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ABSTRACT In this paper, the symmetric Lanczos algorithm and mixed finite element method are combined
to improve the efficiency and accuracy of S-parameter simulation in a broad frequency band. The mixed
finite element method based on tree-cotree splitting is adopted to overcome the low-frequency (high-density)
breakdown problem, thus ensuring the accuracy of low frequency (high integration density) results. The
modified symmetric Lanczos algorithm for second order eigenvalue problem is employed for fast frequency
sweep by one matrix inversion, then the field in the entire frequency band is obtained rapidly by solving
the reduced order matrix equation. The accuracy of the high frequency results is improved by increasing
the number of Lanczos vectors. Numerical simulations of two integrated passive filters (IPD filter) and an
interconnect model are shown to verify the hybrid method along with commercial software HFSS.

INDEX TERMS Symmetric Lanczos algorithm, fast frequency sweep, low-frequency breakdown, mixed
finite-element method (MFEM).

I. INTRODUCTION
In the signal integrity analysis of large-scale integrated cir-
cuits, it is often necessary to extract S-parameters in a wide
frequency band for interconnects, packages, and chips, since
S-parameters are the basis of link simulations. The traditional
frequency sweep method based on FEM is time-consuming
because it repetitively solves large systems of EM equations
at many frequency points, so it is not suitable for wide-
band PCB-level and system-level electromagnetic simula-
tion. Model order reduction (MOR) techniques [1], [2], [3]
transform a larger system into an approximate smaller sys-
tem, which can significantly improve the solution efficiency
with a high degree of accuracy. Among the MOR tech-
niques, the Krylov subspace method based on Lanczos
algorithm [4] is widely used in modal analysis, complex
eigenvalue analysis, frequency domain response analysis
and linear system problems. Compared with the asymptotic

The associate editor coordinating the review of this manuscript and

approving it for publication was Guido Lombardi .

waveform evaluation (AWE) method [5], [6], [7], [8], [9],
the Lanczos algorithm can search for all zeros and poles
of the transfer function in a wide band. Lanczos algorithm
was originally used to solve eigenvalue problems. A great
deal of research has focused on combining the Lanczos algo-
rithm with the full-wave algorithm for fast frequency sweep
analysis. In [10], the symmetric and asymmetric Lanczos
algorithm combined with FEM method are employed to ana-
lyze damped dynamic problems. In this paper, the system of
second order differential equations is transformed into a first
order system with twice the size. Reference [11] discusses
a compromise technique to maintain semiorthogonality in
the nonsymmetric Lanczos method, which turns to be more
efficient than Arnoldi’s algorithm. In [12], for the passive and
lossless dielectric waveguides, a fast frequency sweep tech-
nique based on the constrained Lanczos algorithm and AWE
is proposed. Then Sun et. al. [13], [14] applies the adaptive
Lanczos-Padé Spectral method to the mixed-potential inte-
gral equation and FEM equation for broadband electromag-
netic field analysis. Reference [15] uses the mass lumping
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technology to extend the Lanczos algorithm in time-domain
and frequency-domain finite element to analyze electromag-
netic field problems in lossless media. Then in [16], matrix-
Padé via Lanczos (MPVL) is extended to model multiple-
input multiple-output systems by using the finite element
method. Recently, reference [17] applies Lanczos algorithm
to speed up the EM sensitivity analysis over a frequency
range.

Among the above methods, the high frequency error can
be improved by increasing the number of Lanczos vectors,
but the low frequency simulation will still face the low-
frequency breakdown problem [18], [19], [20], [21], [22].
In addition, this problem occurs when the mesh size of the
object is much smaller than the wavelength corresponding to
the operating frequency. The problem is becoming increas-
ingly prominent in the electromagnetic simulation of 3D
large-scale integrated circuits when the chip becomes more
and more complex and the technology node is pushed to the
nanometer level (thus is may be also called the ‘‘high-density
breakdown’’ problem). The current mainstream commercial
softwares such as COMSOL, HFSS, and CST suffer from
the low-frequency breakdown problem in their 3D full-wave
algorithms. The fundamental reason for the low-frequency
breakdown is that the divergence of electric field cannot be
constrained in the traditional methods, resulting in pseudo-
zero modes in spectral decomposition of the system matrix.
A large amount of research shows that the mixed finite
element method (MFEM) and the mixed spectral element
method (MSEM) can effectively overcome the low-frequency
breakdown problem. The MFEM and MSEM method can be
implemented in two ways: one is based on the null-space
theory of the stiffness matrix and the tree-cotree splitting
technique [21], [22], [23], [24], [25], [26], and the other is
based on the Lagrange multiplier technique [20], [27], [28]
[29], [30]. The results show that the former can achieve the
same accuracy as the latter with fewer degrees of freedom,
although with an additional step of tree-cotree splitting.

To solve the low-frequency (high-density) breakdown
problem caused by fine and complex structures and the
problem of large-scale computation in wide frequency band
in integrated circuits, we combine the mixed finite element
method (MFEM) with the fast frequency sweep method (the
symmetric Lanczos method). Although neither the MFEM
nor the fast frequency sweep method is new, their combi-
nation is new and is the main contribution of this work.
The main difference between the combination method in this
paper and the previous methods in [20], [25], and [26] is
that a modal order reduction method is applied to the MFEM
method based on tree-cotree splitting in frequency domain
to calculate S parameters, while the previous papers [20],
[25], and [26] proposed two different mixed finite element
methods in time domain (MFETD) based on Lagrangian mul-
tiplier [20] and tree-cotree splitting [25], [26], respectively.
The time-domain method can obtain S parameters by Fourier
transform in a wide frequency band by one calculation.
However, it always takes long runtime to attenuate energy

to 0 to obtain correct S parameters. Traditional frequency-
domain methods need to calculate S parameters at each fre-
quency to obtain broadband information. In this paper, the
modal order reduction technology is used to project a large-
scale matrix equation into a small-dimensional subspace,
which can significantly improve the computational efficiency
of the frequency domain method, and the MFEM method
based on tree-cotree splitting in this paper can overcome
the low frequency breakdown problems for electrically small
problems.

II. MFEM FORMULATION
In this section, the MFEM formulation based on tree-cotree
splitting [25] for two kinds of EM equations in Laplace
domain is derived. One contains only s or s2 term, corre-
sponding to diffusion equation and lossless wave equation,
respectively. The other contains both s and s2 terms when
either bulk conductivity, first-order absorbing boundary con-
ditions (ABC) or lumped resistors is considered.

In the MFEM formulation, the wave equation and electric
field divergence constraint equation (Gauss’s law) are solved
simultaneously. The equations in the Laplace domain are
given as follows:

∇ × (µ−1
∇ × E) + s2ϵE + sσeE = −sJi (1)

s2∇ · (ϵE) + s∇ · (σeE) = −s∇ · Ji (2)

where s = jω. The electric field E is expanded by edge basis
functions 8c

i and the gradient of nodal basis functions ∇ϕj:

E =

Nc∑
i=1

eci8
c
i +

Nn∑
j=1

ej∇ϕj (3)

where Nc and Nn are the number of cotree edges and free
nodes, respectively. By using Galerkin’s method and intro-
ducing the gradient matrix G defined in [25], equations (1)
and (2) are written as the following discrete matrix equations:

s2Me + sCe + Ke = −sb (4)

GT (s2Me + sCe + sb) = 0 (5)

where M, C and K are the mass, damping and stiffness
matrices, respectively, b is the column vector associated with
the source. Their expressions are shown as follows:

M =

[
Mcc Mcp

Mpc Mpp

]
(6)

C =

[
Ccc Ccp

Cpc Cpp

]
(7)

K =

[
Kcc 0
0 0

]
(8)

b =

[
⟨8c, Ji⟩�
⟨∇ϕ, Ji⟩�

]
(9)

where Mcc and Ccc are in the form of ⟨8c, a8c
⟩�, Mcp

and Ccp are in the form of ⟨8c, a∇ϕ⟩�, Mpc and Cpc are
in the form of ⟨∇ϕ, a8c

⟩�, Mpp and Cpp are in the form
of ⟨∇ϕ, a∇ϕ⟩�, in which ⟨a, b⟩� denotes the integration of
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a · b over the computation domain �. a denots the material
parameter. Kcc is in the form of ⟨∇ × 8c, µ−1

∇ × 8c
⟩�.

If ABC boundary is considered, the boundary integral term
⟨A,B⟩0ABC will appear inC. If lumped elements such as R, L,
C are considered, the terms associated with them are added
to the matrices C, K, andM respectively.
In the MFEM formulation based on tree-cotree splitting,

the gradient matrix G is equal to
[
0
I

]
, where I denotes the

identity matrix. Substituting G into equation (5), it is easy to
know that the constraint equation (5) is the same as the second
matrix equation in wave equation (4), indicating that the
wave equation automatically satisfies the constraint equation.
So only the wave eqaution (4) needs to be solved in MFEM
in the following three scenarios.

(a) Diffusion equation: For the diffusion equation with
s2 term disappeared in equation (4), the solution can be
written as

e = −s(sC + K)−1b (10)

(b) Lossless wave equation: Similarly, for the equation
with s term disappeared in equation (4), the solution is

e = −s(s2M + K)−1b (11)

(c) Lossy wave equation: In equation (10) and (11),M and
C are symmetric positive and non-negative definite matrices,
respectively.K is symmetric and positive semi-definite. Sym-
metric Lanczos algorithm can be applied to solve (sC+K)−1

and (s2M + K)−1, but it may not be able to solve (s2M +

sC + K)−1 [16]. So the wave equation is reformulated to a
pair of first order systems and are shown as follows

s
[
C αM

αM 0

] [
e
se′

]
+

[
K 0
0 −α2M

] [
e
se′

]
=

[
sb
0

]
(12)

where e′
= e/α, α is a parameter to balance the order of

magnitude of matrix elements. Let

M′
=

[
C αM

αM 0

]
(13)

K′
=

[
K 0
0 −α2M

]
(14)

M′ and K′ are symmetric but indefinite. In this paper, equa-
tion (12) is solved by the modified symmetric Lanczos
method which will be discussed later and the solution is
given by [

e
se′

]
= −s(sM′

+ K′)−1
[
b
0

]
(15)

III. SYMMETRIC LANCZOS ALGORITHM
Symmetric Lanczos algorithm is an effective MOR approach
to approximate the broadband matirx transfer functions in
(10), (11) and (15). Since equations (10), (11) have the same
form, without loss of generality, with equation (11) as an
example, the corresponding eigenvalue problem is

(K − s20M)−1Mx =
1

λ − σ
x (16)

where s20 is an offset to make K − s20M nonsingular. Let
A = K − s20M, B = A−1M. For nonsymmetric matrix B,
two sided Lanczos ailgorithm should be employed. Refer-
ence [31] points out that the symmetric Lanczos algorithm
can be applied to B by taking the advantage of its self-adjoint
property with respect to theM inner product. But it is required
that M must be positive definite or positive semi-definite to
ensure the inner product yTMy always positve or zero for
any choice of y. The symmetric Lanczos algorithm is given
in Algorithm 1.

Algorithm 1 The Symmetric Lanczos Algorithm

1: Initialize r = A−1b; β(1) =
√
rTMr; r =

r
β(1) ;

q0=zeros(dim(A),1);
2: for i = 1 to k do
3: Q(i) = r;
4: p = Mr;
5: Remove spurious modes by enforcing GTp = 0;
6: r = A−1p;
7: α(i) = rTp;
8: r = r − α(i)Q(i) − β(i)q0;
9: β(i+ 1) =

√
rTMr;

10: r =
r

β(i+1) ;
11: q0 = Q(i);
12: end for

The constrint equation (5) is implemented in line 5 in
the symmetric Lanczos algorithm. The symmetric Lanczos
algorithm can be summarized as a three-term recurrences

BQ = QT (17)

where Q = [q1,q2, · · · ,qk ] satisfies the othogonality
condition

QTQ = I (18)

T is the symmetric tridiagonal matrix given by

T =



α1 β2
β2 α2 β3

β3
. . .

. . .

. . .
. . . βk
βk αk

 (19)

Following the procedure in reference [10], the weighted
residual method is used to construct the approximate solution
of equation (11). Expanding the unknown vector e by Lanczos
vectors, we obtain

e =

k∑
i=1

qiwi = Qw (20)

where w = [w1,w2, · · · ,wk ] is the coefficient vector.
Substituting (20) into (11), the residual vector is given by

d = [I + (s20 + s2)B]Qw + sA−1b (21)
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Making use of the orthogonality between the residual vector
d and the columns ofQT and equations (17) - (18), we obtain

w = −s[I + (s20 + s2)T]−1QTA−1b (22)

Since the starting Lanczos vector q1 is chosen to be A−1b in
the Lanczos algorithm, the solution of (20) is finally approx-
imated by the following reduced equation

e = −sβ1QV[I + (s20 + s2)3]−1VT e1 (23)

where T = V3VT , representing the spectral decomposition
of T. 3 is a diagonal matrix and e1 is the first column of the
identity matrix.

In the symmetric Lanczos method, matrix A is factor-
ized once. The high-frequency error of the solution can be
improved by increasing the number of iterations. Then a
spectral decomposition of a small scale tridiagonal matrix
is performed once to obtain the expression of the whole
frequency band.

Since M′ is indefinite in equation (15), the symmetric
Lanczos method mentioned above may fail. Reference [10]
solves the problem by modifying the two sided Lanczos
algorithm by taking the advantage of the symmetry of M′

and K′. Let A = K′
− s0M′, B = A−1M′, the three-term

recurrences for the two sided Lanczos algorithm are given as
follows

BQ = QU−1T (24)

PTB = TU−1PT (25)

where P = [p1,p2, · · · ,pk ] and Q = [q1,q2, · · · ,qk ] are
left Lanczos vectors and right Lanczos vectors, respectively.
They satisfy the bi-othogonality condition

PTQ = U (26)

where U = diag (v1, v2, . . . , vk ), the entries on the diagonal
are either 1 or −1. T is the tridiagonal matrix given by

T =



α1 β2
γ2 α2 β3

γ3
. . .

. . .

. . .
. . . βk
γk αk

 (27)

In reference [10], it is shown that whenP is chosen to beM′Q,
the tridiagonal matrix T will be symmetric, that is βi = γi
(i = 2, . . . k). This modified symmetric Lanczos algorithm
is shown in Algorithm 2. The constraint equation (5) is
implemented in line 13 by refering to [32]. Here G is the
nullspace of stiffness matrix and G̃ consists of the columns
of G associated with internal nodes which are in passive and
lossless regions.

By using the weighted residual method mentioned above,
we can obtain the solution of equation (15)

e = −sβ1Q[U + (s0 + s)T]−1e1 (28)

Algorithm 2 The Modified Symmetric Lanczos Algorithm

1: Initialize r = A−1b; temp=rTM′r; β(1) =
√

|temp|;
2: if temp< 0 then
3: v(1) = −1;
4: else
5: v(1) = 1;
6: end if
7: r = v(1) ·

r
β(1) ;

8: q0 = zeros(dim(A),1);
9: v0 = 1;
10: for i = 1 to k do
11: Q(i) = r;
12: p = M′r;
13: Remove spurious modes by enforcing p with[

GT 0
0 G̃T

]
· p = 0;

14: r = A−1p;
15: r = r − β(i)q0/v0;
16: α(i) = rTp;
17: r = r − α(i)Q(i)/v(k);
18: temp = rTM′r;
19: β(i+ 1) ==

√
|temp|;

20: if temp< 0 then
21: v(i+ 1) = −1;
22: else
23: v(i+ 1) = 1;
24: end if
25: r = v(i+ 1) ·

r
β(i+1) ;

26: q0 = Q(i);
27: v0 = v(i);
28: end for

Compared to discrete frequency sweep method, in which
a large-scale sparse linear equation need to be solved at
each frequency, the modified symmetric Lanczos algorithm
employed here is a fast frequency sweep method that by one
matrix inversion, the field in the entire frequency band is
obtained rapidly by solving the reduced order matrix equa-
tion. In equation (23), the solutionwithin the whole frequency
band can be obtained by one spectral decomposition of the
small-scale tridiagonal matrix T. Different from that, since
U in (28) is not the identity matrix, spectral decomposition
cannot be used and the inverse of the small-scale tridiagonal
matrix needs to be obtained at each frequency point.

IV. NUMERICAL EXPERIMENTS AND DISCUSSIONS
In this section, two IPD filters and an interconnect model
are simulated to verify the new fast sweep frequency method
based on the symmetric Lanczos algorithm and MFEM
mehtod, called MFEM-SymLanc in this paper. The results
of HFSS with fast sweep and interpolation sweep are used
for comparison. Since the mesh quality has a great influence
on the broadband simulation for complex multiscale models,
in order to eliminate the influence of mesh quality, we use the
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FIGURE 1. The top view of the first IPD filter.

same linear tetrahedron elements generated from HFSS and
the second order basis functions for MFEM-SymLanc and
HFSS. Since the adaptive passes for meshing consume a large
amount of time in HFSS, the meshing time is not included
in the CPU time in HFSS for a reasonable comparison with
MFEM-SymLanc method. The simulation is performed on a
server with two Intel(R) Xeon(R) X5690 CPUs at 3.46 GHz
and 192GBmemory. 40 cores are used for parallel simulation
in HFSS. Direct solver MUMPUS is adopted for matrix
inversion in the MFEM-SymLanc method.

A. IPD FILTERS
In the first example, a IPD filter with seventeen dielectric
substrates, vias and metal traces is analyzed. The top view
and the laminated structure are shown in Fig. 1 and Fig. 2.
Fig. 2 defines the position of dielectric layers and the relative
permittivity of layers are in parentheses. Conductors and vias
are represented by the red parts. The total size of the IPD
filter is 1842.813 × 2322.376 × 284.311 µm3. Two lumped
ports are loaded with 50 � resistors. In the simulation, the
model is truncated by the radiation boundary, except for the
metal substrate on the bottom. The conductors embedded in
the dielectric substrates are modeled as PEC. Algorithm 2 is
adopted in the MFEM-SymLanc method since there are both
s2 term and s term in the equation when resistors and radiation
boundary are present. The frequency range for this filter is
1 - 9 GHz and 200 frequency points are simulated. The filter
is discretized into 486037 tetrahedron elements by HFSS.

The calculated S parameters by MFEM-SymLanc and
HFSS with fast sweep and interpolation sweep are shown
in Fig. 3. As can be seen, the results of the three methods
agree very well. 100 Lanczos vectors are used in the MFEM-
SymLanc method, in other words, the number of iterations
in Algorithm 2 is 100. The computation time and memory
consumption of the three methods are compared in Table 1.
It can be seen that when the order of basis functions and
mesh are the same, the degrees of freedom (DoF) of HFSS

FIGURE 2. The laminated structure of the first IPD filter.

FIGURE 3. S parameters calculated by MFEM-SymLanc and HFSS with fast
sweep.

and MFEM-SymLanc are nearly the same. The reason for
the difference is that the two solvers model the lumped port
differently. It is clear that the MFEM-SymLanc method is
the most efficient among the three methods. Since the fast
frequency sweep method in HFSS-fast solver is also based
on the Lanczos algorithm, it is more efficient than the inter-
polation algorithm in HFSS-interpolate solver. The memory
consumption of HFSS-fast and MFEM-SymLanc is almost
the same. SinceHFSS-interpolate solvesmultiple frequencies
in parallel, it consumes much more memory than the other
two methods.

Next, the above IPD filter is used to compare the MFEM-
SymLanc method with the MFETD method in [20], [25],
and [26]. Since the authors has proved in [25] that MFETD
based on tree-cotree splitting [25], [26] is more efficient than
MFETD based on Lagrangian multiplier [20], so here we will
compare the accuracy and efficiency of the MFEM-SymLanc
method and the MFETD in [25] and [26]. The calculated S
parameters by the two methods are shown in Fig. 4. And
the total voltages at the two ports calculated by MFETD are
shown in Fig. 5. In [25] and [26], an implicit time-stepping
scheme is used for electrical small problems. In this example,
the time sampling rate is 20 points per period. Since PEC
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TABLE 1. Computational resources of the first IPD filter by
MFEM-SymLanc, HFSS and MFETD.

FIGURE 4. S parameters calculated by MFEM-SymLanc and MFETD.

FIGURE 5. The total voltages calculated by the MFETD method.

is used to simulate metal in the model, even if the runtime
is 135 periods (corresponding to the maximum frequency),
the energy still has not decayed to 0. The voltages are still
oscillating at 15 ns, so the S parameters calculated by the
Fourier transform in MFETD are not as accurate as MFEM-
SymLanc. And it can be seen fromTable 1 that the calculation
time of MFETD is 154 minutes, which is much higher than
the time in the MFEM-SymLanc method. This is mainly
because it is quite time-consuming in a large loop to call the
results produced by LU decomposition in MUMPUS. In the
MFETD method, the LU decomposition using MUMPUS
takes about 2 minutes, while it takes about 150 minutes
when call the LU decomposition results in 2700 time steps.
However, in the MFEM-SymLanc method, the number of
loops to call the LU factorization results is determined by
k in Algorithm 2 (chosen as 100 in this example), which
is much smaller than the number of time steps, so the

FIGURE 6. The top view of the second IPD filter.

FIGURE 7. The side view of the second IPD filter.

MFEM-SymLanc method is much more efficient and accu-
rate than the MFETD method in [25] and [26].

Then the second IPD filter is analyzed with the top view
and side view shown in Fig. 6 and Fig. 7. The filter consists
of 6 layers of dielectric substrates and 2486 entities. The
total size is 2500 × 2000 × 361.794 µm3 and the width of
the smallest coil is only 2 µm. The frequency range for this
filter is 0.1 - 10 GHz and 110 frequency points are simulated.
The filter is discretized into 494117 tetrahedron elements by
HFSS. 50 Lanczos vectors are used in the MFEM-SymLanc
method.

The results obtained by MFEM-SymLanc and HFSS with
fast sweep and interpolation sweep are shown in Fig. 8.
Compared with the HFSS-interpolation solver and MFEM-
SymLanc method, the result of HFSS-fast solver at low fre-
quency band is inaccurate. The reason for the inaccuracy is
probably caused by the inaccurate Lanczos vectors calculated
in the HFSS-fast solver. Furthermore, the mixed finite ele-
ment method adopted by MFEM-SymLanc removes spuri-
ous modes and ensures accuracy of low frequency results.
The computation time, DoFs andmemory consumption of the
three methods are also given in Table 2. Compared with the
interpolation sweep, the CPU time speedup of the HFSS-fast
solver and the MFEM-SymLanc are 2 and 16, respectively.
It is clear that the proposedMFEM-SymLancmethod is much
more efficient and accurate than the HFSS-fast solver for
wideband simulation.
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FIGURE 8. S parameters calculated by MFEM-SymLanc and HFSS with fast
sweep and interpolate sweep.

TABLE 2. Computational resources of the second IPD filter by
MFEM-SymLanc and HFSS.

FIGURE 9. 3D model of the interconnect model.

B. INTERCONNECT MODEL
An interconnect model with multilayer substrates and four
lumped ports shown in Fig. 9 is analyzed to verify the
efficiency of the MFEM-SymLanc method. The relative
dielectric constant of the dielectric substrates is 4.4 and the
conductors embedded in the substrates is modeled as PEC.
The total size of the model is 6.6×6.6×1.8 mm3. Radiation
boundary with the airbox of size 8 × 8 × 2.8 mm3 is used to
truncate the model. A wideband 30 MHz - 10 GHz is studied
and 200 frequency points are simulated. The interconncet
model is discretized into 203896 tetrahedron elements by
HFSS.

To ensure the accuracy of high frequency results,
500 Lanczos vectors are used in the MFEM-SymLanc
method. The results obtained byMFEM-SymLanc and HFSS

FIGURE 10. S parameters calculated by MFEM-SymLanc and HFSS with
interpolation sweep.

FIGURE 11. S parameters calculated by HFSS with interpolation sweep
and fast sweep.

TABLE 3. Computational resources of interconnect model by
MFEM-SymLanc and HFSS.

with fast sweep and interpolation sweep are shown in Fig. 10
and Fig. 11. Generally, interpolation sweep are more accu-
rate than fast sweep for wideband simulation in HFSS, but
less efficient. It can be seen from Fig. 11 that the result of
fast sweep has a large error when the frequency is lower
than 2 GHz; in Fig. 10, the result of MFEM-SymLanc shows
high accuracy from 30 MHz to 10 GHz, because the mixed
finite element method adopted by MFEM-SymLanc guaran-
tees high accuracy in low frequency band. In addition, the
computation time, DoFs and memory consumption of the
three methods are also given in Table 3. Taking the result
of interpolation sweep as the reference, the method proposed
in this paper is 3 times faster while the fast sweep solver is
1.7 times faster than it, but the fast sweep solver has lower
accuracy at low frequencies. In this model, MFEM-SymLanc
consumes more memory than HFSS-fast.
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V. CONCLUSION
The mixed finite element method and symmetric Lanczos
algorithm are combined to simulate three real-life 3-D PCB
models in this paper. Two kinds of symmetric Lanczos algo-
rithm are employed to EM equations with different combi-
nations of s and s2 term. The results show that the proposed
method is more efficient than the interpolation solver and fast
solver in HFSS, and has higher accuracy than the fast solver in
HFSS at low frequencies. The hybrid method has advantages
on the simulation of electrical small model with multilayered
interconnect structures with fewer iterations in the symmetric
Lanczos algorithm. As the frequency increases, more iter-
ations are needed to approximate the electromagnetic field
distribution of the original problem. So one difficulty of this
method is to determine the number of iterations for different
models. In the future, we will continue to study how to
automatically select the appropriate number of iterations to
ensure the high accuracy and efficiency.
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