positions in a multi-
cooperative UAV network. Numerical results demonstrated
that the approach was efficient with a network performance
gain of up to 70%. In [174] the authors presented a
machine learning based channel estimation technique to help

reduce the CSI feedback delay as the UAV feeds the CSI
information only to the primary base stations. Simulation
results showed that both the bit error rate (BER) and the
sum rate performance are enhanced when appropriate CSI
estimation results are utilized.

C. INTERFERENCE MANAGEMENT
Despite the benefits UAVs get from being connected to the
cellular network such as high-speed data access, this comes
at the cost of increased inter-cell interference to ground users
and among the UAVs. It is therefore important to optimize the
trajectory of the UAV to overcome the interference challenge
in cellular networks that serves users in the ground and the
air [175], [176]. Hence, the UAV should be able to adapt
its movements depending on the requirements of the ground
and aerial user equipment. A non-cooperative game-theoretic
formulation for interference management was proposed by
Challita et al. in [177], [178] and was solved using a deep
RL algorithm based on echo state networks. The approach
aims at mitigating the interference caused by the UAV on the
ground users while minimizing the time required to reach the
destination location as well as the transmission delay. It was
shown that a vital role is played by the UAV’s altitude when
aiming to minimize interference levels on ground users. The
challenge of UAV height optimization was tackled in [179]
using a DQN with ER, where the UAV agent adapts its
height in a way to increase throughput under interference
constraints. A similar study with energy constraints was
presented in [180].

VI. QUALITATIVE ANALYSIS: SIMULATION REALISM
To investigate how well the surveyed works of the literature
emulated a realistic simulation environment, we provide a
comparative illustration in Tables 4 and 5 that classify the
literature according to several factors we define as important
to achieving realism in simulation. In this regard, we consider
four main factors: the simulation environment, the nature
of the aerial platform mainly UAV in Table 4, the wireless
channel, and the energy of the UAV. Additionally in Table 5
we consider non terrestrial platforms in general specifying the
platform type. Under the simulation environment, we classify
the works on whether their simulated environment was
static or dynamic, and whether it was 2-Dimensional
(2D) or 3-Dimensional (3D). The nature of the NT-BS
proposed in the problem formulation is classified as single,
multiple independent, or multiple platforms that coordinate
cooperatively to achieve a certain goal. In terms of the
wireless channel considered in the proposed system model,
we classify the works according to four levels: a simple
path loss model that considered the presence of a dominant
LoS link, a path loss model with shadowing and/or fading
consideration, a probabilistic path loss model that considers
probabilities of having LoS or N-LoS links, or the case of
where the UAV performs estimation of the channel state
information (CSI). Finally, we also classify the works on
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TABLE 3. A Summary of research that uses RL algorithms for various objectives in cellular-connected UAVs. Blue background coloring reflects finite state
or action spaces. Red background coloring reflects infinite state or action spaces.

whether they considered the UAV’s limited energy resources
in their proposed RL formulation.

Upon analyzing Table 4, we can conclude that:
• While a noticeable number of works considered
a 3D environment, much less consideration for
dynamic and 3D environments was reported, with
most of the literature presenting static simulation
environments.

• Theworks in [82], [96], [123], [127], [128], [140], [141],
[142], [143] and [172] succeeded in achieving realistic
aerial platform deployment scenarios where multiple
platforms are expected to perform cooperative decisions
instead of independent decisions.

• Most of the works simulated a realistic wireless channel
in their system model using the probabilistic path loss
model [93], [94], [118], [127], [128], [104], [107], [108],

[172], [179], [180], [148], [80], and [123] with only a
few works achieving higher realism by considering CSI
estimation [79], [112], [131], [137], [158].

• In terms of energy considerations, a fair number of
works presented energy-efficient factors and constraints
in their formulations such as battery capacity [103],
energy harvesting [112], [150], [157], propulsion
energy [113], [139], energy quanta [136], [139] and
others [95], [96], [140].

Upon analyzing Table 5, we notice that more attention
was paid to 3D environments with more realistic deployment
scenarios where multiple non terrestrial platforms coordi-
nate together to provide multi-user access control [116]
in NTNs, space-air-ground integrated link optimiza-
tion [151], [153], maximizing end-to-end data rate [117] and
others [154], [155].
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TABLE 4. Classification of the surveyed literature in terms of realism factors pertaining to the simulation environment, UAV, wireless channel, and energy
consideration.
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TABLE 5. Classification of the surveyed literature in terms of realism factors pertaining to platform, simulation environment, wireless channel, and
energy consideration.

VII. BROAD RESEARCH DIRECTIONS
In this section, we discuss some challenges that arise when
adopting RL techniques for NTN communications. Our
set of challenges highlight open research that integrates
NTN communications and intelligence, and includes some
key ideas that should be considered to bridge the gap
between simulation-based experimentation and real-field
implementation.

A. EXPERIMENTATION AND ADAPTATION TO REAL
ENVIRONMENTS
RL-based solutions proposed for both NTN-aided wireless
communications and cellular-connected NTNs have been
experimented on in simulation environments. Although
simulation-based environments enable the collection of larger
data sets for training, it will be difficult for a model trained
on data generated by simulated environments to generalize
in real-world environments. Dynamic environments need to
be further explored in problem formulations to accurately
mimic real-world situations that include various uncertainty
in terms of user behavior, demand, or mobility. Statistical
efficiency is needed in the real world since we can not obtain
as many samples as we can during simulations. In this case,
a possible solution could be the investigation of domain
adaptation techniques for RL [183], [184], [185], [186]
since they can allow models trained on data from one
domain to generalize in a target domain, which is the real-
world environment. Additionally, to validate the usefulness
of RL methods for intelligent NTN communications, it is
necessary to perform experiments of these approaches in
the real-world using wireless testbeds [187], [188]. Such

procedures are important as they may uncover challenges
that a non terrestrial platform will face in a real deployment,
and that are not easily deducible from experiments in
simulated environments. By performing experimentation in
the real-world and adapting models from simulated to real
environments, the simulation-reality gap can be mitigated.
One sample consideration is that non terrestrial platforms
especially UAVs have to move very close to users mainly in
extremely harsh environments to achieve better performance.
In order to adapt to such harsh environments, the hardware
material used to manufacture the platform itself should
be robust to tolerate real situations. Harsh atmospheric
conditions, sensor accuracy, equipment size and battery
endurance affect the flight time and in turn the performance.
This should be taken into consideration so that UAVs will
be able to provide an adaptable and reliable communication
backbone [189], [190].

Integrating NTN and free space optical (FSO) technologies
can provide low cost broadband solutions in extremely harsh
environments, and can be the next disruptive technology
for 6G remote connectivity. Hybrid RF/FSO Satellite Com-
munication is proposed in [191] where the satellite selects
RF or FSO links depending on the weather conditions
obtained from sensors knowing that the impact of rain
on FSO transmission is less significant compared to fog.
In hybrid RF/FSO two configurations are possible. The
first one enables RF communication at one hop and FSO
communication at the other in a dual-hop or relay-assisted
networks. For regions that have high probability of a certain
weather condition (mainly cloud, rain, fog), frequencies
with tolerable attenuation should be preferred in order to
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complement the behaviour of FSO main link by a RF back
up link [192]. The hybrid radio frequency/free-space optical
(RF/FSO) network can be employed in backhaul-to-relay
and relay-to-user communications when considering the
limited backhaul communication in HAPs [193]. It resulted
in improved power & spectral efficiency in [191] and [193],
respectively. Joint optimization problems can be formed
to help link aerial and terrestrial terminals by optimizing
multiple-HAP deployment, power and spectral efficiency.

B. METAVERSE REALITY
With the advancement of wireless communication technolo-
gies and the creation of a digital twin of the physical
world, known as the meta-verse or 3D virtual reality,
new open research problems arise. Networks are expected
to support super-high-definition (SHD) and extremely
high-definition (EHD) videos, with super-high throughput
demands and to provide ultra-reliable low-latency commu-
nications. To achieve this, bands in the range of 275GHz–
3000GHz, which are known as Terahertz (THz) bands and
are not yet allocated for specific active services, will be
considered. However, these available bands at terahertz (THz)
and millimeter-wave (mmWave) frequencies are limited
by a short communication range and a high susceptibility
to molecular absorption, blockage, and deep fade. Recent
proposed work in this area is presented in [194] and [195].
Non-terrestrial platforms will play a crucial role in offering
expected Tbps-level throughput and sub-millisecond laten-
cies to assist terrestrial networks via 6G technology since
current terrestrial network capabilities do not satisfy 6G
requirements. 6G is supposed to be a cell free four-layer
architecture network that combines space, air, terrestrial,
and underwater (or sea) network tiers where full wireless
coverage and ubiquitous connectivity will be provided in
an intelligent information society to support support various
applications, such as flight in the sky, voyage at sea,
or vehicles on land. Low-Earth-orbit, medium-Earth-orbit,
and geostationary-Earth-orbit satellites will be deployed
to support orbit or space Internet services to serve areas
not covered or partially covered by terrestrial networks.
Satellites with mm-wave communications will be deployed
for high-capacity satellite–ground transmission.As for long-
distance inter-satellite transmission in free space, laser
communications may be used. Flying and floating base
stations such as UAVs and HAPs can be deployed to work
in the low-frequency, microwave, and mm-wave bands to
provide more flexible and reliable connectivity for urgent
events or remote areas [81]. 6G will be an autonomous
ecosystem where intelligence and machine learning will
be needed to integrate sensing, communication, computing,
caching, control, positioning, radar, navigation, and imaging,
to support full-vertical applications. [196] implement deep
reinforcement learning to enhance communication efficiency
and trajectory of THz-empowered NTNs where new con-
straints are imposed by dynamic THz channel conditions

for ground users (GUs) association. Metaverse will also
support space communications where users in crewed aircraft
will be able to access various kinds of Internet services
with the aid of non terrestrial platforms. Other applications
include space exploration where NTNs play a vital role in
establishing connection to investigate the universe beyond
Earth’s atmosphere. [197] recently proposed the need of
non terrestrial wireless communication and social connection
between planets in the virtual world. The paper illustrates a
vision of an interplanetary Metaverse that connects Earthian
and Martian users in Metaverse.

C. NTNs ENABLING ZERO-TOUCH NETWORKS
Evolving 6G envisions the deployment of non-terrestrial
networks (NTNs) in 3D platforms UAVs, HAPSs and
satellites since they provide standalone networking solutions
to preserve connectivity in the absence of other already-
deployed network infrastructures, or when terrestrial towers
are out of service especially in rural areas. In such scenarios,
manual configuration of the network will no longer be
possible. Network intelligence and automation will be a
must, thus the need for computationally intensive algorithms.
To achieve this, energy resources will remain a challenge.
To illustrate more, specifically when dealing with deep
RL models that perform continual learning instead of
models that follow a fixed policy, high computational cost
will impose additional power consumption due to data
processing operations. This will require additional energy
demands from the non terrestrial platform that has limited
energy resources [198]. In this regard, an important design
consideration for real-world deployment is the investigation
of accurate RL methods with moderate computational and
energy demands to comply with the resources available
to the aerial platforms. Other potential solutions are the
powering using solar cells [199], [200], [201] and integrating
energy harvesting solutions [202], [203], [204], which could
lead to extended flight duration and further reduce energy
consumption. An additional gap identified in the literature
is the lack of consideration for multiple UAV charging
stations in problem formulations for UAV-assisted wireless
networks. This consideration is important for real-world
deployment scenarios and would add a constraint on the
RL-based trajectory design where the UAV would not be
limited with only one choice of location for recharging its
battery. Open research problems related to ambient back-
scatter communicationwhere transmitters can harvest the sur-
rounding signals and waves radiated by towers, base stations,
as well as access points and reflect them towards receivers
without the need of external power resources, include
spectral efficiency, energy efficiency and protocol design.
Regarding spectral efficiency, careful planning of backscatter
devices is needed. As for energy efficiency, a large IoT
network composed of hundreds or thousands of devices
may still need energy efficiency optimization on a system
level although individual backscatter communication devices

19960 VOLUME 11, 2023



T. Naous et al.: RL in the Sky: A Survey on Enabling Intelligence in NTN-Based Communications

demonstrate good energy performance [205]. Considering
protocol design, since ambient backscatter communication
systems are mainly used for dedicated application-specific
purposes, compatibility issues with other wireless devices
need to be considered where key operation and management
aspects of ambient backscatter communications, such as
packet size, routing protocols, and others might need to
be formalized by specific standardization methods and/or
protocol design formalization.

Other open research problems are in the field of medical
IoT and autonomous vehicles. The overall aim of zero-
touch networks is for devices to learn how to become
more autonomous so that we can perform complex tasks
on them. NTN platforms will help enhance the avail-
ability of rural healthcare solutions via the Internet of
Space things. Within the domain of healthcare, NTNs
enabling 6G will help in disease diagnosis and treatment
by integrating different components (NTN platforms, physi-
cian devices, biosensors,..) at heterogeneous levels where
remote metric evaluations and treatment plans will be
proposed.

Space connectivity will also help enable connected
autonomous vehicles where large amount of data related
to high-resolution real-time mapping of the terrain, route
optimization, and traffic and safety information is exchanged
between vehicles and aerial platforms. In autonomous
vehicular networks a predictive model based on real-time
data would be more accurate than traditional theoretical
models due to mobility of vehicular nodes. Reinforcement-
learning algorithms for intelligent resource management and
network management problems mainly when the orchestrator
performs optimal placement of virtual network functions
onto the underlying physical substrate prove to be highly
applicable and efficient [205]

Wide-area coverage of satellite communications together
with hybrid satellite–terrestrial networks complemented
high capacity shore-based systems by providing ubiquitous
maritime connectivity. By employing solutions for new
radio technologies to support non-terrestrial networks, 6G
maritime networks can benefit from the 5-layer architecture
for 6G setups as proposed in [206] to extend the coverage of
terrestrial systems and provide access to maritime services
in offshore areas and non-line-of-sight (NLOS) scenarios.
Whenever the line-of-sight link is unavailable, reinforcement
learning can help in identifying relay nodes to solve the beam
misalignment problem. Since reinforcement learning requires
no prior knowledge of the environment, it helps in identifying
optimal relay nodes in dynamic maritime environments
where beam misalignment leads to data rate and energy
efficiency deterioration [206]. To tackle such challenges
a recent study in [207] proposes a deep reinforcement
learning algorithm to solve the alignment issue by obtaining
the optimal beam divergence angle to maximize the link
availability. Another study proposes an RL-based approach
for optimizing positioning and beam width of the light source
for underwater wireless communication [208].

D. NTN-AIDED PERVASIVE COMPUTING
Communication implies computation everywhere. As dif-
ferent devices are performing different heterogeneous in
a multiagent stochastic environment attention to the RL
algorithm should be considered. Deep RL techniques dom-
inate as the choice of the algorithm in the majority of the
surveyed articles where proposed approaches were evaluated
in simulated environments with limited considerations of the
non terrestrial platform resources especially UAV resources.
UAVs are sometimes used as edge servers, so they are
expected to carry computational resources [209], [210].
However, these resources would be limited. Hence, if UAVs
are to be operated in the real world, and if the computational
load is expected to take place at the UAV side and not
the base station side, the adopted RL methods need to
be computationally efficient for real-time decision making.
This would be difficult when using deep RL methods that
rely on complex neural network architectures with high
computational costs. The problem is augmented in cases
where incremental learning is applied, where the agent
will be continuously learning from its interactions with the
environment while being in operation. Suitable selection
mechanisms of the device hardware that is suitable for
deep learning tasks [211], [212], [213] and RL technique is
needed.

A critical issue is the location of data storage and that
used to be in cloud data centers. For devices distributed in a
wide geographic area, this introduces significant performance
delays. Edge AI pushes operation and management tasks
to local devices. This will increase the burden on local
devices since they are not equipped with as powerful
processing units as the cloud processing center. Research
efforts in accelerating the hardware’s processing capability,
and increasing the coordination between local and central
processing units to optimization task distribution are being
introduced [205].

Federated learning concept can be implemented where
generated raw data is used locally to train a local model
and then send the local trained model to the central node
for aggregation. This will help in minimizing communication
overhead and latency. Moreover less data will be communi-
cated which ensures better privacy preservation. How to use
federated learning with integrated space-terrestrial networks
woud be another challenge. A critical open research question
is how to jointly optimize aerial station locations, resource
allocation, and training parameters to boost the learning
process [214], [215].

Other challenging problems arise with the introduction
of multi-access mobile edge computing and intelligent
computation offloading. Non terrestrial aided pervasive
computation allows different devices to be involved in
the computation process. Due to energy and computation
resource constraints of aerial platforms, especially for
UAVs, offloading computationally heavy tasks from cellular-
connected NTNs to edge nodes will improve the network
perseverance. In this regard, joint task offloading, commu-
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nication and computation resource allocation problems to
minimize the energy consumption of mobile devices and
UAVs and/or latency especially in a multi-UAV scenario
can be formulated and solved using reinforcement learning
methods [216], [217].

In a multi-NTN platform system, action coordination of
individual NTN device is required so that mission is complete
in the best possible way. In order to adapt to the environment
with uncertain changes, the system should decide on where
aerial platforms should move and what tasks to perform.
Coordination algorithms can be classified based on the
actions they need to decide on, data to use for decision
making, the decision making algorithms and decentralization
degree [218].

E. SECURITY
Machine learning has recently drawn research attention in
terms of security in diverse systems and platforms of satellite-
terrestrial communication and more research is needed in
this area. One of the main open problems is that traditional
terrestrial security approaches are adopted and they are not
sufficient for NTNs. Even though same security challenges
exist such as DoS and jamming attacks, however these
do not apply due to latency and high mobility involved.
Key management for cryptographic protocols is considered
critical in NTNs. Furthermore, security measures should be
applied on ground-based stations including gateways and
end user IoT devices since they are prone to be used as
launchpads for security attacks. Reinforcement learning can
aid in secure computation offloading, as proposed in [219]
to meet security challenges arising due to lack of resources
on board in satellites. Authors implemented RL methods
to dynamically alter the computation offloading policies for
different scenarios based on threat levels. Techniques that
require high energy and computation resources should only
be used in cases of serious security threats. Blockchain-
based techniques have been proposed and proved to improve
security through distributed computing using ground-based
cellular networks [220]. Thus blockchain technologies can
be implemented to enhance communication security between
terrestrial and non terrestrial stations [221].

VIII. CONCLUSION
RL has been an attractive choice for researchers aiming to
achieve various control objectives in NTN-aided wireless
communications and cellular-connected NTNs. RL tech-
niques can reach an optimal control policy that the NTN
platform can adopt to satisfy the desired objective. In this
paper, we surveyed the literature for the different RL
formulations applied to solve control problems in NTN
communications, with a focus onMDP formulations.We con-
sider the two integration scenarios where non terrestrial
platforms are deployed as aerial base stations or relays to
assist wireless networks or connected to the cellular network
as aerial user equipment. While many surveys in the literature
have addressed different aspects of NTN communications,

TABLE 6. List of Acronyms.

no survey has comprehensively tackled the applications of
RL. In this respect, we synthesize a taxonomy from the
surveyed literature that represents the investigated objectives
of RL in the context of NTN communications.

Despite the promising results achieved in the literature by
using RL, many challenges remain to be addressed before
RL techniques can be used in real-world non terrestrial
platform deployment. An important design consideration
for is the investigation of accurate RL methods with
moderate computational and energy demands to comply
with the resources available to the aerial platforms. Problem
formulations should mimic real world multi-agent stochastic
scenarios more accurately. Other aspects that need to be
considered are integration with 3D virtual reality where
networks are expected to support super-high-definition
(SHD) and extremely high-definition (EHD) videos, with
super-high throughput demands and to provide ultra-reliable
low-latency communications. To achieve this, we need non-
terrestrial platforms to assist terrestrial networks. Moreover,
space and underwater connectivity, autonomous devices,
backscatter communication and energy harvesting are to
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considered in the context of non terrestrial networks as
stated in VII. As machine learning has recently been
implemented in diverse systems and platforms of satellite-
terrestrial communication for secure communication, more
research is needed in this area. One of the main open
problems is developing security mechanisms that tailor
to the design and functionality of NTN platforms rather
than utilizing or customizing existing traditional terrestrial
security approaches.

APPENDIX
See Table 6.
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