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ABSTRACT In this work, we study constrained clustering, where constraints are utilized to guide the
clustering process. In existing works, two categories of constraints have been widely explored, namely
pairwise and cardinality constraints. Pairwise constraints enforce the cluster labels of two instances to be
the same (must-link constraints) or different (cannot-link constraints). Cardinality constraints encourage
cluster sizes to satisfy a user-specified distribution. However, most existing constrained clustering models
can only utilize one category of constraints at a time. In this paper, we enforce the above two categories into
a unified clustering model starting with the integer program formulation of the standard K-means. As these
two categories provide useful information at different levels, utilizing both of them is expected to allow
for better clustering performance. However, the optimization is difficult due to the binary and quadratic
constraints in the proposed unified formulation. To alleviate this difficulty, we utilize two techniques:
equivalently replacing the binary constraints by the intersection of two continuous constraints; the other
is transforming the quadratic constraints into bi-linear constraints by introducing extra variables. Then we
derive an equivalent continuous reformulation with simple constraints, which can be efficiently solved by
Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experiments on both synthetic
and real data demonstrate: 1) when utilizing a single category of constraint, the proposed model is superior
to or competitive with state-of-the-art constrained clustering models, and 2) when utilizing both categories
of constraints jointly, the proposed model shows better performance than the case of the single category. The
experimental results show that the proposed method exploits the constraints to achieve perfect clustering
performance with improved clustering to 2 − 5% in classical clustering metrics, e.g. Adjusted Random
Index (ARI), Mirkin’s Index (MI), and Huber’s Index (HI), outerperfomring all compared-againts methods
across the board. Moreover, we show that our method is robust to initialization.

INDEX TERMS Constrained clustering, K-means, pairwise, cardinality constraints.

I. INTRODUCTION
Clustering is the task of partitioning data into different
clusters, based on some specific cluster assumptions. For
example, K-means and Gaussian mixture models (GMM)
assume each cluster is sampled from a Gaussian distri-
bution. In contrast, density-based clustering assumes that
the densities of data points in different clusters should be
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different, such as Chameleon [1] and AITC [2], or clus-
ters should be partitioned at low density regions [3]. How-
ever, if the adopted cluster assumption is not suited to
the target dataset, this may result in a poor performance.
To avoid such performance instability, prior knowledge or
constraints on the data can be used to guide the cluster-
ing process. These constraints are independent of cluster
assumptions, and they provide weak supervision to reflect
user preferences. Thus, clustering with constraints, called
constrained clustering, [4], [5], [6], is expected to give
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better and more stable performance than unconstrained
clustering.

Two main categories of constraints have been widely stud-
ied in the field of constrained clustering, namely pairwise
and cardinality constraints. Pairwise constraints may arise
from some form of perceived similarity between samples.
For instance, the continuity property is a form of Pairwise
constraints that suggests that neighbouring samples are likely
to be clustered together and vice versa. Thus, Pairwise con-
straints include must-link and cannot-link constraints. Must-
link constraints enforce that a set of pairs of instances should
be in the same cluster, while cannot-link constraints enforce
that they belong to different clusters. Thereafter, this category
can be viewed as instance-level constraints. On the other
hand, Cardinality constraints provide extra knowledge on
the size distribution of all clusters. This sort of constraints
become particularly necessary in clustering tasks of data that
is high dimensional and sparse with many clusters to assign
[7]. This often leads to solutions of empty clusters or unbal-
anced cluster assignments. Balancing constraints that lead to
equal sized clusters are only a special case of Cardinality
constraints. This category in general can be viewed as cluster-
level constraints.

Many clusteringmethods have been proposed to utilize one
of the two categories of constraints, such as the ones with
pairwise constraints [4], [5], [6], [8], [9], [10], [11], [12],
[13], and the ones with cardinality constraints [7], [14], [15],
[16]. However, in some cases, one might want to enforce
the continuity property among a set of points and the same
time requiring to have solutions of balanced or user specified
cluster sizes. In general, both constraints can be provided
simultaneously, as they are derived from different sources.
For example, pairwise constraints are usually obtained from
an oracle query, while cardinality constraints can be obtained
from experience or user preference. Moreover, they represent
supervision at different levels. Each of them can provide
particularly useful information that is not covered by the
other. Thus, having both sets of constraints together in a
clustering task should signifecently improve the performance
and to the best of our knowledge, there is no existing work
that can seamlessly incorporate both categories jointly.

For existing constrained clustering methods that handle
one constraint category, it is non-trivial to directly add the
other. For example, embedding cardinality constraints into
the COP-KMEANS [13], will lead to instability in perfor-
mance where COP-KMEANS will often fail in finding a
feasible solution. This is because COP-KMEANS is very
sensitive to cluster initialization. Moreover, it is also not
easy to embed the pairwise constraints into normalized/ratio-
cut [16], which exploits balanced distribution constraints.
In short, existing models are designed to exploit one category
of constraints at a time.

We propose a unified model to incorporate both categories
of constraints to guide the clustering process. Specifically,
we start from the formulation of the standardK-meanmethod,

and formulate cardinality constraints into linear constraints
and pairwise constraints into quadratic constraints. Then we
obtain a discrete optimization problem with quadratic con-
straints, which is difficult to be solved by off-the-shelf opti-
mizationmethods. Thus we propose to utilize two techniques.
One is to equivalently replace the binary constraints by the
intersection of two continuous constraints, which was firstly
proposed in [17]. The other is to transform the quadratic
constraints to bi-linear constraints by introducing extra vari-
ables. Our key contributions revolve around the new novel
continuious reformulation for the K-Means problem allowing
to incorporate both cardinality and pair-wise constraints. The
reformulation is simple, flexible, and enjoys nice conver-
gence properties with competitive performance. The contri-
butions can be summarized in three folds.
• We embed both pairwise and cardinality constraints into
one unified clustering model. To the best of our knowl-
edge, this is the first attempt in the field of constrained
clustering.

• We propose to equivalently transform the binary and
quadratic constraints in the original problem to continu-
ous and bi-linear constraints, to obtain a simple contin-
uous reformulation.

• We conduct various experiments on several synthetic
and real datasets comparing against 5 different algo-
rithms. Our approach demonstrate competitive edge over
all compared-against methods in the final clustering per-
formance while respecting the imposed constraints.

II. RELATED WORK
Here, we briefly review existing clustering models that utilize
pairwise or cardinality constraints.

A. PAIRWISE CONSTRAINTS
They were first introduced into clustering in [4] and [13].
In [4], a method called COP-COBWEB inserted the pairwise
constraints into the clustering process of the incremental clus-
tering method COBWEB [18], which utilizes four operators
(i.e. add, new, merge, and split) to maximize the intra-cluster
similarity and the inter-cluster dissimilarity. In each oper-
ator of COP-COBWEB, the given pairwise constraints are
checked to ensure the satisfaction of all constraints. In [13],
the method COP-KMEANS checks the pairwise constraints
in each assignment step of K-means. Both COP-COBWEB
and COP-KMEANS treat the pairwise constraints as hard
constraints (i.e. all constraints must be satisfied), and the
constraints are somewhat independent of the original objec-
tive. A common limitation of these two methods is that the
processing order of instances influences clustering perfor-
mance, and sometimes they may even fail to output a feasible
partition.

To avoid this limitation, many methods treat pairwise
constraints as soft constraints (i.e. a subset of these
constraints could be violated) to develop more flexible
approaches to embed constraints. For example, in constrained
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complete-link (CCL) [5], pairwise constraints are used to
modify the instance proximity computed in the original
feature space. Then, standard complete-link clustering is
applied using the modified proximity matrix. Penalized prob-
abilistic clustering (PPC) [10] uses pairwise constraints as
a prior term w.r.t. the cluster labels within the underlying
GMM-based model. Clustering configurations not satisfying
the constraints have a lower probability. Moreover, HMRF-
KMEANS [19] embeds pairwise constraints as correlations
between cluster labels in a hidden Markov random field
(HMRF). A metric learning step is added into standard
K-means to encourage gradual satisfaction of pairwise con-
straints. Other methods propagate pairwise constraints via
instance similarity to obtain soft constraints, such as con-
strained spectral clustering [8] and HMRF-pc [12], [20].

B. CARDINALITY CONSTRAINTS
They are widely used to guide the clustering process. Balanc-
ing constraints are a special type that encourages all clusters
to be balanced in size or in connecting weights. For example,
normalized cuts [16] divides the standard cut cost (sum of
edge weights connecting the two clusters) by the sum of edge
weights between each cluster and all other instances. Hence,
each cluster is encouraged to have similar edge weights con-
necting to other clusters. Similarly, ratio cut [21] normalizes
the cut function by the size of each cluster to encourage
similar sized clusters. Equi-sized Fuzzy c-means (FCM) [15]
formulates the balancing constraints as equality constraints,
where the size of each cluster equals to the average cluster
size. More general cardinality constraints have also been
explored. For example, a constrained K-means method [7]
sets a lower bound on the cluster size, to avoid very small or
empty clusters that occur in standard K-means. An extension
of the Equi-sized FCM is proposed in [14], where the size of
one single cluster is set to a specific size.

To the best of our knowledge, the only clustering frame-
works that enable both sets of constraints (Cardinality and
Pairwise) either target a very specific class of methods that
suffer from the locality property [22], or are greedy heuris-
tics that propagate constraints [23]. Clustering methods that
suffer from the locality property result in clusters located
partially or entirely outside the Voronoi cell of their centers
[22]. However, popular methods like K-means, K-medians,
and many others always satisfy the locality property by
definition, thus, limiting the theoretical results of [22] to
a smaller class of clustering methods. There has also been
an attempt to use standard constraint propagation methods
to enforce both classes of constraints [23]. However, this
is done in a greedy heuristic fashion that may often fail in
finding a feasible solution. Therefore, we believe that the
combination of both pairwise and cardinality categories into
a constraint generic and unified clustering model that can
be systematically solved (ie using a flexible continuous opti-
mization framework) has not been explored in any existing
work.

III. PROPOSED METHOD
Unlike previous methods that can only handle either pair-
wise or cardinality constraints, we show, in this section,
a detailed derivation of our framework that embeds both
constraints simultaneously. In fact, this formulation is flexible
and generic enough to handle any other linear equality. In our
framework, we adopt the K-means integer program formula-
tion [24] expressed as follows:

min
{xij}

n,k
i=1,j=1

k∑
j=1

n∑
i=1

xij
∣∣∣∣∣∣si − ∑n

p=1 xpjsp∑n
l=1 xlj

∣∣∣∣∣∣2
2

s.t.
k∑
j=1

xij = 1, ∀ i xij ∈ {0, 1} ∀ i, j (1)

where sp ∈ Rd is the pth data point to be clustered and k
is the number of clusters. The variable xij defines the binary
association between data point i and cluster j. The constraint∑k

j=1 xij = 1 enforces data point i to belong to one and only
one cluster. This constraint can be simply written as a matrix
vector multiplication: 9⊤x = 1n, where 9⊤ ∈ Rn×nk is a
binary matrix that has in each row a vector 1⊤k that sums all
the binary labels for a given data point while the rest are 0.

To simplify the fractional objective, we introduce variable
wpj, such that: xpj = wpj

∑n
l=1 xlj. For ease of nota-

tion, we concatenate all the binary labels xij into one vec-
tor ordered by the data points one at a time as follows:
x⊤ =

[
(x11 . . . x1k ) . . . (xn1 . . . xnk )

]⊤.We also concatenate
and reorder the wpj values one cluster at a time: w⊤ =[
(w11 . . . wn1) . . . (w1k . . . wnk )

]⊤. A matrix P ∈ Rnk×nk is
used to swap the order of the binary vectors from a cluster
based order to a data point order and vice versa. Note that P
is a proper permutation matrix that is symmetric and it sat-
isfies: PP⊤ = Ink . Thus, the compact form of unconstrained
K-means can be re-written as follows:

min
{xij}

n,k
i=1,j=1,{wpj}

n,k
p=1,j=1

k∑
j=1

n∑
i=1

xij
∣∣∣∣∣∣si − n∑

p=1

wpjsp
∣∣∣∣∣∣2
2

s.t. 9⊤x = 1n, x = Pw⊙ Cx, x ∈ {0, 1}nk

(2)

where C ∈ Rnk×nk sums the binary labels of each cluster and
is defined as follows:

C⊤ =
[
γ1 γ2 . . . γn

]
γ⊤1 =

[
1 0⊤k−1 1 . . .

]
, γ⊤2 =

[
0 1 0⊤k−2 . . .

]
A. CARDINALITY CONSTRAINTS
They are enforced by a set of linear constraints that specify
the cluster size as:

n∑
i=1

xij = uj ∀j⇔ QP⊤x = u (3)

where uj is the size of cluster j and Q ∈ Rk×nk sums the
binary labels of each cluster for all data points.
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B. MUST-LINK CONSTRAINTS
We define E1,E2 ∈ Rkv×nk as selection matrices that
choose the two sets of data points (E1x and E2x) involved
in the v must-link constraints. We show next that the set
of all must-link constraints can be expressed with a single
quadratic.

x⊤E⊤1 E2x = v (4)

Proposition 1: For the binary association x ∈ {0, 1}nk

between n data points and k clusters, where 9⊤x = 1n,
enforcing must-link constraints through E1x = E2x is equiv-
alent to enforcing a single quadratic x⊤E⊤1 E2x = v.

Proof:

E1x = E2x⇔ ∥E1x− E2x∥22 = 0

= ∥E1x∥22 + ∥E2x∥22 − 2x⊤E⊤1 E2x = 0

= 2v− 2x⊤E⊤1 E2x = 0 □

The last equality (∥E1x∥2 = ∥E2x∥2 = v) is true since x
is binary and that each data point is associated to only one
cluster (i.e. 9⊤x = 1n).
This concludes that only one quadratic constraint can be

used to enforce all must-link constraints.

C. CANNOT-LINK CONSTRAINTS
We define E3,E4 ∈ Rke×nk as selection matrices for the
two sets of data points (E3x and E4x) involved in the e
cannot-link constraints. Similar to before, we show that the
set of cannot-link constraints can be expressed with a single
quadratic.

x⊤E⊤3 E4x = 0 (5)

Proposition 2: For the binary association x ∈ {0, 1}nk

between n data points and k clusters, where 9⊤x =

1n, enforcing cannot-link constraints through the selection
matrices E3, E4 is equivalent to enforcing the quadratic
x⊤E⊤3 E4x = 0.
Proof:

Similar to Proposition 1 with ∥E3x+ E4x∥22 = 2e □

Incorporating Eqs (3), (4) and (5) into (2) we obtain the
following constrained K-means formulation:

min
{xij}

n,k
i=1,j=1,{wpj}

n,k
p=1,j=1

k∑
j=1

n∑
i=1

xij
∣∣∣∣∣∣si − S3jw

∣∣∣∣∣∣2
2

s.t. 9⊤x = 1n, x ∈ {0, 1}nk ,

QP⊤x = u

x = Pw⊙ Cx, (E1x)⊤E2x

= v, (E3x)⊤E4x = 0 (6)

where S ∈ Rd×n contains all the data points in its columns
and 3j ∈ Rn×nk is zero everywhere except for the jth block
that is identity, i.e. 3j =

[
0 · · · Ij · · · 0

]
.

D. ADMM SOLVER
Problem (6) is still difficult to solve due to the mixed binary
and quadratic constraints. To handle these difficulties, (i) we
first replace the binary constraints with an exact equivalent
set that is the intersection of the ℓ2-sphere (defined by set
S2) and box constraints (defined by set Sb) following [17].
(ii) Moreover, by introducing the auxiliary variables (z1,
z2, z3, and z4), the quadratic constraints are now changed
to bi-linear ones and separated from the binary constraints.
Thus, the resultant problem is given as follows:

min
x,w,z1,z2,z3,z4

k∑
j=1

n∑
i=1

xij
∣∣∣∣∣∣si − S3jw

∣∣∣∣∣∣2
2

s.t. 9⊤x = 1n, z1 ∈ Sb, z2 ∈ S2,

QP⊤x = ux = Pw⊙ Cx,

(E1z3)⊤E2x = v, (E3z4)⊤E4x = 0

x = z1, x

= z2, x = z3, x = z4 (7)

which can be solved using in the standard ADMM frame-
work. Let Lρ1−9 be the augmented Lagrangian function of
problem (7). We define it as follows:

Lρ1−9(x,w, z1, z2, z3, z4, y1, y2, y3, y4, y5, y6, y7, y8, y9)

:=

k∑
j=1

n∑
i=1

xij
∣∣∣∣∣∣si − S3jw

∣∣∣∣∣∣2
2
+ y⊤1 (9

⊤x− 1n)

+
ρ1

2
||9⊤x− 1n||22

+I{z1∈Sb} + y⊤2 (x− z1)+
ρ2

2
||x− z1||22

+I{z2∈S2} + y⊤3 (x− z2)

=
ρ3

2
||x− z2||22 + y⊤4 (QP⊤x− u)

+
ρ4

2
||QP⊤x− u||22

= y⊤5
(
I− diag(Pw)C

)
x+

ρ5

2
||

(
I− diag(Pw)C

)
x||22

= y6(z⊤3 E
⊤

1 E2x− v)+
ρ6

2
||z⊤3 E

⊤

1 E2x−v||22 + y⊤7 (x− z3)

=
ρ7

2
||x− z3||22 + y8(z

⊤

4 E
⊤

3 E4x)+
ρ8

2
||z⊤4 E

⊤

3 E4x||22

= y⊤9 (x− z4)+
ρ9

2
||x− z4||22 (8)

where the y variables are the Lagrange multipliers of the
corresponding constraints, I is the indicator function that
penalizes infeasible z1 and z2, and ρ1−9 ≥ 0 are the penalty
parameters. In our experiments, we set all the ρ coefficients
to the same value. The iterative ADMM steps for problem (7)
are described in Algorithm 1. ADMM updates are performed
by optimizing for the set of primal variables one at a time,
while keeping the rest of the primal and dual variables fixed.
Then, the dual variables are updated using gradient ascent on
the corresponding dual problem.
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Algorithm 1 ADMM for Solving Problem (7)

Input : Set S ∈ Rd×n. Set ρ1−9, y1−5,7,9 = 0,
y6,8 = 0, xkmeans,
w = P⊤x⊙ diag−1(Cx)1nk .

Output: x
while not converged do

update: x by solving Eq (9). update: w by
solving Eq (10). update: z1−4 via
Eqs (11,12, 13,14). update: y1−5,7,9, y6,8 via
Eqs (15).

end

We next show the final updates for each subproblem,
but the exact derivations are found in the supplementary
material.

a: UPDATE x
We need to solve the following linear system using the con-
jugate gradient method.(

ρ199⊤ + (ρ2 + ρ3 + ρ7 + ρ9)Ink + ρ4PQ⊤QP⊤

+ρ5

(
I− diag(Pw)C

)⊤(
I− diag(Pw)C

)
+ρ6E⊤2 E1z3z⊤3 E

⊤

1 E2 + ρ8E⊤4 E4z4z⊤5 E
⊤

3 E4

)
x =

−

(
vect(B)+9y1 + y2 + y3 − ρ191n − ρ2z1

−ρ3z2 − C⊤diag(Pw)y5 + y6E⊤2 E1z4 − ρ6vE⊤2 E1z3 + y7

−ρ7z3 + y8E⊤4 E3z4 + y9 − ρ9z4 + PQ⊤y4 − ρ4PQ⊤u
)
(9)

where B(i, j) = ∥si − S3jw∥22, and vect(B) is simply a
columnwise vectorization of the matrix B.

b: UPDATE w
We need to solve the following linear system using the con-
jugate gradient method.

[ k∑
j

n∑
i

2xij3⊤j S
⊤S3j + ρ5P⊤diag

(
Cx⊙ Cx

)
P
]
w

=

k∑
j

n∑
i

2 xij3⊤j S
⊤si + P⊤Cx⊙ y5 + ρ5P⊤Cx⊙ x

(10)

c: UPDATE z1
Here, we need to perform a simple projection onto the box:
Sb = {a : 0 ≤ a ≤ 1}. This projection is an elementwise
clamping between 0 and +1.

z1 = PSb

(
x+

y2
ρ2

)
= min

(
max

(
x+

y2
ρ2

, 0
)

, 1
)

(11)

d: UPDATE z2
We need to perform a simple projection onto the ℓ2-sphere:
S2 = {a ∈ Rnk

: ∥a − 1
21∥

2
2 =

nk
4 }. This involves an

elementwise shift and ℓ2 vector normalization.

z2 = PS2

(
x+

y3
ρ3

)
=

√
nk
2

(
x+ y3

ρ3

)
−

1
21∥∥∥(x+ y3

ρ3

)
−

1
21
∥∥∥
2

+
1
2
1

(12)

e: UPDATE z3
We need to solve the following linear system using the con-
jugate gradient method.[

ρ6E⊤1 E2xx⊤E⊤2 E1 + ρ7Ink
]
z3 = y7 + ρ7x− y6E⊤1 E2x

= ρ6vE⊤1 E2x (13)

f: UPDATE z4
We need to solve the following linear system using the con-
jugate gradient method.[

ρ8E⊤3 E4xx⊤E⊤4 E3 + ρ9Ink
]
z4 = y9 + ρ9x− y8E⊤3 E4x

(14)

g: UPDATE y1, y2, y3, y4, y5, y6, y7, y8, y9
Lastly, we need to perform dual ascent on the dual variables
as follows:

y1 ← y1 + ρ1

(
9⊤x− 1n

)
, y2← y2 + ρ2

(
x− z2

)
y3 ← y3 + ρ3

(
x− z3

)
, y4← y4 + ρ4

(
QP⊤x− u

)
y5 ← y5 + ρ5

(
x− Pw⊙ Cx

)
,

y6 ← y6 + ρ6

(
z⊤3 E

⊤

1 E2x−v
)

y7 ← y7 + ρ7

(
x− z3

)
, y8← y8 + ρ8

(
z⊤4 E

⊤

3 E4x
)

y9 ← y9 + ρ9

(
x− z4

)
(15)

The ADMM iterations are run until convergence (i.e. when
the standard deviation between the last 10 objective values
is≤ 10−5). Upon convergence, all the primal variables (x and
z1−4) converge to the same feasible binary vector. Despite
that the problem is non-convex, we show empirically in the
experiments’ section and in the supplementarymaterial that
the performance using is very stable.

IV. EXPERIMENTS
In this section, we conduct extensive experiments to moti-
vate and evaluate our proposed clustering method, both on
synthetic and real datasets. We also compare our method
against other constrained clustering methods on well-known
benchmarks, thus, demonstrating superior performance and
flexibility, as well as, superior gain that can be achieved when
both categories of constraints (cardinality and pairwise) are
combined in our framework.
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A. DATASETS AND IMPLEMENTATION DETAILS
The datasets used in this section vary from synthetic to real.
As for the synthetic ones, we construct two datasets, one is
cluster balanced (denoted as Balanced) and the other is
imbalanced (denoted asImBalanced) as shown in Figure 1.
Each dataset comprises 700 data points with 2 clusters.
InBalanced, each cluster has exactly 350 data points, while
in ImBalanced one cluster has 600 data points while the
other contains 100. As for the real datasets, we make use
of various popular UCI datasets [7], e.g. iris, wine, glass,
ionosphere, Hepatitis, Hepatitis1 and Breast Cancer Wis-D.
These are the most popular UCI datasets used for clustering
purposes [8], [13]. Following convention, data points are
normalized to have a value in [−1,+1]. For Hepatitis and
Hepatitis1, we remove all points with missing or none cate-
gorical features. Table 1 lists the details of all UCI datasets
used in the experiments.

TABLE 1. Lists the total number of points, clusters and features of all UCI
datasets used in the experiments.

FIGURE 1. The Balanced and ImBalanced in the two consecutive rows
respectively. They comprise two clusters (red/black) with an increasing
separation between clusters.

As for the implementation details, none of the selection
matrices used in the proposed framework (i.e.E1,E2,E3,E4,

P,C,Q, 9,3j) are actually constructed. Only element
indexing within vectors is used, thus, keeping the necessary
computation cost minimal. For ease, all ρi parameters have
the same value and updated similarly. We find that setting all
ρi parameters to 20 and by increasing it it every 5 iterations
by 10% for all real datasets achieves the fastest convergence.
Moreover, we initialize all the optimization variables using
zero vectors, while x is initialized to random (i.e. random

FIGURE 2. Convergence of the solution x using ℓpKm-Mix with random
binary initialization that satisfy the cardinality constraints on the Wine
dataset.

TABLE 2. Comparison between K-means and ℓpKm on real UCI datasets
using K-means objective value, ARI(%), MI and HI(%) along with the
standard deviation.

assignment of data points to clusters) if the comparison is
against K-means. When comparing against other clustering
methods, we use the same K-means initialization as other
methods. In all comparisons, w is initialized to a feasible
point as given in Algorithm 1.MATLAB is used to implement
our method. The most expensive operation in our framework
is the x and w updates, which involve solving an n× k linear
system. This is the bottleneck of our framework causing it to
have a computational complexityO(n3k3) per iteration. In the
final experiment, we report the runtime of our framework on
different sized datasets with a variety of constraint choices.

As for the evaluation metric, we adopt the 3 most common
criteria used in the clustering community to compare differ-
ent clustering methods, namely the Adjusted Random Index
(ARI)(↗), Mirkin’s Index (MI) (↘) and Hubert’s Index (HI)
(↗) which calculate a measure of agreement between two
partitions of a dataset [25], [26]. The symbol↗ indicate that
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TABLE 3. Comparison between K-means and ℓpKm-Car on synthetic
balanced and Imbalaced synthetic datasets using ARI(%), MI and HI(%).

the higher the number the better performance and vice versa
for ↘. In all experiments, clustering is repeated 10 times
with different initializations and we report the average and
standard deviation of the metric used in comparison.

B. COMPARING DIFFERENT CONSTRAINT DESIGN
CHOICES
We apply our proposed method, ℓpKm, on the same cluster-
ing task with several choices of constraints: no constraints,
only cardinality constraints, only pairwise constraints and
both types jointly. We refer to each as ℓpKm, ℓpKm-Car,
ℓpKm-Pair and ℓpKm-Mix respectively.

a: AN AUXILIARY EXPERIMENT
Despite that we do not provide a proof for the convergence
of the non-quadratic objective in Eq. 1, as it is proven for
the quadratic case in [17], we find the performance very
stable where we demonstrate it empirically. For instance,
we run ℓpKm-Mix that enforces cardinality, 20 must-link
and 20 cannot-link constraints. In figure 2, we plot the three
pieces of the solution label vector x at four different ADMM
iterations (1, 15, 25, and 200). In the first iteration, the
initial clustering is random however satisfying the cardinality
constraints, so it is binary but it does not lead to a good
objective. As ADMM progresses, the continuous solution x
becomesmore andmore binary, until it converges to a feasible
binary solution where the three clusters are disjoint satis-
fying all constraints. Moreover, we also report the number
of cardinality (CardV), must-link (MLV), and cannot-link
(CLV) violations at each of these iterations. These violations
gradually decrease until convergence occurs, when no vio-
lations persist. We find this stable performance across all
datasets as will be presented in later sections. Further detailed
experiments can be found in the supplementary material.
Traditional K-Means Versus ℓpKm: First, we start by com-

paring our vanilla constrained free version clustering method
ℓpKm against K-means. We show that ℓpKm method can

in fact attain very similar, if not better, performance than
traditional K-means (builtin MATLAB function). This is
clearly because both methods use the same objective value
and that ℓpKm does converge to good solutions. Experiments
are conducted on some of the UCI datasets [7] (wine, iris and
glass). Table 2 reports the K-means objective value, ARI(%),
MI and HI(%) metrics for both methods.

b: TRADITIONAL K-MEANS VERSUS ℓpKm-Car.
Here, we demonstrate that our framework coupled with only
cardinality constraints outperforms traditional unconstrained
K-means on a variety of synthetic data. This highlights the
importance of having this prior information available and
harnessing it in the clustering process. In these experiments,
the cardinality constraints are generated from ground truth
labels. To show that cardinality does in fact help cluster-
ing performance, we apply ℓpKm-Car on the two synthetic
datasets (Balanced and ImBalanced) and report their
ARI, MI and HI results in Table 3.

For the Balanced dataset, the separation between the
four groups of points increases. In fact, K-means tends to
cluster points together such that each cluster has a similar
variance as other clusters. Consequently, K-means clusters
the high-density points of the Balanced dataset together
and groups the remaining less dense points into another clus-
ter. In comparison, our framework exploits the cardinality
constraints to achieve perfect clustering performance. Sim-
ilarly, the ImBalanced dataset contains two imbalanced
clusters with very different densities, where the separation
between them is increased. In this case, K-means often mixes
data points between clusters, since the cardinality constraints
are not used. On the other hand, ℓpKm-Car can almost per-
fectly predict the ground truth clustering labels. Interestingly,
the variance of our results is much lower than that of K-means
even though they both use the same clustering initializa-
tion. This indicates that the cardinality constraints afford our
method robustness to the initialization.

To the best of our knowledge, all previous work that
handles generic cardinality constraints do not have readily
available code for comparison. Therefore, we only compare
our method with traditional unconstrained K-means, so as
to demonstrate the effectiveness of adding cardinality con-
straints to an unconstrained clustering method.

c: PAIRWISE CONSTRAINED CLUSTERING METHODS
VERSUS ℓpKm-Pair
Here, we compare our ℓpKm-Pair method against several
pairwise constrained methods from the literature, namely
Constrained Clustering [13] (COP-KMEANS), Spectral
Clustering [8], Penalized probabilistic Clustering (PPC) [10]
and CCL [11]. All pairwise constraints were randomly gen-
erated. Among these methods, only COP-KMEANS [13]
and ℓpKm-Pair exactly enforce the constraints, while the
others incorporate them as soft pairwise constraints in
their clustering framework. Consequently, Spectral Clus-
tering, PPC and CCL may result in clustering violations.

5830 VOLUME 11, 2023



A. Bibi et al.: Constrained Clustering: General Pairwise and Cardinality Constraints

TABLE 4. Comparison of several pairwise constrained clustering methods against ℓpKm-Pair using ARI(%), as well as, must-link (MLV) and cannot-link
(CLV) violations in the constraints. The cells indicated with x imply that the underlying method does not attain a feasible solution after 1000 runs.

TABLE 5. Comparison of several pairwise constrained clustering methods against ℓpKm-Pair using MI and HI(%). The cells indicated with x imply that the
underlying method does not attain a feasible solution after 1000 runs.

FIGURE 3. Effect of increasing must-link and cannot-link constraints separately, as compared to unconstrained K-means.

TABLE 6. Comparison of several pairwise constrained clustering methods against ℓpKm-Pair using MI and HI(%). The cells indicated with x imply that the
underlying method does not attain a feasible solution after 1000 runs.

However, due to the heuristic nature of COPKMEANS,
it may lead to a situationwhere depending on the initialization
no feasible solution is attained. We run all five methods on
two UCI datasets (wine, iris) and ensure that all methods
receive the same randomly generated pairwise constraints.
Tables 4 and 5 report the performance of these methods on
all discussed metrics. For each experiment, we also report
the number of must-link (ml) and cannot-link (cl) constraints,
as well as, the number of must-link violations (MLV) and
the cannot-link violations (CLV). It is clear that ℓpKm-
Pair outperforms all other methods, while satisfying all the
constraints.

d: (K-MEANS VERSUS ℓpKm-Mix.
Here, we demonstrate the main motivation behind our
flexible framework, namely its ability to incorporate both
cardinality and pairwise constraints simultaneously in the
clustering optimization. Firstly, and following previous work
[13], we demonstrate that increasing the number of pair-
wise constraints (either must-link or cannot-link) with the
same cardinality constraints consistently improves perfor-
mance. We conduct this experiment on two different datasets:
one synthetic (ImBalanced y=0.1) and one real (wine).
Figure 3 compares our method against traditional K-means
in such setup. Obviously, K-means does not benefit from the
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constraints while ours consistently improves in performance.
Secondly, we compare all three variants of our framework, i.e.
cardinality only constraints (ℓpKm-Car), pairwise only con-
straints (ℓpKm-Pair) and both (ℓpKm-Mix), on several UCI
datasets (ionosphere, Hepatitis, Hepatitis1 and Breast Cancer
Wis-D). The number of must-link and cannot-link constraints
were equal for each dataset and they were set proportional
to the dataset size to (20,25,20,100) respectively. Results in
Table 6 show that our method performs increasingly and
significantly better, when more constraint categories are used
simultaneously. This improvement reaches as high as 40% in
ARI for some datasets. We also report in table 6 the runtime
for all 3 different varients on all 4 datasets. The time vary
depending on the dataset size and the number of clusters
from 0.5 − 10 seconds. We did not compare against other
methods here, since there is no existing work that combines
both categories of constraints in a unified framework and
extending the pairwise constrained methods to cardinality
constraints is not trivial.

V. CONCLUSION
We proposed a new flexible framework to handle both pair-
wise and cardinality constraints for K-means clustering. The
resulting integer program is transformed into an equiva-
lent continuous reformulation where pairwise constraints are
incorporated as quadratic constraints. The resultant problem
is solved using ADMM. Extensive experiments have been
conducted on both synthetic and real datasets to demonstrate
the competitive performance of our method under different
constraint choices and that the proposed method achieves
state-of-art performance when both types of constraints are
used simultaneously. As a future work, we seek to adapt our
work to deep clustering approaches [27], [28], [29], which
jointly learn feature representations and cluster assignments.
That is to say, the ADMM updates will involove another
minimization step that trains the encoder for the feature learn-
ing procedure while the other steps involve on sloving both
the assignment and imposing the constraints. This shall have
applications in biology, medicine, finance, and animation,
as in many such applications, where pseudo labales in terms
of assignments are provided as constraints, e.g., two patients
are labeled to have a similar syndrome, feature learning will
allow for further improvements in clustering performance.

APPENDIX
REFORMULATION OF CONSTRAINED K-MEANS
We start with our formulation of constrained K-means in
Equation (1) below (or Equation (4) in the manuscript).

min
x,w,z1,z2,z3,z4

k∑
j=1

n∑
i=1

xij
∥∥si − S3jw

∥∥2
2

s.t. 9⊤x = 1n, z1 ∈ Sb, z2 ∈ S2,QP⊤x = u,

x = Pw⊙ Cx,

(E1z3)⊤ E2x = v, (E3z4)⊤ E4x = 0,

x = z1, x = z2, x = z3, x = z4.

We define X ∈ Rk×n and therefore x = vect(X). The vect
operator simply vectorizes the matrix one column at a time
(i.e. one data point at a time). The order of concatenation is
reverse for the label vector: w = vect(W), where W ∈ Rn×k

(i.e. the vectorization is done one cluster at a time). Therefore,
it is important to point out that the order of the binary labels
x and that of w is swapped. Reordering these vectors based
on data points or clusters is controlled by the permutation
matrix P ∈ Rnk×nk . Therefore, Px = P⊤x = vect(X⊤) and
Pw = P⊤w = vect(W⊤). Throughout the main manuscript
and the appendix, we use P and P⊤ to change the order of
w to the same order as x and vice versa. Matrix S ∈ Rd×n

in Equation (1) simply concatenates all the data points in its
columns, where 3j ∈ Rn×nk is zero everywhere except for

the jth block that is identity, i.e. 3j =

[
= 0, . . . , Ijk , . . .

]
.

As for 9⊤ ∈ Rn×nk , it is a binary matrix that has in each
row a vector 1⊤k that sums all the binary labels for a given
data point while the rest are zeros. We write this matrix in
blockwise form as follows:

9⊤ =


1⊤k 0k · · ·
0⊤k 1⊤k 0k
...

...
...

0k · · · 1k


As for Q ∈ Rk×nk , it sums all the binary labels of each

cluster at a time for all the data points and its blockwisematrix
form is given as follows:

Q =

1Tn 0Tnk−n . . .

0Tn 1Tn 0Tnk−n · · ·
· · · · · ·


As for C ∈ Rnk×nk , it sums the binary labels for each

cluster at a time and its blockwise matrix form is as follows:

C =

Ik · · · Ik... · · ·
...

Ik · · · Ik


As for the box and ℓ2-sphere constraints (which intersects

with the binary vector space), we define two sets: Sb :=

{a : 0 ≤ a ≤ 1} and S2 :=
{
a ∈ Rn

:

∥∥∥a− 1
21
∥∥∥2
2
=

n
2

}
,

respectively. It is shown in [17] that: {0, 1}n = Sb ∩ S2.
Lastly, E1,E2 ∈ Rkv×nk and E3,E4 ∈ Rke×nk are selec-

tion matrices for the must-link and cannot-link constraints
respectively. They select the data points that are involved in
both types of constraints.
Applying ADMM: Following the conventional treatment of

an optimization problem using ADMM, we first formulate
the augmented Lagrangian function is given as follows:

L (x,w, z1, z2, z3, z4, y1, y2, y3, y4, y5, y6, y7, y8, y9)

:=

k∑
j=1

n∑
i=1

xij
∥∥si − S3jw

∥∥2
2 + y⊤1

(
9⊤x− 1n

)
+

ρ1

2

∥∥∥9⊤x− 1n
∥∥∥2
2

5832 VOLUME 11, 2023



A. Bibi et al.: Constrained Clustering: General Pairwise and Cardinality Constraints

+I{z1∈Sb} + y⊤2 (x− z1)+
ρ2

2
∥x− z1∥22 + I{z2∈S2}

+y⊤3 (x− z2)

+
ρ3

2
∥x− z2∥22 + y⊤4

(
QP⊤x− u

)
+

ρ4

2

∥∥∥QP⊤x− u
∥∥∥2
2
+

y⊤5 (I− diag(Pw)C) x+
ρ5

2
∥ (I− diag(Pw)C) x∥22

= y6
(
z⊤3 E

⊤

1 E2x− v
)
+

ρ6

2

∥∥∥z⊤3 E⊤1 E2x− v
∥∥∥2
2
+ y⊤7

(x− z3)

+
ρ7

2
∥x− z3∥22 + y8

(
z⊤4 E

⊤

3 E4x
)
+

ρ8

2

∥∥∥z⊤4 E⊤3 E4x
∥∥∥2
2

= y⊤9 (x− z4)+
ρ9

2
∥x− z4∥22 .

ADMM updates steps tend to update each primal variable
( x,w, and z1−4 sequentially, while keeping the rest of these
variables and the dual variables y1−5, y6,8, and y6,9) set
to their most recent values. After the primal variables are
updated, the dual variables are updated via a single gradient
ascent step. Next, we detail each update step and the under-
lying optimization sub-problem that needs to be solved.
Update x:

x← argmin
x

k∑
j=1

n∑
i=1

xij
∥∥si − S3jw

∥∥2
2 + y⊤1

(
9⊤x− 1n

)
+

ρ1

2

∥∥∥9⊤x− 1n
∥∥∥2
2
+ y⊤2 (x− z1)+

ρ2

2
∥x− z1∥22

+y⊤3 (x− z2)+
ρ3

2
∥x− z2∥22 + y⊤4

(
QP⊤x− u

)
+

ρ4

2

∥∥∥QP⊤x− u
∥∥∥2
2

+y⊤5 (I− diag(Pw)C)x+
ρ5

2
∥(I− diag(Pw)C)x∥22

+y6
(
z⊤4 E

⊤

1 E2x− v
)
+

ρ6

2

∥∥∥z⊤4 E⊤1 E2x− v
∥∥∥2
2

+y⊤7 (x− z4)

+
ρ7

2
∥x− z4∥22 + y8

(
z⊤5 E

⊤

3 E4x
)

+
ρ8

2

∥∥∥z⊤5 E⊤3 E4x
∥∥∥2
2
+ y⊤9 (x− z5)

+
ρ9

2
∥x− z5∥22

The aforemention problem is strongly convex quadratic
in x. Therefore, a stationary point is necessary and sufficient
for optimality. By equating the gradient to zero, we get:(

ρ199⊤ + (ρ2 + ρ3 + ρ7 + ρ9) Ink + ρ4PQ⊤QP⊤

+ρ5(I− diag(Pw)C)⊤(I− diag(Pw)C)

+ρ6E⊤2 E1z3z⊤3 E
⊤

1 E2 + ρ8E⊤4 E4z4z⊤5 E
⊤

3 E4

)
x =

− (vect(B)+9y1 + y2 + y3 − ρ191n − ρ2z1−

ρ3z2 − C⊤ diag(Pw)y5 + y6E⊤2 E1z4 − ρ6vE⊤2 E1z3 + y7

− ρ7z3 + y8E⊤4 E3z4 + y9 − ρ9z4 + PQ⊤y4 − ρ4PQ⊤u
)

,

where B(i, j) =
∥∥si − S3jw

∥∥2
2.

Update w:

w← argmin
w

k∑
j=1

n∑
i=1

xij
∥∥si − S3jw

∥∥2
2 +

yT5 (I− diag(Pw)C)x+
ρ5

2
∥(I− diag(Pw)C)x∥22 .

Similarly to the x-update, the problem is strongly convex
quadratic and finding a stationary point is necessary and
sufficient for a global solution. Thus, the gradient is given
by:

−

k∑
j=1

n∑
i=1

2 xij
(
S3j

)T (si − S3jw
)
− PTCx⊙ y5

−ρ5

(
PT diag(Cx)

)
(I− diag(Pw)C)x = 0.

Then, we have

−

k∑
j=1

n∑
i=1

2 xij3T
j S

T si +
k∑
j=1

n∑
i=1

2 xij3T
j S

TS3jw

−PTCx⊙ y5
−ρ5PTCx⊙ x+ ρ5PT diag(Cx) diag(Pw)Cx = 0.

Therefore, k∑
j=1

n∑
i=1

2 xij3T
j S

TS3jw+ ρ5PT diag(Cx) diag(Pw)Cx


=

k∑
j

n∑
i

2 xij3T
j S

T si + PTCx⊙ y5 + ρ5PTCx⊙ x

Finally, we have, k∑
j=1

n∑
i=1

2 xij3T
j S

TS3j + ρ5PT diag(Cx⊙ Cx)P

w

=

k∑
j=1

n∑
i=1

2 xij3T
j S

T si + PTCx⊙ y5 + ρ5PTCx⊙ x

In this derivation, we use the fact that ∇w
(
yT5 Pw⊙ Cx) =

PTCx ⊙ y5. Tp see why this is the case, note the following
identities: a⊙ b = b⊙ a = diag(a)b = diag(b)a.
Therefore,

∇w

(
yT5 Pw⊙ Cx

)
= ∇w

(
yT5 diag(Cx)Pw

)
= PT diag(Cx)y5
= PTCx⊙ y5

Update z1:

z1 ← argmin
z1∈Sb

y⊤2 (x− z1)+
ρ2

2
∥x− z1∥22

z1 ← argmin
z1∈Sb

∥∥∥∥z1 − (x+ y2
ρ2

)∥∥∥∥2
2

z1 = PSb

(
x+

y2
ρ2

)
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Here, we need to perform a simple projection onto the
box set Sb. The projection PSb (.) is an elementwise clamping
between 0 and +1 that is, PSb (a) = min(max(a, 0), 1) for a
scalar value a.
Update z2:

z2 ← argmin
z2∈S2

y⊤3 (x− z2)+
ρ3

2
∥x− z2∥22

z2 ← argmin
z2∈S2

∥∥∥∥z2 − (x+ y3
ρ3

)∥∥∥∥2
2

z2 = PS2

(
x+

y3
ρ3

)
We need to perform a simple projection onto the

ℓ2− sphere: S2 =
{
a ∈ Rn

:

∥∥∥a− 1
21
∥∥∥2
2
=

n
4

}
. The projec-

tionPS2 (.) (.) involves an elementwise shift and ℓ2 vector nor-

malization and thus is given as PS2 (a) =
√
n
2

(
a− 1

2 1∥∥∥a− 1
2 1
∥∥∥
2

)
+

1
21, for any vector a ∈ Rn.
Update z3:

z3 ← argmin
z3

y6(z⊤3 E
⊤

1 E2x)

+
ρ6

2

∥∥∥z⊤3 E⊤1 E2x− v
∥∥∥2
2
− y⊤7 z3 +

ρ7

2
∥x− z3∥22

The problem is strongly convex quadratic in z4, so we
obtain the unique global minimizer by equating the gradient
to zero as follows[

ρ6E⊤1 E2xx⊤E⊤2 E1 + ρ7Ink
]
z4 = y7 + ρ7x− y6E⊤1 E2x+

ρ6vE⊤1 E2x

Update z4:

z4← argmin
z4

y8(z⊤4 E
⊤

3 E4x)+
ρ8

2

∥∥∥z⊤4 E⊤3 E4x
∥∥∥2
2
− y⊤9 z4 +

ρ9

2
∥x− z4∥22

The problem is also strongly convex quadratic in z5, so we
obtain the unique global minimizer by equating the gradient
to zero as follows[

ρ8E⊤3 E4xx⊤E⊤4 E3 + ρ9Ink
]
z5 = y9 + ρ9x− y8E⊤3 E4x

Update y1, y2, y3, y4, y5, y6, y7, y8, y9: Lastly, we need to
perform dual gradient ascent to update the dual variables as
follows:

y1 ← y1 + ρ1

(
9⊤x− 1n

)
, y2← y2 + ρ2 (x− z2)

y3 ← y3 + ρ3 (x− z3) , y4← y4 + ρ4

(
QP⊤x− u

)
y5 ← y5 + ρ5(x− Pw⊙ Cx), y6← y6 + ρ6

(
z⊤3 E

⊤

1

y7 ← y7 + ρ7 (x− z3) , y8← y8 + ρ8

(
z⊤4 E

⊤

3 E4x
)

y9 ← y9 + ρ9 (x− z4)

FIGURE 4. Convergence of the K-means objective value us- ing FCKm
with random initialization on the Wine dataset. Note the decreasing
nature of the objective and its smooth convergence to the solution.

FIGURE 5. Convergence of the solution x using FCKm with random
initialization on the Wine dataset.

FIGURE 6. Convergence of the K-means objective value using FCKm-Mix
with a random initialization on Wine dataset.

AUXILIARY RESULTS
We present some additional experimental results that aug-
ment the discussion made in the manuscript. Primarily,
we provide empirical evidence that our FCKmmethod and its
constrained variants converge to binary solutions that satisfy
different constraints (pairwise and cardinality).
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Convergence for Unconstrained Clustering: In Figure 4,
we plot the K-means objective value at each ADMM itera-
tion for an unconstrained clustering task with three clusters.
Note that the initialization to this problem is a random
threeway clustering. The objective decreases monotonically
(after the first 2-3 iterations) and converges to a min-
imum value in approximately 6000 iterations. The opti-
mization is stable with no perturbations at the onset of
convergence.

In Figure 5, we plot the cluster vector for each of the three
clusters being optimized at different iterations (1, 500, 2500,
and 6530), i.e. we plot the three pieces of the label vec-
tor x. In the first iteration, the initial clustering is done
randomly, so it is binary but it does not lead to a good
objective. As ADMM progresses, the continuous solution x
becomes more and more binary, until it converges to a fea-
sible binary solution where the three clusters are completely
disjoint.
Convergence for Constrained Clustering: In Figure 6,

we plot the K-means objective value at each ADMM iter-
ation for a constrained clustering task with three clusters.
In this task, we enforce cardinality, must-link, and cannotlink
constraints onto the optimization. The initialization is taken
to be a random assignment between the three disjoint clus-
ters. In this case, the objective tends to be monotonically
increasing after the first few iterations. This might seem
counter-intuitive, since we are trying to minimize the objec-
tive. However, it must be noted that the continuous solution
vector x in each ADMM iteration tends not to be feasible
with respect to the enforced constraints. In other words, these
constraints are being enforces more and more as the ADMM
process proceeds, which forces the tradeoff between objective
and feasibility. But, similar to the unconstrained case, the
variation in objective is smooth and no perturbations are
exhibited when ADMM begins to converge.

Moreover, Figure 4 plots the solution vectors for each
cluster at four different iterations (1, 15, 25, 200). A similar
behavior to the unconstrained case is encountered, where
disjoint binary solution vectors are converged to. However,
the notable difference is that we also report the number of
cardinality (CardV), must-link (MLV), and cannotlink (CLV)
violations at each of these iterations. We see that these viola-
tions gradually decrease until convergence occurs, when no
violations persist.
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