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ABSTRACT This paper presents a trajectory planning and control algorithm of autonomous vehicles
for static traffic agent avoidance in multi vehicle urban environments. In urban autonomous driving, the
subject vehicle encounters diverse traffic scenes including lane changing, intersection driving, and illegally
parked static vehicle avoidance. Among these, dealing with illegally parked static target vehicle is a major
challenge to urban autonomous driving due to large velocity difference between ego and target vehicles
and interactions with surrounding vehicles. In order to tackle this problem, we introduce a decision making
and motion planning framework for static vehicle avoidance considering both the preceding static vehicles
and surrounding vehicles. Among the surrounding vehicles, the set of objects with potential collision
risk is selected based on the lane boundaries and road geometry. Then, the driving status of the selected
target vehicles are classified as normal driving vehicles or parked vehicles based on their longitudinal
speed, lateral position and lateral space occupancy. For the preceding parked vehicles, the motion planner
generates lateral and longitudinal evasive motion, by taking side lane traffic flow and risk into account. The
desired motion is executed by applying optimized control inputs computed by lateral and longitudinal model
predictive controllers. The performance validation of the proposed algorithm has been conducted with actual
autonomous test vehicles. The test results confirmed that the proposed algorithm can successfully perform
evasive maneuvers on urban roads to ensure safety and mitigate collision risk with the surrounding traffic
agents.

INDEX TERMS Autonomous driving, autonomous vehicle, model predictive control, motion planning,
vehicle dynamics and control.

I. INTRODUCTION
Advances in autonomous vehicle systems significantly
reduced road accidents caused by diverse human driver
errors [1]. Automobile safety standards and technologies
have been expanded from passive safety to active safety, and
technologies are being compulsorily applied to production
vehicles [2]. Moreover, driver safety and assistance functions
have been actively studied over the past decade for highway
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driving situations [3]. Advanced Driver Assistance Systems
(ADAS) for highway semi-autonomous driving provides
lane keeping control and adaptive cruise control functions.
These functions allow drivers to travel most of the distance
without the intervention of throttle/brake pedals and steering.
ADAS has been proven to effectively prevent accidents and
reduce damage in case of accidents while increasing driver
convenience [4].

The difficulties of urban autonomous driving compared
to highway autonomous driving are mainly due to irregular
motion of surrounding vehicles, which includes stationary
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motion within the lane due to roadside parking [5]. Various
studies have addressed the motion planning algorithm
of autonomous vehicles for avoiding collision with the
surrounding traffic agents using various techniques, including
artificial potential field, waypoint sampling, and predictive
control approaches. In [6] and [7], an artificial potential
field and predictive control based path planner is introduced
for obstacle avoidance. The heuristic potential functions are
designed to prevent road departure and collision with cross-
able and non-crossable obstacles. Similar approaches were
adopted in [8], where side lane vehicles are also considered
for the constrained optimization problem. Although these
studies consider the behavior of surrounding vehicles, the
results were provided in simulation environments under the
assumption that the true states of the target vehicles are
known in advance. However, accurate surrounding vehicle
information including bounding boxes needs to be provided
form the perception algorithm for stable operation of actual
on road autonomous vehicles.

Sampling based spatio-temporal motion planning in con-
sideration of surrounding target vehicles is an efficient
approach for mid-range vehicle behavior planning [9], [10].
Waypoint nodes are defined as the center points of the current
and adjacent driving lanes with a predefined longitudinal
spacing. The selection of each node for a given horizon
determines whether the ego vehicle performs a lane changing
motion. By defining feasible sample trajectories of the ego
vehicle considering surrounding vehicles’ predicted motion,
the optimal trajectory is selected based on the travel cost
and constraints. Although this method has been shown to
effectively optimize the ego vehicle motion in presence of
multiple target vehicles, limitations are present when applied
to partially occupying in-lane obstacles. Due to the nature
of discretized node sampling, avoidance of static in-lane
obstacles is achieved by lane changing motion. In order to
perform in-lane evasive lateral motion regarding the same
obstacle, it is necessary to add multiple node candidates
with different lateral deviations in each lane and longitudinal
position. Methods regarding this approach were introduced
in [11], where a search based multiple node expansion and
path optimization methods are elaborated. In [12], a sampling
and optimization based path and velocity profile generation
method was introduced. Geometric and dynamic constraints
have been incorporated for the optimization problem, and the
method has been validated through path tracking and obstacle
avoidance maneuvers of an actual test vehicle.

Previous researches based on model predictive control
(MPC) approaches for risk mitigation are elaborated in
[7], [13], [14], and [15]. Cesari et al. [16] presented a
scenario model predictive control based lane change assis-
tance function to consider uncertainties in traffic conditions.
Based on the defined environmental constraints and the
dynamics model, the MPC controller ensures the stability
of the system and tracks the desired target states [17].
In [18] and [19], a safe driving envelope-based obstacle
evasive motion planning framework is introduced. The safe

environmental envelope that prevents collision with the
surrounding obstacles on the road is defined as a tube,
and the desired vehicle states are planned by applying the
tube as a constraint. Also, a stable handling envelope is
defined and applied as a state constraint in order to secure
lateral stability. Similar approaches are adopted in [20],
where the ego vehicle’s lateral error boundaries defined
for obstacle collision avoidance vary linearly along the
path centerline station. These studies mainly deal with the
avoidance behavior of obstacles within a single lane, and it
is assumed that the state and intention of the obstacles are
known in advance.

Inferring the intention of the stationary front obstacle
has been addressed in several studies regarding urban
autonomous driving. In [21], the term ‘parked vehicles’
was defined and the relevant features for parked vehicle
classification were presented. The parked status of the vehicle
was predicted using a support vector machine (SVM) based
classifier. Similarly, a deep neural network based static
vehicle overtaking decision algorithmwas introduced in [22].
The methods presented in both papers predicted the parked
status of a stationary vehicle with high accuracy, but the
avoidance motion planning algorithm regarding the stopped
vehicle is not provided. Even if a lane change decision is
made, in dynamic traffic environments, the ego vehicle must
continuously assess the collision risk and plan its motion
accordingly. Typical examples of these motion include lane
change motion abort, stop and wait in lane depending on the
behavior of the side lane vehicles.

A trajectory planning and control algorithm for urban
autonomous driving is proposed, which decides the required
avoidance behavior according to the states of the preceding
obstacle and plans the subsequent motion in consideration
of the collision risk with the surrounding traffic agents.
The proposed framework selects the obstacle of interest and
determines its static states at the initial stage. Based on the
obstacle velocity and lane occupancy, the decision maker
outputs the desired driving mode for obstacle avoidance.
Next, the motion planner generates the reference motion
to implement the risk mitigation strategy for the obstacle.
While executing the desired motion, the collision risk of
the side lane vehicle as well as the front target vehicle is
assessed and the subsequent vehicle response is updated.
Lastly, the plannedmotion is tracked using amodel predictive
control based lateral and longitudinal controllers. The control
inputs, steering wheel angle and longitudinal acceleration,
are optimized under state and actuation constraints and are
applied to the autonomous vehicle system. The proposed
framework was tested in urban traffic environments with a
full size actual autonomous vehicle.

The contributions of our work are summarized as follows:
1) A decision making and motion planning framework is

proposed, which enables different strategies depending
on the status of the preceding static vehicle.

2) The collision risk is mitigated in consideration of the
surrounding target vehicles.
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FIGURE 1. Overview of the proposed motion planning and control
architecture.

3) The proposed algorithm was validated through actual
vehicle tests in urban driving environments.

The remainder of the paper is organized as follows:
Section II provides the structure of the autonomous driving
vehicle system and describes the behavior of the traffic
agents under general urban driving situations; Section III
illustrates the target vehicle management and decision
making processes; Section IV formulates themotion planning
and control algorithm; Section V discusses the performance
of the algorithm through actual vehicle test results; Finally,
Section VI concludes the paper.

II. PRELIMINARY
A. OVERALL ARCHITECTURE OF AUTONOMOUS DRIVING
SYSTEM AND TEST VEHICLE
The overall autonomous driving algorithm constructed for
this study is described in Fig. 1, which is implemented
in industrial PC and algorithm processor modules. The
implemented algorithms have been developed based on
Robot Operating System (ROS). The structure of the
entire system, including the proposed motion planning and
control algorithm, can be divided into four main modules:
localization, perception, motion planning, and control. The
localization and perception module provides ego vehicle
pose and surrounding environment information to the motion
planning module. Equipped with a differential GPS device
and frontal view monitor cameras, the global position and
heading of the ego vehicle is estimated from the localization
module. The states of the ego vehicle are estimated from the
vehicle chassis sensor measurements using extended Kalman
filtering [23]. The raw measurement information obtained
from the environment sensor set consisting of 32 channel
360-degree LiDAR sensors and front vision camera with
78 degrees of Field of View (FOV) are transferred to the
perception module. The perception algorithm then generates
the current state information of surrounding vehicles and
the static obstacle occupancy map [24]. The configuration
and specifications of the autonomous driving test vehicle are
summarized in Fig. 2.
Based on the outputs processed from the localization and

perception modules and the high definition map (HD map)

FIGURE 2. Hardware configuration of the autonomous test vehicle.

information, the target vehicle manager block determines
the in-lane and side-lane target vehicles and their predicted
states. The decision maker then determines the desired
driving mode of the ego vehicle according to the obstacle
status and the collision risk with the side lane vehicles. The
motion planner block derives the desired longitudinal and
lateral states of the ego vehicle during lane keeping, lane
changing, and collision avoidance maneuvers. The output
desired states are then fed to the controllers. The lateral
and longitudinal states are tracked using a model predictive
controller, and the final control inputs, which corresponds to
the steering angle and longitudinal acceleration, are applied
to the vehicle. A Rapid Control Prototyping (RCP) device
Micro-Autobox II equipped with CAN network interface
transmits the calculated control inputs to the vehicle via CAN
bus.

B. BEHAVIOR OF TRAFFIC AGENTS AT DRIVING LANES
On urban roads and highways in Korea, where the proposed
autonomous driving architecture is implemented, driving
lanes each have their own properties and regulations [25].
Traffic participants therefore select their driving lane accord-
ing to the vehicle type and driving purpose. For highways
with two or more lanes in one way, the first lane is defined
as an overtaking lane. The overtaking vehicle should enter
the lane at the left of the current driving lane and return to the
original lane when overtaking is finished. From the second
to the last lane, passenger vehicles, commercial vehicles
and special purpose vehicles including road maintenance,
construction vehicles are driven. In principle, passenger
vehicles drive in the possible innermost lane, and low speed
special purpose vehicles drive in the last lane due to their
travel speed differences.

Urban roads with multiple lanes in one way are operated in
a similarmanner. Overtakingmust be performed using the left
lane of the driving lane, and vehicles are encouraged to use
the inner lane in the order of desired travel speed. Along with
these characteristics, there are lanes for designated uses such

5774 VOLUME 11, 2023



C. Kim et al.: Trajectory Planning and Control of Autonomous Vehicles for Static Vehicle Avoidance

as straight driving, left turn, right turn, and U-turn. However,
there are vehicles that demonstrate irregular behavior in
the corresponding lane. One typical example is illegally
parked vehicle, which often occupies the rightmost lane for
passenger loading and unloading. In order to respond to
these vehicles, surrounding vehicles perform a lane change
motion or an avoidance maneuver depending on the traffic
situation.

III. DECISION MAKING IN CONSIDERATION OF STATIC
TRAFFIC AGENTS
A. SAFE DRIVABLE ENVELOPE-BASED ENVIRONMENT
REPRESENTATION
The developed autonomous vehicle system for our work
acquires the necessary surrounding environment information
using LiDAR and vision sensors. Among these, the point
cloud data from the LiDAR sensor are mainly used for
precise detection of surrounding objects. The perception
module provides the states of the detected vehicle tracks
including position, velocity and acceleration [26]. In the case
of basic lane keeping and clearance control maneuvers, the
corresponding functions have been successfully performed
only with the aforementioned target state information [27].
However, in order to plan the avoidance behavior which
will be presented in section IV, it is necessary to accurately
measure how much the obstacle occupies the lateral space
of the driving lane as well as the states of the LiDAR track.
Therefore, in this study, a static obstacle map is constructed
based on the detected raw point cloud data [24]. Represented
as a grid map with a longitudinal and lateral resolution of
0.1m defined in the ego vehicle local frame, the static obstacle
map contains the probability of each grid being occupied by
a static obstacle. The grid points with static probability of
95% and above are considered as being occupied by a static
obstacle.

Among the constructed static obstacle map grid points, the
ones having collision risk with the ego vehicle are filtered
based on the HD map lane information. That is, the static
obstacles within the left and right boundary of the current
driving lane of the ego vehicle are selected to construct a safe
drivable envelope, which defines the range of collision free
lateral displacement as a function of longitudinal position.
A similar approach regarding the lateral obstacle avoidance
has been verified in [28]. The safe drivable envelope is
constructed in the following order. Initially, themaximum and
minimum drivable range at a particular longitudinal position
are each defined as the lateral position of left and right lane
boundaries expressed in the vehicle local frame. The vehicle
coordinate system is adopted according to the description
provided in Fig. 3. If obstacle points exist within the lane
boundary, these are divided into left and right obstacles based
on their relative lateral position with respect to the lane
centerline. Next, the initially computed envelope is narrowed
down to the lateral position of the innermost obstacle among
the ones which exist within half the spacing of the envelope in
longitudinal direction from each decision point. The envelope

FIGURE 3. Envelope parameters and their geometric descriptions
expressed in ego vehicle coordinates.

decision point, longitudinal region of interest (ROI) and the
envelope modification law are defined as follows:

envL(xenv,i) = min(ylane,L(xenv,i),

yobs,L(xenv,i) − ϵ) − wveh/2 (1a)

envR(xenv,i) = max(ylane,R(xenv,i),

yobs,R(xenv,i) + ϵ) + wveh/2 (1b)

where xenv,i = i · ds, i ∈ {0, 1, · · · ,Nenv} ,

xROI = max(vx,min, vx) · τROI , ds =
xROI
Nenv

(1c)

where τROI is the time gap for envelope ROI decision, Nenv
denotes the number of envelope decision points. ϵ is the
lateral buffer for safety margin, which is set to 0.2m in
order to consider the possible uncertainties of perception
module measurements. vx and vx,min each denotes the ego
vehicle longitudinal speed and its lower bound saturation
value. The only vehicle parameter, wveh, is the width of the
ego vehicle. The longitudinal range of the ROI is defined
proportional to the speed of the ego vehicle, where τROI is
the factor multiplied to the vehicle speed. The discretized
envelope points xenv,i are separated with equal longitudinal
distance of ds, where ds can be obtained by dividing the
ROI length with the number of envelope decision points. The
velocity-proportional ROI length model is adopted since the
evasive maneuver at higher speed requires longer preview
distance in order to secure ride comfort and safety [29].
On the other hand, the minimum speed for ROI calculation
is defined for preventing extremely short preview distance at
low speeds.

The envelope defined in (1) provides valid lateral bound-
aries for the ego vehicle if the obstacle does not cross
the centerline of the driving lane. However, although the
obstacles do not fully occupy the driving lane width, they
might exist across the lane center. Although it is practically
possible to avoid these obstacles, the defined envelope
narrows the drivable area to the extent that the ego vehicle
cannot pass through it. This is because the innermost
obstacles on the left and right are selected as obstacles
located at the center of the driving lane. To overcome these
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FIGURE 4. Graphical representation of left and right free spaces.

shortcomings, the left and right spaces of each obstacle are
proposed in this work. Based on the left and right spaces,
the possibility of obstacle avoidance behavior is redetermined
when the envelope lateral space is insufficient for passing.
The left and right spaces are defined as follows:

SL(xenv,i) = ylane,L(xenv,i) − max(yobs(xenv,i)) (2a)

SR(xenv,i) = min(yobs(xenv,i)) − ylane,R(xenv,i) (2b)

where yobs denotes the lateral positions of the set of obstacles
within the lane boundary. The geometric representation of the
left and right spaces is provided in Fig. 4. If the presented
safe drivable envelope and the free spaces are calculated in
parallel, these information are fed to the target management
module in order to predict the intentions and driving lane
occupancy of the preceding obstacles. Subsequently, the ego
vehicle can establish a different behavior plan according to
each situation. More details are described in section III-B.

B. TARGET MANAGEMENT AND CLASSIFICATION
1) IN-LANE TARGET AND SIDE-LANE TARGET SELECTION
The basic actions that an autonomous vehicle must perform
in order to drive while interacting with surrounding vehicles
include longitudinal clearance control, lane centering and
lane changing. When the vehicle is to be driven along the
current driving lane, it should secure a safe longitudinal
clearance between the preceding vehicle and maintain the
center of the lane without exceeding lane boundary limits.
These two actions each correspond to longitudinal clearance
control and lane centering. If the ego vehicle changes its
driving path from the current lane to the adjacent lane, this
behavior is defined as lane changing action. Lane changing
motion is necessary in situations where the traffic flow of
the next lane is faster than the current lane, or when moving
to a specific lane is mandatory in order to navigate through
the predefined global route. In order to maintain a safe
clearance with the preceding vehicles in the driving lane, the
in-lane target vehicle is selected among the moving targets
recognized from the perception module and the static targets
generated from the static obstacle map. When changing
lanes, the ego vehicle investigates the vehicles that have a
potential collision risk among vehicles driving in the target
side lane. Depending on the side vehicle collision risk,
the decision maker executes or withdraws a lane changing
motion. To achieve these functions, the lane to which each
surrounding vehicle belongs is determined based on the pose
of the vehicle and the HD map coordinates of the driving

TABLE 1. Side lane target safety distance parameters.

lane, left lane and right lane [30]. The state variables of the
j-th surrounding vehicles are provided from the perception
module as follows:

xtar,j =
[
xj yj ψj vx,j

]T (3)

where x, y, ψ denotes the local position and heading of the
target measured in the ego vehicle reference frame, vx is the
longitudinal velocity. The collision risk of side lane vehicle is
determined by the relative longitudinal distance and the target
safety distance. If the distance between the ego vehicle and
the side lane target vehicle is greater than the desired safety
distance, the target vehicle is not considered as a risky target.
On the other hand, if the target vehicle exists within the safety
distance, it is considered as a risky target. The front and rear
safety distance of the side lane target vehicle are defined as
follows:

SDfront,j = Lveh + τrel(vx − vx,j)

+max(Csafe,front , τLC,frontvx) (if xj ≥ 0)

(4a)

SDrear,j = Lveh + τrelmax(0, vx,j − vx)

+max(Csafe,rear , τLC,rearvx,j) (if xj < 0)

(4b)

where Lveh is the vehicle length, vx denotes the ego vehicle
longitudinal velocity, τrel and τLC,front/rear are the time gap
for relative velocity and absolute velocity terms. Csafe,front
and Csafe,rear each denote the minimum longitudinal clear-
ance for front and rear target vehicles. The parameters
designed for the safety distances are summarized in Table 1.

2) SURROUNDING STATIC OBSTACLE CLASSIFICATION
Apart from the general lane centering and lane changing
situations, complex driving maneuvers are required in order
to cope with obstacles having diverse configurations as
introduced in section III-A. In urban driving scenes, on-road
objects including illegally parked vehicles and non-vehicle
obstacles are in many cases in the form of static obstacles.
Since different strategies are required according to the
degree of lane occupancy and position of the static obstacle,
the static obstacles are classified into the following three
classes:

1) Class 1: Partially occupying obstacles that can be
avoided with in-lane avoidance behavior

2) Class 2: Partially occupying obstacles that require
avoidance behavior across driving lane boundaries
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FIGURE 5. Conditions designed for the classification of static obstacles.

3) Class 3: Fully occupying obstacles that require lane
changing motion for avoidance

The presence of Class 1 obstacle does not alter the driving
lane of the ego vehicle, but it is necessary for the ego
vehicle to replan the path within the current driving lane
boundaries to secure a safe lateral margin from the obstacle.
Class 2 obstacles are similar to the ones in Class 1, but
these obstacles occupy greater lateral lane space so that
the available lateral space within the current driving lane
becomes less than the width of the ego vehicle. Therefore,
the ego vehicle should cross the driving lane boundary while
executing the evasive motion. Also, another condition is
added regarding the left side free space of the obstacle in
order to determine the parking intention of the obstacle [21].
In our work, obstacles having left side free space greater than
a threshold distance are classified as Class 2. This implies
that the obstacle is biased toward the right side, willing to
allow the following vehicles to overtake and pass by. Finally,
obstacles that fully occupy the lateral lane space are classified
into Class 3. Although these obstacles may be avoided with
either cross-lane evasive motion and lane changing motion,
performing a lane changing motion is appropriate if the
ego vehicle should invade a major portion of the side lane
space while executing the cross-lane evasive motion. The
conditions to distinguish the class of the static obstacles are
described in Fig. 5.

C. DRIVING MODE DECISION BASED ON OBSTACLE
STATES AND TRAFFIC RISK
As introduced in section III-B, the main driving modes
of an autonomous vehicle are lane centering mode and
lane changing mode. In this study, two additional driving
modes (mild shift, severe shift) were defined and added as
possible actions for the ego vehicle to take in order to avoid
the preceding static obstacles. The overall decision-making
process for obstacle avoidance is depicted in Fig. 6 in the form
of a state flow. Detailed motion planning algorithm which
takes the resulting decision as the input will be discussed in
the upcoming sections.

FIGURE 6. State machine for driving mode decision making in
consideration of side lane collision risk.

The ego vehicle initially performs lane centering and
clearance control behind the preceding in-lane target vehicle.
If partially or fully occupying static obstacles appear, the
driving mode is switched with respect to the class of the static
obstacle. In the case of Class 1 obstacles, mild shift’ mode is
activated so that the ego vehicle performs an evasive lateral
motion without crossing lane boundaries. Since the collision
risk with the side lane vehicle is not a relevant factor to take
into account during ‘‘mild shift’, the risk checking process for
side lane vehicles is neglected for this mode. Conversely, the
ego vehicle should check the side lane risk when it encounters
Class 2 obstacles since a severe shift’ evasive motion which
crosses the lane boundary is necessary for these obstacles.
When the collision risk with the side lane target is present,
the ego vehicle waits in the current driving lane until the
risk is resolved. The lateral motion required for the Class 2
obstacle avoidance starts after the side lane collision risk is
mitigated.

For fully occupying static obstacles (Class 3), the ego
vehicle initially maintains the center of the driving lane and
stops behind with a desired longitudinal clearance. If it is
determined that it is advantageous to change the lane by
comparing the traffic flow in the current driving lane and side
lane, a lane change motion is attempted. Similar to the case
of encountering a Class 2 obstacle, the side lane collision risk
is evaluated before the lane change execution. If the risk is
present, the ego vehicle maintains the initial position behind
the obstacle and starts the lane changing motion when the risk
is resolved. As described in the mode transition conditions in
Fig. 6, the ego vehicle escapes the evasive maneuver mode
and re-enters the lane centering mode when the preceding
obstacle is passed.

IV. MOTION PLANNING AND CONTROL
A. MPC BASED LONGITUDINAL AND LATERAL CONTROL
ARCHITECTURE
For each driving mode determined by the decision maker,
the motion planning algorithm plans the desired longitudinal
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and lateral motion based on the surrounding target vehicle
information and the safe drivable envelope. The motion
planner calculates the desired reference states of the ego
vehicle at the future prediction time for a total of 2 seconds
at time intervals of 0.1 seconds. A model predictive
control (MPC) based longitudinal and lateral controllers then
calculate the desired acceleration and steering angle input to
follow the desired reference motion.

The reference longitudinal motion of the ego vehicle
is determined by the desired longitudinal states at each
prediction step. In our work, the longitudinal states are
defined as the longitudinal position, velocity, and acceleration
of the ego vehicle. The control input is defined as the desired
longitudinal acceleration. The longitudinal prediction model
is based on a kinematic model with a first order acceleration
input delay in order to consider the desired acceleration
tracking characteristics of the actual vehicle [31]. The
continuous time state space representation of the proposed
longitudinal vehicle model is as follows:

żlon = Alonzlon + Blonulon

=

0 1 0
0 0 1
0 0 −1/τlon

 zlon +

 0
0

1/τlon

ulon (5a)

where zlon =
[
px vx ax

]T
, ulon = ax,des (5b)

where px , vx , ax are the longitudinal position, velocity,
acceleration of the ego vehicle expressed in the local
coordinate, τlon is the time constant of the first order
acceleration delay model, ax,des is the desired longitudinal
acceleration. The prediction model is then discretized under
a constant time interval as below:

zlon(k + 1) = Alon,dzlon(k) + Blon,dulon(k)

=

1 1t 0
0 1 1t
0 0 1 −1t/τlon

 zlon(k)

+

 0
0

1t/τlon

ulon(k) (6a)

where zlon(k) =
[
px(k) vx(k) ax(k)

]T
,

ulon(k) = ax,des(k) (6b)

where zlon(k) is the longitudinal state vector at the k-th
prediction step, 1t is the discretization time interval, Alon,d
and Blon,d are the discretized system matrices. The initial
state vector is defined as the measured current vehicle state.
An MPC problem is formulated in order to calculate the cost
optimal control input under state and input constraints. The
cost function and constraints for the MPC are defined as
follows:

min
ulon(0)···ulon(N−1)

N−1∑
k=0

[{zlon(k + 1) − zlon,ref (k + 1)}T

Qlon{zlon(k + 1) − zlon,ref (k + 1)}

+ ulon(k)TRlonulon(k)] (7a)

FIGURE 7. Bicycle model parameters and lateral state variable
description.

subject to zlon(k + 1) = Alon,dzlon(k)

+ Blon,dulon(k) (7b)

ax,min ≤ ulon(k) ≤ ax,max (7c)

jlon,min ·1t ≤ ulon(k + 1)

− ulon(k) ≤ jlon,max ·1t (7d)

zlon,min(k + 1)

≤ GT
lonzlon(k + 1) ≤ zlon,max(k + 1)

(7e)

where Glon

=
[
0 0 1

]T
, k ∈ {0, 1, · · · ,N − 1}

(7f)

where zlon and zlon,ref are the predicted ego vehicle longitu-
dinal state vector and the desired reference longitudinal state
vector at each prediction time step, ulon is the control input.
zlon,min and zlon,max correspond to the predicted longitudinal
state bounds, Qlon and Rlon each denotes the longitudinal
state and input weight matrices. The feasible input range
and the input slew rate are bounded as expressed in (7c)
and (7d). Based on this objective function which is quadratic
in state error and input, the MPC controller yields an
optimal longitudinal acceleration input which minimizes the
reference state tracking error and control effort within the
prediction horizon. For the longitudinal MPC controller,
the state boundaries of (7e) are defined as the longitudinal
position of the nearest in-lane target vehicle and following
vehicle [32]. The maximum and minimum longitudinal
acceleration inputs are constrained to 1.5m/s2 and -5m/s2.
The maximum acceleration slew rate is set as 4m/s2. The
values of these parameters have been set to ensure ride
comfort and safety of the passenger while the autonomous
vehicle utilizes the longitudinal acceleration range similar to
that of a human driver [27], [33], [34].

The lateral motion planner generates the desired reference
lateral states of the ego vehicle. Utilizing the dynamic bicycle
model and path tracking error dynamics [35], the lateral states
are defined as the side slip angle, yaw rate, heading error, and
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lateral error. Graphical representations for the lateral states
are provided in Fig. 7. The control input is the desired steering
angle of the vehicle. The dynamics of the lateral vehicle
model in continuous time domain are defined as follows:

żlat = Alatzlat + Blatulat

=


−

2(Cf +Cr )
mvx

−
2(Cf lf −Cr lr )

mvx2
− 1 0 0

−
2(Cf lf −Cr lr )

Iz
−

2(Cf lf 2+Cr lr 2)
Izvx

0 0

0 1 0 0

0 0 vx 0

 zlat

+



2Cf
mvx
2Cf lf
Iz

0

0

ulat +


0
0

−vx
0

 κroad (8a)

where zlat =
[
β γ eψ ey

]T
, ulat = δFSA (8b)

where κroad is the curvature of the road,m is the vehicle mass,
lf and lr are the distances from the front and rear wheel axles
to the mass center, Iz is the yaw inertia, Cf and Cr are the
cornering stiffness of the front and rear tires. Similar to the
longitudinal vehicle model, the lateral vehicle model (8) is
also discretized into the following form:

zlat (k + 1) = Alat,dzlat (k) + Blat,dulat (k)

+Flat,dκroad (9a)

where zlat (k) =
[
β(k) γ (k) eψ (k) ey(k)

]T
,

ulat (k) = δFSA(k) (9b)

where zlat (k) is the lateral state vector at the k-th prediction
step, Alat,d , Blat,d , Flat,d are the discretized system matrices.
The lateral MPC problem is then formulated as follows,
which generates an optimal steering angle that regulates
the predicted lateral state error and control effort under
constraints:

min
ulat (0)···ulat (N−1)

N−1∑
k=0

[{zlat (k + 1) − zlat,ref (k + 1)}T

Qlat {zlat (k + 1) − zlat,ref (k + 1)}

+ ulat (k)TRlatulat (k)] (10a)

subject to zlat (k + 1) = Alat,dzlat (k)

+ Blat,dulat (k)

+ Flat,dκlat (k) (10b)

|ulat (k)| ≤ δFSA,max (10c)

|ulat (k + 1) − ulat (k)| ≤ δ̇FSA,max ·1t

(10d)

zlat,min(k + 1) ≤ GT
latzlat (k + 1)

≤ GT
latzlat (k + 1) ≤ zlat,max(k + 1)

(10e)

where Glat

TABLE 2. In lane target safety distance parameters.

=
[
0 0 0 1

]T
, k ∈ {0, 1, · · · ,N − 1}

(10f)

where zlat and zlat,ref are the predicted and reference state
vector at each prediction time step, zlat,min and zlat,max are the
lateral state bounds,Qlat and Rlat denote the lateral state and
input weight matrices. The maximum steering wheel angle
magnitude is set to 450deg, which corresponds to the full right
and left turn steering angles. The steering wheel angle rate is
limited to 400deg/s, in order to limit rapid control inputs and
generate smooth steering wheel motion.

For lateral stability, the desired side slip angle and heading
error within the prediction horizon is set to zero. The
reference yaw rate of the vehicle is defined based on the
geometry of the target path and the speed of the vehicle.
Assuming that the vehicle follows the center of the target
path, the desired yaw rate of the vehicle at each prediction
step can be expressed as the product of the path curvature
and longitudinal velocity. The sign of the road curvature is
defined as positive for a left handed curve, and negative for
right handed curve. The counter clockwise direction of yaw
rate is therefore defined as positive, which matches the sign
convention defined in Fig. 7.

B. LANE CENTERING AND CLEARANCE CONTROL
The control object of the ego vehicle during lane centering
mode is to regulate the lateral and yaw error with respect to
the reference path. Therefore, the reference lateral state for
lane centering is defined as follows:

zlat,ref (k) =
[
0 vxκroad 0 0

]T (11)

The longitudinal motion is planned to keep a safe distance
with the preceding vehicle while following the desired
speed profile, which is determined by the road limit speed
and path curvature. Similar to the safety distances of the
side lane vehicles which are defined in (4), the safety
distance of the preceding target vehicle is defined as follows,
in consideration of the velocities of ego and target vehicle:

SDprc = Lveh + τLK (vx + vx,prc)/2 + Csafe,LK (12)

where vx,prc denotes the target vehicle longitudinal velocity,
τLK is the time gap for absolute velocity term, Csafe,LK
denotes the minimum longitudinal clearance for preceding
in-lane target vehicle. The preceding target vehicle safety
distance parameters are provided in Table 2.
Depending on the relative position of the preceding target

vehicle, the reference longitudinal position and velocity are
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planned as follows:

px,ref (k) =


px,ego(k)

(if px,prc(k) − SDprc(k) > px,ego(k))
px,prc(k) − SDprc(k)

(otherwise)
(13a)

vx,ref (k) =


λkvset + (1 − λk )vx,prc(k)

(if px,prc(k) − SDprc(k) > px,ego(k))
vx,prc(k)

(otherwise)
(13b)

where px,ego(k + 1) = px,ego(k) + vref (k)1t,

λk =
px,prc(k)−SDprc(k)

px,prc(k)
(13c)

zlon,ref (k) =
[
px,ref (k) vx,ref (k) 0

]T (13d)

where the subscripts prc and ego stand for the preceding
target and ego vehicle, 1t is the prediction time interval.
Variables with parentheses correspond to the values evaluated
at the prediction step number denoted in the parentheses. The
formulated reference state profiles are then fed to the lateral
and longitudinal MPC.

C. PARTIALLY OCCUPYING OBSTACLE AVOIDANCE VIA
MILD EVASIVE MOTION
In case when a static obstacle of Class 1 is present within
the driving lane, the motion planner should generate a lateral
motion which can drive the ego vehicle to avoid collision
without crossing the lane boundaries. The desired lateral
offset is determined according to the geometry and status of
the safety envelope introduced in section III-A. If the left
and right envelope boundaries do not intersect each other,
the ego vehicle can travel without collision. In this case, the
desired lateral position is set as the mean value of the left
and right envelope in order to follow the center of the defined
envelope boundary, and the corresponding desired offset can
be expressed as follows:

ey,des(xenv,i) = [envL(xenv,i) + envR(xenv,i)]/2

−ycenter,i (14)

where ycenter,i is the y-coordinate of the driving lane evaluated
at the longitudinal envelope position xenv,i. The lateral motion
planner then calculates the lateral target position for the MPC
controller. It mitigates the collision risk of the ego vehicle
by applying the prioritized value among the obtained lateral
offset from the entire range of the envelope. For example,
if there is no obstacle within the control horizon but there is an
obstacle that requires avoidance at a point on the target path
at a greater distance, the corresponding target lateral offset is
applied as the desired lateral offset.

The longitudinal motion is planned in the same manner
as proposed for the case of lane centering and clearance
control. Since the Class 1 obstacle does not require the ego

FIGURE 8. Ego vehicle strategies regarding Class 2 obstacles. The shaded
areas denote the safety distances of the target vehicles. (a) Cross lane
evasive motion for risk free situation. (b) Stopping motion when side lane
risk is present.

vehicle to decelerate, only the preceding in-lane target vehicle
affects the desired position and velocity of the ego vehicle.
Therefore, the reference longitudinal states are determined
according to (13).

D. PARTIALLY OCCUPYING OBSTACLE AVOIDANCE VIA
SEVERE EVASIVE MOTION
1) RISK FREE EVASIVE MOTION FOR CLASS 2 OBSTACLES
As described in the decision making process, the ego vehicle
can respond to Class 2 obstacles in either two ways: taking
evasive motion across the lane boundary when no risk is
present, or waiting behind the obstacle until the risk is
resolved. The evasive vehicle motion when there is no side
lane risk is depicted in Fig. 8 (a).

Since the safety envelope boundaries and the correspond-
ing envelope midpoints are valid for in-lane evasive motion,
the cross lane evasive motion necessary for Class 2 obstacle is
formulated based on the free spaces which are defined as (2).
The value of desired lateral offset which ensures side to side
space margin between the ego vehicle and the obstacle is
obtained as follows:

ey,des(xenv,i) = (ylane,L(xenv,i) − ycenter,i)

−SL(xenv,i) + ϵlat +
wveh
2

(15)

where ϵlat is the lateral margin which is set to 1.4m, wveh
denotes the width of the ego vehicle.

If the calculated target lateral motion is performed to avoid
obstacles without collision, the ego vehicle does not need to
reduce its speed. However, human drivers feel uncomfortable
when driving next to an obstacle at their maximum allowable
speed, so they apply deceleration when taking evasive motion
and return back to the original target speed after passing the
obstacle. In order to quantify this tendency, a set of manual
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FIGURE 9. Velocity profile of human driver with respect to the lateral
deviation during evasive maneuver.

FIGURE 10. Description of fully occupying obstacle avoidance maneuver
activation condition.

driving data is collected to observe the change in driving
speed according to the lateral offset of a human driver. The
experiment was conducted under traffic free environment
with single target vehicle present as an obstacle, which is the
case described in Fig. 8 (a). The cumulative driving results are
shown in Fig. 9. A total 4181 data points of lateral position
and longitudinal velocity information have been obtained
from the experiment, where the ego vehicle was driven by a
test driver with multiple years of urban and highway driving
experience.

The green point denotes the start of the evasive motion, and
the blue markers indicate the points where the ego vehicle
reaches the maximum lateral offset during the maneuver. The
normalized longitudinal velocity is obtained by dividing the
velocity by the initial vehicle speed at the beginning of each
avoidance behavior. Similarly, the initial lateral deviation
is subtracted for each trial in order to eliminate the effect
of lateral error bias generated by human driver during the
experiment. Therefore, the initial normalized velocity and
lateral deviation are set to 1 and 0, respectively. It can be
inferred that the human driver generates steep deceleration
rate during the start of the avoidance behavior and reaches
a constant velocity when sufficient lateral offset is reached.
In order to model the normalized velocity as a function of
lateral displacement while reflecting the previously observed
tendency, the following expression is proposed:

η =

{
1 − (1 − ηmin)

√
|ey|
enom

(if |ey| ≤ enom)

ηmin (otherwise)
where vx,ref = η · vx,set (16)

FIGURE 11. Parameters of the designed lane changing trajectory.

where η and ηmin are the velocity reduction factor and its
lower bound, enom is the nominal lateral offset where velocity
saturation takes place. The model parameters ηmin and enom
are set to 0.7 and 0.6m, respectively. The dashed line in Fig. 9
represents the normalized velocity value calculated from the
approximated function model.

2) WAITING MOTION FOR RISK RESOLVE
When side lane risk is present, the ego vehicle cannot
perform the aforementioned evasive motion. As described in
Fig. 8 (b), the ego vehicle stops behind the obstacle with
a desired longitudinal clearance until the risk is resolved.
While it is impossible to cross the lane boundary immediately,
the ego vehicle can convey its lane crossing intention to the
side lane traffic agents by applying lateral traffic pressure
within the current driving lane [36]. This induces the yielding
of the side rear target vehicle, which can be beneficial in
terms of ego vehicle longitudinalmotion progress. Also, it has
the advantage of moving less lateral distance during evasive
motion after the risk is resolved compared to the case of
stopping behind the obstacle at the center of the driving lane.
The desired lateral offset for applying traffic pressure while
waiting behind the obstacle is defined as follows:

ey,des(xenv,i) = (ylane,L(xenv,i) − ycenter,i)

−ϵTP −
wveh
2

(17)

where ϵTP is the lateral margin for traffic pressure, which
denotes theminimum distance between the left lane boundary
and the left side edge of the ego vehicle.

The longitudinal desired motion is straightforward, by set-
ting the reference position as the position of the obstacle
subtracted by a constant safety distance value. Similar to the
reference shaping defined in (13a) which is the case of lane
centering and clearance control, the reference position for
waiting motion is defined as follows:

px,ref (k) = px,prc(k) − Cpv (18)

where px,prc is the relative longitudinal position of the
obstacle, Cpv is the desired safety clearance between the ego
vehicle and the obstacle. The parameters ϵTP and Cpv are set
to 0.3m and 5.0m each.

E. FULLY OCCUPYING OBSTACLE AVOIDANCE
In order to respond to Class 3 obstacles, the ego vehicle
can execute two types of maneuvers: avoidance by lane
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FIGURE 12. On board camera images of mild evasive motion at time (a) t = 15.0 sec, (b) t = 18.4 sec, (c) t = 20.1 sec.

FIGURE 13. Vehicle state history of mild evasive motion. (a) lateral offset (b) longitudinal velocity (c) steering wheel angle
(d) longitudinal acceleration.

FIGURE 14. Longitudinal and lateral acceleration distributions during
mild evasive motion.

change and stop behind the obstacles. As shown in Fig. 10,
the activation of the obstacle avoidance maneuver for fully
occupying vehicles is determined by considering the traffic
flow of the side lane. If the traffic flow in the side lane is
non-static while Class 3 obstacles exist in the ego driving

lane, the Class 3 obstacles are regarded as parked vehicles to
avoid, and the ego vehicle enters a preparation phase for the
lane change maneuver. In the preparation phase, the collision
risk of the side lane vehicles is monitored as described in
Section III-B.1. Accordingly, the lane change maneuver is
activated if there exists no side lane vehicle which induces
the collision risk. On the other side, the ego vehicle maintains
stop maneuver behind the Class 3 obstacles if the traffic flow
in the side lane is static or the collision risk of the side lane
vehicle exists.

In lane change mode, a geometric reference trajectory is
planned to realize the lane change maneuver considering
the collision avoidance and driver acceptance. A sigmoid
function, which is continuous and differentiable, is used
to design the lane change trajectory in the spatial domain.
In fact, the sigmoid function has been widely applied to
autonomous lane change tasks and validated by many previ-
ous studies [37], [38]. To follow the lane geometry efficiently,
the lane change trajectory is designed on the curvilinear
coordinate system with the base frame constructed based
on the lane centerline [39]. The formula of the trajectory is
described as below:

d(s) = ±
1

1 + ek(s−llc/2)/llc
· wroad (19)

where s and d are the longitudinal and lateral coordinate,
respectively; k is the coefficient related to the trajectory
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FIGURE 15. On board camera images of first severe evasive motion at time (a) t = 16.0 sec, (b) t = 18.2 sec, (c) t = 21.7 sec, and second evasive motion
at time (d) t = 28.5 sec, (e) t = 33.2 sec, (f) t = 42.0 sec.

FIGURE 16. Vehicle state history of severe evasive motion. (a) lateral offset (b) longitudinal velocity (c) steering wheel angle
(d) longitudinal acceleration.

shaping; llc is the longitudinal length of the lane change
trajectory; wroad is the width of the road. The sign of d(s)
is dependent on the lane change direction. The origin point
of (s, d) is determined as the lane centerline point which is
closest to the ego vehicle at the lane change initiation. The
trajectory length llc is determined as follows:

llc = min(llc,free, llc,avoid ) (20a)

where llc,free = τlc · vx + llc,min,

llc,avoid = 2(xobs − lmargin) (20b)

where llc,free is the trajectory length considering the free
traffic situation where no preceding static obstacle exists; vx
is the longitudinal speed of the ego vehicle; τlc and llc,min are
the coefficients related to linear modeling of llc,free; llc,avoid
is the trajectory length considering the collision avoidance

situation where Class 3 obstacles exist; xobs is the distance
from the ego vehicle to the Class 3 obstacle; lmargin is the
margin distance from the ego vehicle to the Class 3 obstacle
to secure the safety. As shown in Fig. 11, llc,avoid is designed
in the sense that the ego vehicle maintains the distance gap
of lmargin with the Class 3 obstacle at the lane crossing point
(s, d) = (llc/2,±wroad/2). τlc and llc,min are determined as
9.0s and 10m considering the driver acceptance, respectively.
The shaping coefficient k is applied as the value of 7 for
llc > 20, and 4 for llc < 20 [40]. Therefore, the lateral
motion controller follows the sigmoid reference trajectory
if lane change mode is activated responding to the Class 3
obstacles.

Similar to (13) in Section IV-B, the longitudinal motion
for the lane change maneuver is planned to maintain a
safe distance with the front vehicle in the side lane and
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TABLE 3. Acceleration profile analysis of mild evasive motion.

FIGURE 17. Longitudinal and lateral acceleration distributions during
severe evasive motion.

follow the desired speed profile. The reference position
and velocity for lane change maneuver are determined as
follows:

px,ref (k) =


px,ego(k)
(if px,front (k) − SDfront (k) > px,ego(k))

px,front (k) − SDfront (k)
(otherwise)

(21a)

vx,ref (k) =


λkvset + (1 − λk )vx,front (k)
(if px,front (k) − SDfront (k) > px,ego(k))

vx,front (k)
(otherwise)

(21b)

where px,ego(k + 1) = px,ego(k) + vref (k)1t,

λk =
px,front(k)−SDfront (k)

px,front (k)
(21c)

zlon,ref (k) =
[
px,ref (k) vx,ref (k) 0

]T (21d)

where the subscripts front and ego stand for the front
target in the side lane and ego vehicle, respectively; SDfront
is the safety distance of the front target in the side
lane described in (4a). Therefore, the longitudinal MPC
follows the formulated reference states in lane change
mode.

V. VEHICLE TEST RESULTS
The proposed motion planning and control algorithm was
verified and tested in an urban public road using a full
size actual autonomous test vehicle. The experiment was
conducted on urban roads in South Korea. Non-autonomous
driving target vehicles and autonomous driving ego vehicle
were driven together on the road. Unlike general road
conditions, illegally parked vehicles in the lane frequently
exist at the test site. Therefore, the ego vehicle mainly
responded to the situation of avoiding these parked vehicles.
The experiment was conducted on two-lane and three-lane
roads, where the parked vehicles exist in the rightmost lane.

A. MILD EVASIVE MOTION FOR PARTIALLY OCCUPYING
OBSTACLE AVOIDANCE
The vehicle test results including the on-board front camera
image snapshots for mild evasive motion are shown in this
section. Each of the three photos from Fig. 12 depicts the
scene when the vehicle detects an obstacle, travels alongside
the target vehicle, and starts returning to the center of the
lane. Fig. 13 shows the history of the ego vehicle states and
the relative position of the obstacle. The lateral offset of the
static obstacle, plotted in magenta, is defined as the measured
lateral position of the detected obstacle with respect to the
center of the driving lane at each time step.

The ego vehicle initially drives in lane centering mode,
following the center of the desired path. As the ego vehicle
approaches the Class 1 obstacle, the envelope is modified
in advance according to the constructed static obstacle map.
As can be seen in the lateral offset plot depicted in Fig. 13 (a),
the lateral avoidance motion starts at time t = 16 sec
and remains until passing the obstacle. The shaded plot in
Fig. 13 (a) denotes the lateral displacement swept by the
area between the left and right edges of the ego vehicle.
The subject vehicle generates smooth proactive behavior
without using abrupt steering and acceleration control inputs,
which is shown in Fig. 13 (c), (d). The distributions of the
vehicle acceleration provided in Fig. 14 also suggest that
the maximum magnitude of both longitudinal and lateral
acceleration values remain under 0.1m/s2. The statistics of
the acceleration distribution is provided in Table 3. The ego
vehicle returns to the center of the driving lane when all the
obstacles are passed. During the evasive motion, it can be
inferred that a minimum lateral margin of 0.8m is secured
at the moment when the ego vehicle passes the obstacle.
As shown in Fig. 13 (b), the ego vehicle maintains its initial
longitudinal speed since the obstacle is not selected as an
in-lane vehicle that requires longitudinal clearance control.
Therefore, it can be seen that the ego vehicle does not perform
unnecessary deceleration and can execute the desired evasive
motion without disturbing the traffic flow of the driving lane.

B. SEVERE EVASIVE MOTION FOR PARTIALLY OCCUPYING
OBSTACLE AVOIDANCE
Vehicle test results for severe evasive motion are summarized
in Figs. 15 - 17, in a similar manner as provided in
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FIGURE 18. On board camera images of lane changing motion at time (a) t = 30.0 sec, (b) t = 34.0 sec, (c) t = 40.0 sec.

TABLE 4. Acceleration profile analysis of severe evasive motion.

FIGURE 19. Target vehicle and accumulated ego vehicle configuration.

section V-A. In this experiment, the ego vehicle performs
two consecutive evasive motions. The first evasive motion
takes place at time t = 17 sec to t = 25 sec, where side lane
collision risk is not present. As can be seen in Fig. 16 (a), the
ego vehicle passes the first set of obstacles without collision.
The on board camera images of this maneuver are illustrated
in Fig. 15 (a) - (c). The ego vehicle however encounters the
second set of obstacles when the left side lane risk is present.
The time region in which the side lane risk was detected is
indicated by red shaded areas in Fig. 16 (b) and (d). Since
the Class 2 obstacles were detected while the side lane risk
was present, the ego vehicle initially plans to stop behind the
obstacle without executing lateral evasive motion. The side
lane target and in lane obstacles are visualized in Fig. 15 (d).
Therefore, negative acceleration input is applied at time t =

25 sec to t = 29 sec, reducing the longitudinal velocity.
At time t = 30 sec, the risk is resolved as the side lane vehicle
completely passes the ego vehicle. The ego vehicle then
initiates the lateral motion and passes the obstacle, where the
process is depicted in Fig. 15 (e), (f). The lateral positions of
the static obstacle and the edges of the ego vehicle illustrated
in Fig. 16 (a) suggest that for both evasive maneuvers,
minimum lateral margin of 0.8m is secured without colliding
with the obstacles.

As can be seen from the longitudinal and lateral accel-
eration distribution shown in Fig. 17, a wider range of
acceleration was generated compared with the case of mild

TABLE 5. Acceleration profile analysis of lane changing motion.

evasive motion. The magnitudes of longitudinal and lateral
accelerations reached a maximum value of 1.55m/s2 and
1.99m/s2 each, which does not exceed the acceleration range
experienced in general lane change driving motion [32].
It can be seen that the positive value of the bar with the
highest frequency in the longitudinal acceleration histogram
is near 0, which reflects the characteristics of maintaining
less longitudinal input magnitude when the ego vehicle is
accelerating. The statistics of the acceleration distributions
are summarized in Table 4.

C. LANE CHANGING MOTION FOR FULLY OCCUPYING
OBSTACLE AVOIDANCE
The vehicle motion profiles and corresponding on board
images of performing an avoidance motion through lane
changing behavior for fully occupying obstacles are shown
in Figs. 18 - 21. The ego vehicle initially stops behind the
Class 3 static vehicle, maintaining the desired safety distance.
The target vehicle can be seen in the front camera images in
Fig. 18 (a). As the decisionmaker compares the traffic flow of
the current driving lane with the left lane and determines that
it is advantageous to perform the lane change maneuver to the
left, the lane change request is initiated at time t = 30 sec.
The trajectory of the ego vehicle during the left lane change
motion along with the vertices of the ego and target vehicles
are depicted in Fig. 19. The cumulative ego vehicle poses are
plotted in equal time intervals of 1.8 seconds. The gray dashed
line and solid line represent the lane center and boundary,
respectively. It can be confirmed that the ego vehicle can pass
the obstacle with sufficient longitudinal and lateral margin.

The ego vehicle finishes the lane changing motion at time
t = 36.7 sec and enters lane centering mode, tracking the
center of the left side lane. The corresponding on board
camera images are shown in Fig. 18 (b) and (c). Shortly after
that, the ego vehicle starts a right lane change motion in order
to return back to the original driving lane. In Fig. 20, the
sections performing the lane changing motion are indicated
by red and yellow areas. Similar to Figs. 13 (a) and 16 (a),
Fig. 20 (a) depicts the lateral position of the vehicle center
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FIGURE 20. Vehicle state history of lane changing motion. (a) lateral offset (b) longitudinal velocity (c) steering wheel angle
(d) longitudinal acceleration.

FIGURE 21. Longitudinal and lateral acceleration distributions during
lane changing motion.

and edges with respect to the centerline of the original driving
lane. The lateral position of the detected static obstacle is
visualized in a similar manner. The lane boundaries of the
two driving lanes are depicted in gray dotted lines.

The longitudinal and lateral acceleration distributions
during the lane changing motion are depicted in Fig. 21.
Since the ego vehicle tries to reach its target speed while it
starts the lane changing motion at rest, positive longitudinal
acceleration is observed at high frequency. Table 5 provides
the statistics of the acceleration distribution during the
maneuver.

VI. CONCLUSION
A trajectory planning and control algorithm under dynamic
traffic environments for avoidance of static traffic agent has
been developed and verified by actual vehicle experiments.

The test vehicle equipped with the proposed algorithm
effectively avoided the static obstacles parked in the driving
lane. Safe drivable envelope and free spaces were introduced
to discriminate the drivable area under urban driving
conditions and to efficiently respond to on-road obstacles.
The motion planner generates the reference longitudinal
and lateral states to be tracked by the ego vehicle. The
longitudinal reference states were defined as the target
longitudinal position and velocity to drive while maintaining
a safe clearance from the preceding target vehicle. The lateral
target states are defined as the desired yaw rate according to
the curvature of the road and the desired lateral offset with
respect to the center of the path.

In the case of in-lane obstacle avoidance motion, the lateral
motion planner determines the target lateral offset to drive
along the midpoints of the constructed envelopes. If the free
space of the lane is narrow for in-lane evasive maneuver,
the ego vehicle performs an evasive maneuver which invades
the side lane under risk free conditions or stops behind the
obstacle if the side lane collision risk is present. On the other
hand, when the obstacle is fully occupying the lane, the
ego vehicle decelerates to maintain a safe distance from the
target or attempts to overtake by changing lanes according
to the presence of side lane risk. In order to proactively
respond to obstacles outside the predicted horizon, priority
was given to target lateral offset values, and through this,
the motion planner effectively responded to obstacles that
required severe lateral motion or had a high risk of collision.
The control inputs for following the reference states with
safety guarantees are obtained by solving longitudinal and
lateral MPC problems. Actual vehicle test results confirmed
that the proposed motion planning and control architecture is
directly applicable for urban autonomous driving.

Future work aims at extending the proposed framework
to various urban driving scenarios, including signalized and
unsignalized intersections. In the situation of driving at an
intersection, it is necessary to proactively respond not only
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to the obstacles recognized at the current time but also to
the vehicles that are about to merge into the current driving
lane. In addition, it is expected that if the intention of the
preceding vehicle to stop within the driving lane is inferred,
the avoidance motion of the ego vehicle can be performed in
advance, which is much closer to a human-like behavior.
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