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ABSTRACT In recent days, due to the complexities of different diseases of similar types, it becomes very
difficult to diagnose an accurate type of disease, and so medical diagnosis becomes a difficult task for the
experts working in health departments. Many researchers try to develop new methods and techniques to
over the difficulties that come across in the way of medical diagnosis. In this paper, we try to develop
some novel techniques that will help experts to diagnose diseases accurately. Based on a more advanced
structure of intuitionistic fuzzy rough sets, in this article, we establish confidence-level intuitionistic fuzzy
average/geometric aggregation operators to incorporate the familiarity degree of experts with evaluated
objects for an initial assessment while intuitionistic fuzzy rough average/geometric aggregation operators
cannot do so. Moreover, we have given some basic properties of the initiated operators. To show the effective
use of these operators we have proposed an algorithm with an illustrative example. Furthermore, based on
the intuitionistic fuzzy rough model, we have also established a medical diagnosis model to incorporate
the difficulty that occurs in the diagnosis of disease. Furthermore, a comparative analysis demonstrates the
efficiency of our proposed methods.

INDEX TERMS Fuzzy sets, intuitionistic fuzzy sets, rough sets, intuitionistic fuzzy rough sets, confidence-
level aggregation operators, medical diagnosis.

I. INTRODUCTION
The earliest doctors in ancient times made the diagnosis and
suggested treatment based on observation of clinical symp-
toms. Ancient physicians’ observations with their eyes, and
ears, and occasionally by examining human specimens were
the basis for the first medical diagnoses given by humans. The
late medieval era saw the widespread use of the diagnostic
phase by medical professionals. The ancient Greeks believed
that all sickness was caused by disturbances of body fluids
called humours. Later, the microscope revealed both the cel-
lular makeup of human tissue and the pathogenic microor-
ganisms. It wasn’t until the end of the 19th century that more
advanced diagnostic methods and instruments, including the
thermometer for detecting temperature and the stethoscope
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for measuring heart rate, became widely used. In medicine,
the clinical laboratory would not be widely used until the turn
of the 20th century.

It is necessary to be aware of any unexpected changes
to your body. This could be an endless cough or even an
enlarging waistline. Syndromes are often nothing to distress
but sometimes need further inspection. Diagnosis is the pro-
cedure of deciding the nature of a disease and separating it
from other possible conditions. Diagnosis is a Greek term
that comes from a gnosis called knowledge. Symptoms that
appear early in the course of the disease are vague. It is very
difficult in this situation tomake an accurate diagnosis. Reach
an accurate decision depends on the medical history and risk
factors for a certain disease.

Fuzzy sets (FSs), defined by Zadeh [1], are an efficient
technique that generalizes the classical set theory (CST)
where any element has membership grade (MG) belonging

8674
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-3871-3845
https://orcid.org/0000-0003-4599-2085
https://orcid.org/0000-0002-4907-3548
https://orcid.org/0000-0002-5196-8148


T. Mahmood et al.: Confidence Level Aggregation Operators Based on Intuitionistic Fuzzy Rough Sets

to [0, 1]. Similar to CST, operations, and relations can be
defined for FSs. Since their appearance in 1965, FSs had their
applications in a diversity of ways and any discipline. Uses
of FSs can be seen in artificial intelligence [2], medicine [3],
statistics [4], medical diagnosis [5], and clustering [6]. Some
researchers proposed this notion to aggregation operators
(AOs) like Fahmi et al. [7] proposed cubic fuzzy Einstein AOs
and their application to decision making (DM) problems.

An intuitionistic fuzzy set (IFS) was established by
Atanassov [8] in the structure of combining both MG and
non-membership grade (NMG). IFS uses the constraint that
the sum (MG, NMG) belongs to [0, 1]. It is noticed that IFS is
a very valuable structure and it can provide a two-dimensional
scenario in decision-making problems. Based on this notion
many researchers have developed the methods and applica-
tions of IFS in different fields. De et al. [9] established the
use of the notion of IFS in medical diagnosis. Moreover,
Xiao [10] proposed a distance measure based on IFS and
applied it to the pattern classification problem. Yang et al.
[11] proposed belief and plausibility measures on IFSs with
the belief-plausibility TOPSIS. Moreover, based on IFSs,
many new theories like similarity measures and aggrega-
tion operators had been established by researchers. Xu and
Yager [12] introduced some geometric AOs based on IFSs.
Also, some average AOs based on IFSs were introduced by
Xu [13]. Hwang and Yang [14] gave some similarity mea-
sures between IFSs. Nagoorgani et al. [15] introduced the idea
of double domination on IF graphs. Sheikh and Mandal [16]
proposed some Dombi aggregation operators based on IFS.

The rough sets (RSs) model started by Pawlak [17] is a
pair of precise sets called lower and upper approximation of
RSs. A lot of researchers utilize the conception of RSs in
many areas [18], [19]. Afterward, Ayub et al. [20] initiated
the conception of linear Diophantine fuzzy RSs and provide
its application to DM issues.Many researchers had developed
the combined concept of RSs and FSs theory, such as the
idea of the fuzzy rough sets (FRSs) initiated by Dubois and
Prade [21]. Qureshi and Shabir [22] initiated the generalized
rough fuzzy ideals of quantale and roughness in quantale
module.

The idea of intuitionistic fuzzy rough sets (IFRSs) pro-
posed by Cornelis et al. [23] is the generalization for FRSs.
Chowdhary and Acharjya [24] used the IFR notion for the
detection of breast cancer. Chinram et al. [25] used the con-
cept of IFRSs for AOs and established the notion of IFR aver-
age AOs. Based on IFRSs, in this article, we propose some
new AOs like confidence-level IFR average (CIFRA) AOs
and confidence-level IFR geometric (CIFRG) AOs because
of the following reasons:
1. IFRS anticipates more space for decision-makers due to

the combined notion of IFS and RS.
2. IFRS uses upper and lowers approximation spaces that

property lacks in IFS. It means that when decision-makers
come up with data in the form of upper and lower
approximations, then these kinds of data cannot be han-
dled by simple intuitionistic fuzzy numbers in many

TABLE 1. Abbreviations used throughout the article.

decision-making problems related to medical diagnosis
where experts use the data in the form of intuitionis-
tic fuzzy rough number (IFRN) to diagnose a disease.
So there is a need to develop the notions of confidence
IFR aggregation operators.

3. IFRS uses the advance condition that the sum (MG, NMG)
of upper and lower approximations must belong to [0, 1].

4. CIFRA and CIFRG AOs can incorporate the familiar-
ity degree of experts with evaluated objects for initial
assessment and that property lacking in IFWA and IFWG
aggregation operators.

5. Taking into account that CIFRA and CIFRG operators are
straightforward and cover the decision-making approach,
this article aims to cover more advance and complex data.

6. The proposed work covers the limitation of all existing
drawbacks.
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FIGURE 1. Diagnosis procedure.

To have clear abbreviations used throughout the paper,
we give Table 1 with these abbreviations. The contributions
of this study are described as follows:
1. To initiate the conception of new AOs like confidence

intuitionistic fuzzy rough average and confidence intu-
itionistic fuzzy rough geometric AOs.

2. Properties of these aggregation operations have been pro-
posed.

3. An algorithm for the MCDM approach has been given
developed to cover more advanced data.

4. Also, we have proposed a medical diagnosis algorithm
based on IFRS and an illustrative example is given to show
the effective define algorithm.
This article is organized as follows. In Section II, we exam-

ine the basic conception of FS, IFS, RS, IFRS, and some basic
operational laws. In Section III, we introduce new aggrega-
tion operators like CIFRWA and CIFROWA. In Section IV,
we discuss the basic notion of CIFRWG and CIFROWG
operators. In Section V, we give an algorithm for the pro-
posedmethods alongwith numerical examples. In SectionVI,
we deal with the medical diagnosis algorithm for IFRSs.
In Section VII, we have a comparative analysis of the pro-
posedmethods with some existingmethods. Finally, wemake
conclusions in Section VIII.

II. PRELIMINARIES
Medical diagnosis is the way to take suitable decisions about
certain diseases based on symptoms. Due to complications
in various diseases, health physicians find some problems in
handling the more complex diseases. To reach an accurate
decision in the medical field is very important for patients and
doctors as well for the survival of medical theory. Based on
the complication of these problems, FS theory takes its part in
this field and it has a wide range of applications cited in [5].
The overall overview of the medical diagnosis procedure has
been presented in Fig. 1.

In the following, we will overview the basic ideas for
IFSs, IFRSs, score function (SF), and accuracy function (AF).
Furthermore, in a later discussion, we will adopt medical
diagnosis procedures as well.

Definition 1 [10]: Let X be a general set. An intuitionistic
fuzzy set is the notion of the form

{(⊺, (⊺) ,8 (⊺)) |⊺∈X}

with the condition that sum ( (⊺) ,8 (⊺))∈[0, 1]. Also
(⊺) ,8 (⊺) are MG and NMG, respectively.
Definition 2 [23]: Let X be a general set and ∈IFS

(X × X) be intuitionistic fuzzy relation. Then, the pair ( ,X)
is called IF approximation space. Now for any ⊎ ⊆X, the
lower rough approximation (LRA) and upper rough approxi-
mation (URA) of ⊎ w.r.t (X, ) are given by

(⊎) =

{〈(
⊺ :

⊎
(⊺) ,8

⊎
(⊺)
)

|⊺∈X
〉}

(⊎) =
{〈(

⊺ :
⊎
(⊺) ,8

⊎
(⊺)
)
|⊺∈X

〉}
where

⊎
(⊺) =

∧
c∈X[ (⊺, c)

∧
⊎(c)],8

⊎
(⊺) =∨

c∈X[8 (⊺, c)
∨
8⊎(c)] and

⊎
(⊺) =

∨
c∈X

[
(⊺, c)∨

⊎(c)
]
,8

⊎
(⊺) =

∧
c∈X[8 (⊺, c)

∧
8⊎(c)] with 0 ≤

⊎
(⊺) + 8

⊎
(⊺) ≤ 1, 0 ≤

⊎
(⊺) + 8

⊎
(⊺) ≤ 1.

As (⊎) and (⊎) are IFSs, so, (⊎) , (⊎) : IFS (X) →

IFS (X) are LR and UR, approximation operators. Then,
(⊎) =

(
(⊎) , (⊎)

)
=

{
⊺ :

(
⊎
(⊺) ,8

⊎
(⊺)
)
,(

⊎
(⊺) ,8

⊎
(⊺)
)
|⊺∈X

}
is called IFRS.

Definition 3 [25]: Let F =

{(
, 8

)
,
(

,8
)}

be

an intuitionistic fuzzy rough number (IFRN). Then, the score
function (SF) and accuracy function (AF) are given by

Sc ( ) =
1
4

(
2 + + −8 −8

)
, S ( )∈[0, 1]

Ac ( ) =
1
4

(
2 + + +8 +8

)
,A ( )∈ [0, 1] .

Definition 4 [25]: For two IFRNs 1 =

{(
1
,8

1

)
,(

1
,8

1

)}
and 2 =

{(
2
,8

2

)
,
(

2
,8

2

)}
, we

have the following results:

1) If S ( 1) > S ( 2) then 1 > 2,
2) If S ( 1) < S ( 2) then 1 < 2,
3) If S ( 1) = S ( 2) then

i. If A ( 1) > A ( 2) then 1 > 2,
ii. If A ( 1) < A ( 2) then 1 < 2,
iii. If A ( 1) = A ( 2) then 1 = 2.

III. CONFIDENCE INTUITIONISTIC FUZZY ROUGH (CIFR)
AVERAGE AGGREGATION OPERATORS
All of the researchers in the aforementioned literatures
believed that the decision-makers are certain experts and
aware of the choices that are being examined. However, there
are multiple cases in which this concept fails in problems
from daily life. Some researchers created the concept of
confidence level and also provided some AOs based on con-
fidence level in order to overcome and regulate this type of
constraint. In this section, we discuss confidence intuitionis-
tic fuzzy rough average (CIFRA) AOs. We also discuss the
basic properties of the operators.
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A. CIFR WEIGHTED AVERAGE (CIFRWA) AGGREGATION
OPERATORS
We first discuss confidence intuitionistic fuzzy rough
weighted average (CIFRWA) AOs.
Definition 5: Let i =

((
i,8i

)
,
(

i,8i
))
, i =

1, 2, . . . , n be a family of IFRNs and i be the con-
fidence level (CL) of i with 0 ≤ i ≤ 1. Let
ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the weight vectors for
IFRNs with the condition

∑n
i=1 ψi = 1. Then, the

mapping CIFRWA : ⊚n
→ ⊚ operator is given as

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n)) = ⊕
n
i=1ψi ( i i) =

ψ1 ( 1 1)⊕ψ2 ( 2 2)⊕ψ3 ( 3 3)⊕ . . .⊕ψn ( n n).
It is called the confidence intuitionistic fuzzy rough weighted
average (CIFRWA) operator.
Theorem 1: Let i =

((
i,8i

)
,
(

i,8i
))
, i = 1, 2, . . . , n

be a family of IFRNs and i be the confidence level of i with
0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the weight
vectors for the IFRNs with the condition

∑n
i=1 ψi = 1. Then

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))

=


(
1 −

∏n

i=1

(
1 − i

)
iψi ,

∏n

i=1

(
8i
)
iψi
)
,

1 −

∏n

i=1

(
1 − i

)
iψi ,

∏n

i=1

(
8i
) iψi

 (1)

Proof:For n = 2, we haveCIFRWA (( 1, 1) , ( 2, 2)) =

ψ1 ( 1 1)⊕ψ2 ( 2 2). By using the operational laws for

IFRNs, we get 1 1 =

(1 −
(
1 − 1

)
1 ,81

1
)
,

1 −
(
1 − 1

)
1 ,81

1

 =((
d1, e1

)
,
(
d1, e1

))
. Then

ψ1 ( 1 1)

=

((
1 −

(
1 − d1

)
1 , e1

1

)
,

1 −
(
1 − d1

)
1 , e1 1

)

=


((

1 −

[
1 −

{
1 −

(
1 − 1

)
1
}]ψ1

)
,
(
81

1
)ψ1

)
,((

1 −

[
1 −

{
1 −

(
1 − 1

)
1
}]ψ1

)
,
(
81

1
)ψ1

)


=

((1 −
(
1 − 1

)ψ1 1
)
,
(
81

ψ1 1
))
,((

1 −
(
1 − 1

)ψ1 1
)
,
(
81

ψ1 1
))  .

Similarly,we can see that

ψ2 ( 2 2) =


1 −

(
1 − p

˜−2

)ψ2 2
 , (82

ψ2 2
) ,((

1 −
(
1 − 2

)ψ2 2
)
,
(
82

ψ2 2
))

 .
Then, CIFRWA

(( 1, 1) , ( 2, 2))

= ψ1 ( 1 1)⊕ψ2 ( 2 2)

=




(
1 −

(
1 − 1

)ψ1 1
)

+

(
1 −

(
1 − 2

)ψ2 2
)

−

(
1 −

(
1 − 1

)ψ1 1
) (

1 −
(
1 − 1

)ψ2 2
)
,(

81
ψ1 1

) (
82

ψ2 2
)

 ,
(
1 −

(
1 − 1

)ψ1 1
)

+

(
1 −

(
1 − 2

)ψ2 2
)

−

(
1 −

(
1 − 1

)ψ1 1
) (

1 −
(
1 − 2

)ψ2 2
)
,(

81
ψ1 1

) (
82

ψ2 2
)




.

Thus,

CIFRWA (( 1, 1) , ( 2, 2))

=


(
1 −

∏2

i=1

(
1 − i

)
iψi ,

∏2

i=1

(
8i
)
iψi

)
,

1 −

∏2

i=1

(
1 − i

)
iψi ,

∏2

i=1

(
8i
) iψi

 .
Suppose the result is valid for = , that is,

CIFRWA
(
( 1, 1) , ( 2, 2) , . . . ,

(
,
))

=

(1 −

∏
i=1

(
1 − i

)
iψi ,

∏
i=1

(
8i
)
iψi
)
,

1 −

∏
i=1

(
1 − i

)
iψi ,

∏
i=1

(
8i
) iψi

 .
Then, for n = +1, we get CIFRWA as shown in the equation
at the bottom of the next page. Hence the result is valid for
n = + 1. Therefore, the result is valid for any number of
IFRNs. ■
Example 1: Suppose 1 = (((0.3, 0.4) , 0.5) ,

((0.5, 0.2) , 0.4)) , 2 = (((0.1, 0.8) , 0.6) , ((0.2, 0.7) , 0.4)) ,
3 = (((0.5, 0.3) , 0.3) , ((0.4, 0.2) , 0.1)) and 4 =

(((0.7, 0.2) , 0.4) , ((0.1, 0.6) , 0.3)) are four IFRNs along
with their confidence level. If ψ = (0.29, 0.25, 0.22, 0.24),
then

CIFRWA (( 1, 1) , ( 2, 2) , ( 3, 3) , ( 4, 4))

=




(
1 − (1 − 0.3)0.5×0.29

× (1 − 0.1)0.6×0.25
×

(1 − 0.5)0.3×0.22
× (1 − 0.7)0.4×0.24

)
,

(0.4)0.5×0.29
× (0.8)0.6×0.25

×

(0.3)0.3×0.22
× (0.2)0.4×0.24

 ,

(
1 − (1 − 0.5)0.4×0.29

× (1 − 0.2)0.4×0.25
×

(1 − 0.4)0.1×0.22
× (1 − 0.1)0.3×0.24

)
,

(0.2)0.4×0.29
× (0.7)0.4×0.25

×

(0.2)0.1×0.22
× (0.6)0.3×0.24




= ((0.2045, 0.6701) , (0.1144, 0.7448)) .

For a family of IFRNs i =
((

i,8i
)
,
(

i,8i
))

where
i = 1, 2, . . . , n and i being the confidence level of i with
0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the weight
vectors for IFRNs with the condition

∑n
i=1 ψi = 1. Then

CIFRWA AOs have the following properties:
1) Idempotency: If for all i ( i, i) = ( , ), i.e., i =

, i = , 8i = 8 and 8i = 8, i = , then

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n)) =

Proof: If( i, i) = ( , ), then by using Theorem 1,
we get

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))
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=

(1 −

∏n

i=1

(
1 −

) ψi ,∏n

i=1

(
8
) ψi) ,

1 −

∏n

i=1

(
1 −

) ψi ,∏n

i=1

(
8
) ψi



=


(
1 −

(
1 −

) ∑n

i=1
ψi
,
(
8
) ∑n

i=1
ψi

)
,

1 −
(
1 −

) ∑n

i=1
ψi
,
(
8
) ∑n

i=1
ψi


=

(1 −
(
1 −

)
,
(
8
) )

,

1 −
(
1 −

)
,
(
8
)

 = .

■
2. (Boundedness): Let −

i =

((
min

i i
,8min

i i

)
,(

max
i i
,8max

i i

))
and +

i =

((
max

i i
,8max

i i

)
,(

min
i i
,8min

i i

))
. Then, for allψi, we have −

i ≤

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n)) ≤
+
i.

Proof: For every i,min
(

i
)

≤ i ≤ max
(

i
)

H⇒ 1 −

max
(

i
)

≤ 1 − i ≤ 1 − min
(

i
)
. Now for every ψ , we get∏n

i=1
(
1 − max

(
i
))(max i)ψi

≤
∏n

i=1
(
1 − i

)
iψi

≤
∏n

i=1(
1 − min

(
i
))(min i)ψi

H⇒
(
1 − max

(
i
))(max i)

∑n
i=1 ψi

≤
∏n

i=1
(
1 − i

)
iψi

≤
(
1 − min

(
i
))(min i)

∑n
i=1 ψi H⇒ 1−(

1 − min
(

i
))(min i)

≤ 1 −
∏n

i=1
(
1 − i

)
iψi

≤ 1 −

(1 − max(
i
))(max i) min

i i
≤ 1 −

∏n
i=1

(
1 − i

)
iψi

≤
max

i i
.

Similarly, for every i, min
(

i
)

≤ i ≤ max
(

i
)

H⇒ 1 −

max
(

i
)

≤ 1 − i ≤ 1 − min
(

i
)
. Now for every ψ , we get∏n

i=1
(
1 − max

(
i
))(max i)ψi

≤
∏n

i=1
(
1 − i

)
iψi

≤
∏n

i=1(
1 − min

(
i
))(min i)ψi

H⇒
(
1 − max

(
i
))(max i)

∑n
i=1 ψi

≤
∏n

i=1
(
1 − i

)
iψi

≤
(
1 − min

(
i
))(min i)

∑n
i=1 ψi H⇒

1 −
(
1 − min

(
i
))(min i)

≤ 1−
∏n

i=1
(
1 − i

)
iψi

≤ 1−(1−

max
(

i
))(max i) min

i i
≤ 1−

∏n
i=1

(
1 − i

)
iψi

≤ max
i i
.

Also, min
(
8i
)

≤ 8i ≤ max
(
8i
)

⇐⇒
(
min

(
8i
))min i

≤∏n
i=1

(
8
)
iψi

≤
(
max

(
8i
))max i

H⇒ 8min
i i

≤∏n
i=1

(
8
)
iψi

≤ 8max
i i
, and min

(
8i
)

≤ 8i ≤ max
(
8i
)

⇐⇒(
min

(
8i
))min i

≤
∏n

i=1
(
8i
) iψi

≤
(
max

(
8i
))max i

H⇒

8min
i i

≤
∏n

i=1
(
8i
) iψi

≤ 8max
i i
. If CIFRWA (( 1, 1) ,

( 2, 2) , . . . , ( n, n)) = =
((
,8
)
,
(
,8
))
, then

from the above analysis, we get min
i i

≤
i

≤

max
i i
, min

i i
≤

i
≤ max

i i
,8min

i i
≤ 8

i
≤

8max
i i
,8min

i i
≤

(
8

i

)
≤ 8max

i i
. Then, by using

the definition of SF, we can conclude that −
i ≤

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n)) ≤
+
i. ■

3) Monotonicity: Let ∴
i =

((
∴
i
,8 ∴

i

)
,(

∴
i
,8 ∴

i

))
(i = 1, 2, 3, . . . , n) be another family

of IFRNs such that
i

≤ ∴
i
,8

i
≥8 ∴

i
,

i
≤

∴
i
,8

i
≥8 ∴

i
for all ψi. Then

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))

≤ CIFRWA
((

∴
1, 1

)
,
(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
.

Proof: Since
i

≤ ∴
i
,8

i
≥8 ∴

i
,

i
≤

∴
i
,8

i
≥8 ∴

i
for all i, 1 − ∴

i
≤ 1 −

i
H⇒∏n

i=1

(
1 − ∴

i

)
iψi

≤
∏n

i=1

(
1 −

i

)
iψi

H⇒ 1 −∏n
i=1

(
1 −

i

)
iψi

≤ 1 −
∏n

i=1

(
1 − ∴

i

)
iψi

. Also,

CIFRWA
(
( 1, 1) , ( 2, 2) , . . . .,

(
,
)
,
(

+1, +1
))

=


(
1 −

∏
i=1

(
1 − i

)
iψi ,

∏
i=1

(
8i
)
iψi
)
,

1 −

∏
i=1

(
1 − i

)
iψi ,

∏
i=1

(
8i
) iψi


⊕


((

1 −

(
1 −

+1

)ψ +1 +1
)
,
(
8 +1

ψ +1 +1
))
,((

1 −
(
1 − +1

)ψ +1 +1
)
,
(
8 +1

ψ +1 +1
))



=




(
1 −

∏
i=1

(
1 − i

)
iψi
)

+

(
1 −

(
1 −

+1

)ψ +1 +1
)

−

(
1 −

∏
i=1

(
1 − i

)
iψi
)(

1 −

(
1 −

+1

)ψ +1 +1
)
,(∏

i=1

(
8i
)
iψi .8 +1

ψ +1 +1
)

 ,

(
1 −

∏
i=1

(
1 − i

)
iψi
)

+

(
1 −

(
1 − +1

)ψ +1 +1
)

−

(
1 −

∏
i=1

(
1 − i

)
iψi
) (

1 −
(
1 − +1

)ψ +1 +1
)
,(∏

i=1

(
8i
) iψi

.8 +1
ψ +1 +1

)



=


(
1 −

∏ +1

i=1

(
1 − i

)
iψi ,

∏ +1

i=1

(
8i
)
iψi

)
,

1 −

∏ +1

i=1

(
1 − i

)
iψi ,

∏ +1

i=1

(
8i
) iψi

 .
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1 − ∴
i

≤ 1 −
i

H⇒
∏n

i=1

(
1 − ∴

i

)
iψi

≤∏n
i=1

(
1 −

i

)
iψi

H⇒ 1 −
∏n

i=1
(
1 −

i

)
iψi

≤ 1 −∏n
i=1

(
1 − ∴

i

)
iψi

, and
∏n

i=1
(
8

i

)
iψi

≥
∏n

i=1

(
8 ∴

i

)
iψi
,∏n

i=1
(
8

i

) iψi
≥
∏n

i=1

(
8 ∴

i

)
iψi

. If CIFRWA (( 1, 1) ,

( 2, 2) , . . . , ( n, n)) =

((
,8

)
,
(

,8
))

=

and CIFRWA
((

∴
1, 1

)
,
(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
=((

∴ ,8 ∴

)
,
(

∴ ,8 ∴

))
=

∴, then we get SF ( ) ≤

SF
(

∴
)
. We have two cases:

Case 1: If SF ( ) < SF
(

∴
)
, using SF we get

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))

< CIFRWA
((

∴
1, 1

)
,
(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
Case 2: If SF ( ) = SF

(
∴
)
, using SF we get

SF ( ) =
1
4

(
2 +

(
1 −

n∏
i=1

(
1 −

i

)
iψi

)

+

(
1 −

n∏
i=1

(
1 −

i

)
iψi

)

−

n∏
i=1

(
8

i

)
iψi

−

n∏
i=1

(
8

i

) iψi

)
.

SF
(

∴
)

=
1
4

(
2 +

(
1 −

n∏
i=1

(
1 − ∴

i

)
iψi

)

+

(
1 −

n∏
i=1

(
1 − ∴

i

)
iψi

)

−

n∏
i=1

(
8 ∴

i

)
iψi

−

n∏
i=1

(
8 ∴

i

)
iψi

)
.

Since we have
i

≤ ∴
i
,8

i
≥8 ∴

i
,

i
≤

∴
i
,8

i
≥8 ∴

i
for all i, we have 1 −

∏n
i=1

(
1 −

i

)
iψi

=

1 −
∏n

i=1

(
1 − ∴

i

)
iψi
, 1 −

∏n
i=1

(
1 −

i

)
iψi

= 1 −∏n
i=1

(
1 − ∴

i

)
iψi

and
∏n

i=1
(
8

i

)
iψi

=
∏n

i=1

(
8 ∴

i

)
iψi
,∏n

i=1
(
8

i

) iψi
=
∏n

i=1

(
8 ∴

i

)
iψi

. Now using the definition
of AF, we get

AC ( )

=
1
4

(
2 +

(
1 −

∏n

i=1

(
1 −

i

)
iψi
)

+

(
1 −

∏n

i=1

(
1 −

i

)
iψi
)

+

(∏n

i=1

(
8

i

)
iψi
)

+

(∏n

i=1

(
8

i

) iψi
))

=
1
4

(
2 +

(
1 −

∏n

i=1

(
1 − ∴

i

)
iψi
)

+

(
1 −

∏n

i=1

(
1 − ∴

i

)
iψi
)

+

(∏n

i=1

(
8 ∴

i

)
iψi
)

+

(∏n

i=1

(
8 ∴

i

)
iψi
))

= AC
(

∴
)
.

Thus,

CIFRWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))

≤ CIFRWA
((

∴
1, 1

)
,
(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
.

■

B. CIFR ORDERED WEIGHTED AVERAGE (CIFROWA)
AGGREGATION OPERATORS
In this part, we discuss the basic definition of a CIFROWA
operator. Furthermore, we will discuss the basic properties of
this operator in detail.
Definition 6: Let i =

((
i,8i

)
,
(

i,8i
))
, i =

1, 2, . . . , n be a family of IFRNs and i be the confidence level
of i with 0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be
the weight vectors for IFRNs with the condition

∑n
i=1 ψi =

1. Then the mapping CIFROWA : ⊚n
→ ⊚ operator is given

as

CIFROWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))

= ψ1
(

⋉(1) ⋉(1)
)
⊕ψ2

(
⋉(2) ⋉(2)

)
⊕ψ3

(
⋉(3) ⋉(3)

)
⊕ . . .⊕ψn

(
⋉(n) ⋉(n)

)
.

where (⋉(1),⋉(2),⋉(3), . . . ,⋉(n)) is the permutation of
(1, 2, 3, .., n) such that for all i, ⋉(i−1)≥ ⋉(i).
Theorem 2: Let i =

((
i,8i

)
,
(

i,8i
))
, i = 1, 2, . . . , n

be a family of IFRNs and i be the confidence level of i with
0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the weight
vectors for IFRNs with the condition

∑n
i=1 ψi = 1. Then

CIFROWA (( 1, 1) , ( 2, 2) , . . . , ( n, n))

=


(
1 −

n∏
i=1

(
1 − ⋉(i)

) ⋉(i)ψi
,
n∏
i=1

(
8⋉(i)

) ⋉(i)ψi

)
,

1 −

n∏
i=1

(
1 − ⋉(i)

) ⋉(i)ψi ,
n∏
i=1

(
8⋉(i)

) ⋉(i)ψi


(2)

Proof: The proof is similar to the proof of Theorem 1.
Example 2: Consider the data from Example 1 and

calculate the score values for each IFRN. The score
values are given by Sc ( 1) = 0.55, Sc ( 2) =

0.2, Sc ( 3) = 0.6, Sc ( 4) = 0.5. Thus, ⋉(1) =

(((0.5, 0.3) , 0.3) , ((0.4, 0.2) , 0.1)) , ⋉(2) = (((0.3, 0.4) ,
0.5) , ((0.5, 0.2) , 0.4)) , ⋉(3) = (((0.7, 0.2) , 0.4) , ((0.1,
0.6) , 0.3)) , ⋉(4) = (((0.1, 0.8) , 0.6) , ((0.2, 0.7) , 0.4)).
We use Definition 2 to find the aggregated result for the
above-given data as shown in the equation at the bottom of
the next page.
Here, we discuss the properties of the CIFROWA operator.
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1) Idempotency: If for all i ( i, i) = ( , ), i.e., i =

, i = ,8i = 8 and 8i = 8, i = , then
CIFROWA (( 1, 1) , ( 2, 2) , . . . , ( n, n)) = .

2) Boundedness: Let −
i =

((
min

i i
,8min

i i

)
,(

max
i i
,8max

i i

))
and +

i =

((
max

i i
,8max

i i

)
,(

min
i i
,8min

i i

))
. Then for all ψi, −

i ≤ CIFROWA

(( 1, 1) , ( 2, 2) , . . . , ( n, n)) ≤
+
i.

3) Monotonicity: Let ∴
i =

((
∴
i
,8 ∴

i

)
,(

∴
i
,8 ∴

i

))
(i = 1, 2, 3, . . . , n) be another family

of IFRNs such that
i

≤ ∴
i
,8

i
≥8 ∴

i
,

i
≤

∴
i
,8

i
≥8 ∴

i
for all ψi. Then CIFROWA (( 1,

1) , ( 2, 2) , . . . , ( n, n)) ≤ CIFROWA
((

∴
1,

1) ,
(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
.

IV. CONFIDENCE INTUITIONISTIC FUZZY ROUGH (CIFR)
GEOMETRIC AGGREGATION OPERATORS
In this part, we discuss CIFR geometric AOs. Also, we will
discuss the basic properties of the operators.

A. CIFR WEIGHTED GEOMETRIC (CIFRWG) AGGREGATION
OPERATORS
Definition 7: Let i =

((
i,8i

)
,
(

i,8i
))
, i =

1, 2, . . . , n be a family of IFRNs and i be the confidence level
of i with 0 ≤ i ≤ 1. Letψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the
weight vectors for IFRNs with the condition

∑n
i=1 ψi = 1.

Then the mapping CIFRWG : ⊚n
→ ⊚ operator is given as

CIFRWG (( 1, 1) , ( 2, 2) , . . . , ( n, n)) = ⊗
n
i=1

(
i i
)ψi

=

(
1 1
)ψ1

⊗

(
2 2
)ψ2

⊗

(
3 3
)ψ3

⊗ . . .⊗
(

n n
)ψn

.

It is called the confidence intuitionistic fuzzy rough
weighted geometric (CIFRWG) operator.
Theorem 3: Let i =

((
i,8i

)
,
(

i,8i
))

be a collection
of IFRNs where i = 1, 2, . . . , n and i be the confidence level
of i with 0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be
the weight vectors for IFRNs with the condition

∑n
i=1 ψi =

1. Then

CIFRWG (( 1, 1) , ( 2, 2) , . . . , ( n, n))

=


(

n∏
i=1

(
i

)
iψi , 1 −

n∏
i=1

(
1 −8i

)
iψi

)
,

n∏
i=1

(
i
)
iψi , 1 −

n∏
i=1

(
1 −8i

) iψi

 (3)

Proof: For n = 2, we have CIFRWG (( 1, 1) , ( 2, 2))

=

(
1 1

)ψ1
⊗

(
2 2

)ψ2
.By using the operational laws for

IFRNs we will get

1 1 =

( 1
1 , 1 −

(
1 −81

)
1
)
,(

1
1 , 1 −

(
1 −81

) 1
) 

=
((

d1, e1
)
,
(
d1, e1

))
⇒

(
1 1
)ψ1

=

(d1 1 , 1−
(
1−e1

)
1
)
,(

d1
1 , 1−(1−e1) 1

) 

=


((

1
1

)ψ1
,

(
1−

[
1−

{
1−

(
1−81

)
1
}]ψ1

))
,((

1
1
)ψ1

,

(
1−

[
1−

{
1−

(
1 −81

) 1
}]ψ1

))


=

(( 1
ψ1 1

)
,
(
1 −

(
1 −81

)ψ1 1
))
,((

1
ψ1 1

)
,
(
1 −

(
1 −81

)ψ1 1
))  .

Similarly, we can see that

(
2 2
)ψ2

=

(( 2
ψ2 2

)
,
(
1 −

(
1 −82

)ψ2 2
))
,((

2
ψ2 2

)
,
(
1 −

(
1 −82

)ψ2 2
))  .

Now,

CIFRWG (( 1, 1) , ( 2, 2))

=

(
1 1
)ψ1

⊗

(
2 2
)ψ2

=




(

1
ψ1 1

) (
2
ψ2 2

)
,(

1 −
(
1 −81

)ψ1 1
)

+

(
1 −

(
1 −82

)ψ2 2
)

−

(
1 −

(
1 −81

)ψ1 1
) (

1 −
(
1 −82

)ψ2 2
)
 ,


(

1
ψ1 1

) (
2
ψ2 2

)
,(

1 −
(
1 −81

)ψ1 1
)

+

(
1 −

(
1 −82

)ψ2 2
)

−

(
1 −

(
1 −81

)ψ1 1
) (

1 −
(
1 −82

)ψ2 2
)



.

CIFROWA (( 1, 1) , ( 2, 2) , ( 3, 3) , ( 4, 4))

=



 (
1 − (1 − 0.5)0.3×0.29

× (1 − 0.3)0.5×0.25
×

(1 − 0.7)0.4×0.22
× (1 − 0.1)0.6×0.24

)
,

(0.3)0.3×0.29
× (0.4)0.5×0.25

× (0.2)0.4×0.22
× (0.8)0.6×0.24

 , (
1 − (1 − 0.4)0.1×0.29

× (1 − 0.5)0.4×0.25
×

(1 − 0.1)0.3×0.22
× (1 − 0.2)0.4×0.24

)
,

(0.2)0.1×0.29
× (0.2)0.4×0.25

× (0.6)0.3×0.22
× (0.7)0.4×0.24




= ((0.2022, 0.6749) , (0.1064, 0.7591)) .
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Thus, we have that

CIFRWG (( 1, 1) , ( 2, 2))

=

(∏2
i=1

(
i

)
iψi , 1 −

∏2
i=1

(
1 −8i

)
iψi
)
,∏2

i=1
(

i
)
iψi , 1 −

∏2
i=1

(
1 −8i

) iψi

 .
Suppose the result is true for n = , that is,

CIFRWG
(
( 1, 1) , ( 2, 2) , . . . ,

(
,
))

=

(∏i=1

(
i

)
iψi , 1 −

∏
i=1

(
1 −8i

)
iψi
)
,∏

i=1

(
i
)
iψi , 1 −

∏
i=1

(
1 −8i

) iψi

 .
Now, for n = + 1, we get as shown in the equation at the
bottom of the next page. Hence, the result is true for n = +1.
Thus, the result is true for any number of IFRNs. ■
Example 3: Using the data of Example 1 with 1 =

(((0.3, 0.4) , 0.5) , ((0.5, 0.2) , 0.4)) , 2 = (((0.1, 0.8) , 0.6) ,
((0.2, 0.7) , 0.4)) , 3 = (((0.5, 0.3) , 0.3) , ((0.4, 0.2) ,
0.1)) and 4 = (((0.7, 0.2) , 0.4) , ((0.1, 0.6) , 0.3))
being the four IFRNs along with their CL. If ψ =

(0.29, 0.25, 0.22, 0.24), then as shown in the equation at the
bottom of the next page.

For a family of IFRNs i =
((

i,8i
)
,
(

i,8i
))

where
i = 1, 2, . . . , n and i being the confidence level of i with
0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the weight
vectors for IFRNs with the condition

∑n
i=1 ψi = 1. Then,

CIFRWG AOs have the following properties:
1) Idempotency: If for all i ( i, i) = ( , ), i.e., i =

, i = , 8i = 8 and 8i = 8, i = , then

CIFRWG (( 1, 1) , ( 2, 2) , . . . , ( n, n)) =

2) Boundedness: Let −
i =

((
min

i i
,8min

i i

)
,(

max
i i
,8max

i i

))
and +

i =

((
max

i i
,8max

i i

)
,(

min
i i
,8min

i i

))
. Then, for allψi, −

i ≤ CIFRWG

(( 1, 1) , ( 2, 2) , . . . , ( n, n)) ≤
+
i.

3) Monotonicity: Let ∴
i =

((
∴
i
,8 ∴

i

)
,(

∴
i
,8 ∴

i

))
(i = 1, 2, 3, . . . , n) be another family

of IFRNs such that
i

≤ ∴
i
,8

i
≥8 ∴

i
,

i
≤

∴
i
,8

i
≥8 ∴

i
for all ψi. Then, CIFRWG (( 1,

1) , ( 2, 2) , . . . , ( n, n)) ≤ CIFRWG
((

∴
1, 1

)
,(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
.

B. CIFR ORDERED WEIGHTED GEOMETRIC (CIFROWG)
AGGREGATION OPERATORS
In this part of the article, we discuss the basic definition
of a CIFROWG operator. Furthermore, we discuss the basic
properties of these operator in detail.
Definition 8: Let i =

((
i,8i

)
,
(

i,8i
))
, i =

1, 2, . . . , n be a family of IFRNs and i be the confidence
levelof i with 0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T

be the weight vectors for IFRNs with the condition that

∑n
i=1 ψi = 1. Then, the mapping CIFROWG : ⊚n

→ ⊚
operator is given as

CIFROWG (( 1, 1) , ( 2, 2) , . . . , ( n, n))

=

(
⋉(1) ⋉(1)

)ψ1
⊗

(
⋉(2) ⋉(2)

)ψ2
⊗

(
⋉(3) ⋉(3)

)ψ3

⊗ . . .⊗
(

⋉(n) ⋉(n)
)ψn

.

where (⋉(1),⋉(2),⋉(3), . . . ,⋉(n)) is the permutation of
(1, 2, 3, .., n) such that for all i, ⋉(i−1)≥ ⋉(i).
Theorem 4: Let i =

((
i,8i

)
,
(

i,8i
))
, i = 1, 2, . . . , n

be a family of IFRNs and i be the confidence levelof i with
0 ≤ i ≤ 1. Let ψ = (ψ1, ψ2, ψ3, . . . ., ψn)

T be the weight
vectors for IFRNs with the condition

∑n
i=1 ψi = 1. Then

CIFROWG (( 1, 1) , ( 2, 2) , . . . , ( n, n))

=


(∏n

i=1

(
⋉(i)

) ⋉(i)ψi
, 1 −

∏n
i=1

(
1 −8⋉(i)

) ⋉(i)ψi

)
,∏n

i=1
(

⋉(i)
) ⋉(i)ψi , 1 −

∏n
i=1

(
1 −8⋉(i)

) ⋉(i)ψi


(4)

Proof: The proof is similar to the proof of Theorem 3. ■
Example 4: Consider the ordered data from Example 1

and use Equation (4) to find the aggregated result for the
above-given data. We obtain

CIFROWG (( 1, 1) , ( 2, 2) , ( 3, 3) , ( 4, 4))

=


(∏4

i=1

(
⋉(i)

) ⋉(i)ψi
, 1 −

∏4
i=1

(
1 −8⋉(i)

) ⋉(i)ψi

)
,∏4

i=1
(

⋉(i)
) ⋉(i)ψi , 1 −

∏4
i=1

(
1 −8⋉(i)

) ⋉(i)ψi


= ((0.5634, 0. 2835) , (0.6687, 0. 1852)) .

We next discuss the properties of the CIFROWG operator.
1) Idempotency: If for all i ( i, i) = ( , ), i.e., i =

, i = , 8i = 8 and 8i = 8, i = , then
CIFROWG (( 1, 1) , ( 2, 2) , . . . , ( n, n)) = .

2) Boundedness: Let −
i =

((
min

i i
,8min

i i

)
,(

max
i i
,8max

i i

))
and +

i =

((
max

i i
,8max

i i

)
,(

min
i i
,8min

i i

))
. Then, for allψi, −

i ≤

CIFROWG (( 1, 1) , ( 2, 2) , . . . , ( n, n)) ≤
+
i.

3) Monotonicity: Let ∴
i =

((
∴
i
,8 ∴

i

)
,(

∴
i
,8 ∴

i

))
(i = 1, 2, 3, . . . , n) be another family

of IFRNs such that
i

≤ ∴
i
,8

i
≥8 ∴

i
,

i
≤

∴
i
,8

i
≥8 ∴

i
for allψi. Then

CIFROWG (( 1, 1) , ( 2, 2) , . . . , ( n, n))

≤ CIFROWG
((

∴
1, 1

)
,
(

∴
2, 2

)
, . . . ,

(
∴
n, n

))
.

V. MULTI-ATTRIBUTE DECISION MAKING (MADM)
TECHNIQUE BASED ON CIFR AVERAGE/GEOMETRIC AOs
Multi-criteria decision-making technique is an effective way
of selecting the best alternative corresponding to their cri-
teria. In this section, we will study the application of the
introduced operators. So, we develop an MCDM algorithm
to show the effectiveness and usefulness of the proposed
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work. Let G⋇
=

{
G⋇

1 ,G
⋇
2 ,G

⋇
3 , . . . ,G

⋇
m

}
denote the

collection of alternatives and C = {C1,C2,C3, . . . ,Cn}

denote the collection of criteria. Also, suppose that ψ =

(ψ1, ψ2, ψ3, . . . , ψn)
T is the weight vector of criteria set

with the condition that
∑n

i=1 ψi = 1 and ψi > 0. Let

Ge =
{
G1

e,G
2
e,G

3
e, . . . ,G

f
e
}

be the set of ‘f ’ experts

with the weight vector ϱv =
(
ϱ1v, ϱ

2
v, ϱ

3
v, . . . , ϱ

f
v
)
using

condition that
∑f

s=1 ϱv
s

= 1 and ϱv
s > 0. Suppose

experts provide their assessment for each alternative con-
cerning each criterion in the form of IFRNs

(
ij
s
)
m×n =((

s
ij,8

s
ij

)
,
(

s
ij,8

s
ij

)
, ij

s
)
. To use the notion of CL, the

experts provide that they are familiar with evaluated alterna-
tives and assign the CL with ij

s
(
0 ≤ ij

s
≤ 1

)
. Now, we have

to follow the following steps:

CIFRWG
(
( 1, 1) , ( 2, 2) , . . . .,

(
,
)
,
(

+1, +1
))

=


(∏
i=1

(
i

)
iψi , 1 −

∏
i=1

(
1 −8i

)
iψi

)
,∏

i=1

(
i
)
iψi , 1 −

∏
i=1

(
1 −8i

) iψi


⊗

(( +1
ψ +1 +1

)
,
(
1 −

(
1 −8 +1

)ψ +1 +1
))
,((

+1
ψ +1 +1

)
,
(
1 −

(
1 −8 +1

)ψ +1 +1
)) 

=





(∏
i=1

(
i

)
iψi

×
+1
ψ +1 +1

)
,(

1 −

∏
i=1

(
1 −8i

)
iψi

)
+

(
1 −

(
1 −8 +1

)ψ +1 +1
)

−

(
1 −

∏
i=1

(
1 −8i

)
iψi

)(
1 −

(
1 −8 +1

)ψ +1 +1
)


,



(∏
i=1

(
i

)
iψi

×
+1
ψ +1 +1

)
,(

1 −

∏
i=1

(
1 −8i

)
iψi

)
+

(
1 −

(
1 −8 +1

)ψ +1 +1
)

−

(
1 −

∏
i=1

(
1 −8i

)
iψi

)(
1 −

(
1 −8 +1

)ψ +1 +1
)





=


(

+1∏
i=1

(
i

)
iψi , 1 −

+1∏
i=1

(
1 −8i

)
iψi

)
,

+1∏
i=1

(
i
)
iψi , 1 −

+1∏
i=1

(
1 −8i

) iψi

 .

CIFRWG (( 1, 1) , ( 2, 2) , ( 3, 3) , ( 4, 4))

=


(∏4

i=1

(
i

)
iψi , 1 −

∏4

i=1

(
1 −8i

)
iψi

)
,∏4

i=1

(
i
)
iψi , 1 −

∏4

i=1

(
1 −8i

) iψi



=



(0.3)0.5×0.29
× (0.1)0.6×0.25

× (0.5)0.3×0.22
× (0.7)0.4×0.24,(

1 − (1 − 0.4)0.5×0.29
× (1 − 0.8)0.6×0.25

×

(1 − 0.3)0.3×0.22
× (1 − 0.2)0.4×0.24

)  ,
(0.5)0.4×0.29

× (0.2)0.4×0.25
×

(0.4)0.1×0.22
× (0.1)0.3×0.24,(

1 − (1 − 0.2)0.4×0.29
× (1 − 0.7)0.4×0.25

×

(1 − 0.2)0.1×0.22
× (1 − 0.6)0.3×0.24

)



= ((0.5488, 0.3026) , (0.6522, 0.1952)) .
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Step 1:Collect the expert’s data given in the form of IFRNs
along with their CL and then construct the expert’s assess-
ment matrix as[Ms]m×n =

((
s
ij,8

s
i

)
,
(

s
i,8

s
i

)
, ij

s
)
.

Step 2: Use the notion of CIFRWA or (CIFRWG) to
combine all individual matrices of experts into a collective
judgment matrix [M]m×n. That is,

ij = CIFRWA
((

1
ij,

1
ij

)
,
(

2
ij,

2
ij

)
, . . . ,

( s
ij,

s
ij
))

=


(
1 −

∏f
s=1

(
1 −

s
ij

)
ij
s
ϱi
,
∏f

s=1

(
8s

ij

)
ij
s
ϱi
)
,

1 −
∏f

s=1

(
1 −

s
ij
)
ij
s
ϱi ,
∏f

s=1

(
8
s
ij

)
ij
s
ϱi

 ,
or

CIFRWA
((

1
ij,

1
ij

)
,
(

2
ij,

2
ij

)
, . . . ,

( s
ij,

s
ij
))

=


(∏f

s=1

(
s
ij

)
ij
s
ϱi
, 1 −

∏f
s=1

(
1 −8s

ij

)
ij
s
ϱi
)
,∏f

s=1

( s
ij
)
ij
s
ϱi , 1 −

∏f
s=1

(
1 −8

s
i

)
ij
s
ϱi

 .
Step 3: Using the notion of IFRWA or IFRWG oper-

ator to aggregate the execution of alternative of the
matrix [M]m×n as i = IFRWA ( i1, i2, . . . , in) =
(
1 −

∏n
j=1

(
1 − ij

)ψj
,
∏n

j=1

(
8ij

)ψj)
,

1 −
∏n

j=1
(
1 − ij

)ψj ,∏n
j=1

(
8ij
)ψj

 or

IFRWG ( i1, i2, . . . , in)

=


(∏n

j=1

(
ij

)ψj
, 1 −

∏n
j=1

(
1 −8ij

)ψj)
,∏n

j=1
(

ij
)ψj , 1 −

∏n
j=1

(
1 −8ij

)ψj
 .

Step 4: Compute the score values for each alternative
i (i = 1, 2, 3, . . . ,m) by using Definition 5 and ranking the

results.

A. ILLUSTRATIVE EXAMPLE BY USING CIFRWA OPERATOR
Suppose a person wants to buy the best cell phone from a set

of four alternatives G⋇
=

{
G⋇

1 ,G
⋇
2 ,G

⋇
3 ,G

⋇
4

}
based on

four criteriaC = {C1 = Internet storage,C2 = Hardware,
C3 = long lasting battry,C4 = crystal clear display} . Let
ψ = (0.32, 0.30, 0.20, 0.18)T and suppose three experts with
their heir weight vector ϱv = (0.32, 0.42, 0.36). In this
subsection, we consider the illustrative example by using the
CIFRWA operator.

Step 1: Suppose experts provide their assessment val-
ues in the shape of IFRNs along with their CL and then
construct the expert’s assessment matrix with [Ms]4×4 =((

s
ij,8

s
i

)
,
(

s
i,8

s
i

)
, ij

s
)
(s = 1, 2, 3), as shown in

Tables 2-4.
Step 2: Using the notion of CIFRWA to combine all indi-

vidual matrices of exerts into a collective judgment matrix as
given in Table 5.

Step 3: Use the notion of the IFRWA operator for data
given in Table 5 to aggregate the performance of the

alternative by using the formula given below

i = IFRWA ( i1, i2, . . . , in)

=


(
1 −

∏n
j=1

(
1 − ij

)ψ j
,
∏n

j=1

(
8ij

)ψ j
)
,

1 −
∏n

j=1
(
1 − ij

)ψ j ,
∏n

j=1
(
8ij
)ψ j

 .
Step 4: Compute the score values for each alternative
i (i = 1, 2, 3, . . . ,m) by using Definition 5 and ranking the

results, as shown in Table 6.

B. ILLUSTRATIVE EXAMPLE BY USING CIFRWG OPERATOR
In this subsection, we consider the illustrative example by
using the CIFRWG operator.

Step 1: Same as above
Step 2: Using the notion of CIFRWG to combine all indi-

vidual matrices of experts into a collective judgment matrix
as given in Table 7.

Step 3: Use the notion of the IFRWG operator for
data given in Table 7 to aggregate the performance of the
alternative.

Step 4: Compute the score values for each alternative
i (i = 1, 2, 3, . . . ,m) by using Definition 7 and ranking the

results, as shown in Table 8.

VI. MEDICAL DIAGNOSIS APPROACH BASED ON IFRNs
As medical diagnosis is an effective process for the assess-
ment of some diseases, in this section, we elaborate on an
algorithm of medical diagnosis based on IFRNs.
Definition 9: Let C and D be two sets. An intuitionistic

fuzzy rough relation (IFRR) Re from C to D is an IFRS of
C × D characterized by MG Re , Re

and NMG8Re ,8Re .
An IFRR from C to D is denoted by Re (C → D).
Definition 10: If J is an IFRS of C , then the max-min-

max composition of IFRR Re (C → D) with J is an IFRS Q
of D denoted by Q = CoD and is defined by ReoJ

(d) =

∨c

[
J (c)∧ Re

(c, d)
]
, ReoJ (d) = ∨c

[
j(c)∧ Re (c, d)

]
and 8ReoJ (d) = ∧c

[
8J (c)∨8Re (c, d)

]
,8ReoJ (d) =

∧c
[
8J (c) ∨8Re (c, d)

]
for all d∈D, where (∨ = max

and ∧ = min).
Definition 11: Let Re (C → D) and Re∗ (D → E) be two

IFRRs. The max-min-max composition ReoRe∗ is an IFRR
from C to E defined by

ReoRe∗
(c, e) = ∨d

[
Re
(c, d)∧ Re∗

(d, e)
]
,

ReoRe∗ (c, e) = ∨d
[
Re (c, d)∧ Re∗ (d, e)

]
,

8ReoRe∗ (c, e) = ∧d
[
8Re (c, d)∨8Re∗ (d, e)

]
,8ReoRe∗ (c, e)

= ∧d
[
8Re (c, d)∨8Re∗ (d, e)

]
.

Now, we present the uses of IFRSs theory in Sanchez’s
approach [26], [27] for medical diagnosis. Let S · denote
the set of symptoms and D∗ denote the set of diagnoses
and P

◦

denote the set of patients. We define ‘‘IFR medical
knowledge’’ as an IFRRRe from the set of symptoms S · to the
set of diagnosis D∗ that reveals the degree of association and
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TABLE 2. IFR data by expert 1.

TABLE 3. IFR data by expert 2.

TABLE 4. IFR data by expert 3.

degree of non-association. We next present our intuitionistic
fuzzy rough medical diagnosis. We have the following main
three steps:

1) Determine the symptoms.
2) Development of medical diagnosis based on IFRR.
3) Determine the diagnosis based on the composition of

IFRR.
Let ‘‘J ’’ be an IFRS of the set S · and Re be an IFRR
form S · to D∗. Then, the max-min-max composition
of IFRS Q of IFRS ‘‘J ’’ with IFRR Re (S ·

→ D∗)

denoted by Q = JoRe signifies the state of patients
in the form of diagnosis as an IFRS ‘‘Q’’ of D∗

with MG Q(d) = ∨s∈S ·

[
J (s)∧ Re

(s, d)
]
, Q(d) =

∨s∈S ·

[
j(s)∧ Re (s, d)

]
and 8Q(d) = ∧s∈S ·

[
8J (s)

∨8Re (s, d)
]
,8Q(d) = ∧s∈S ·

[
8J (s)∨8Re (s, d)

]
for

all d∈D∗.

A. ALGORITHM
Let P

◦

=
{
p

◦

1, p
◦

2, p
◦

3, . . . , p
◦

n
}
(i = 1, 2, 3, . . . , n) denote

the set of ‘‘n’’ patients in a hospital. Let Re be an
IFRR (S ·

→ D∗) and construct an IFRR Re∗ from a
set of patients to a set of symptoms. The composition
T∼

= ReoRe∗ describes the state of the patients p
◦

i in terms
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TABLE 5. IFR combined expert assessments matrix.

TABLE 6. Aggregated values by using the IFRWA operator.

TABLE 7. IFR combined expert’s assessments matrix.

of diagnosis as an IFRR from P
◦

to D∗ given by MG as

T

(
p

◦

i , d
)

= ∨s∈S ·

[
Re∗
(
p

◦

i , s
)
∧ Re

(s, d)
]
, T

(
p

◦

i , d
)

=

∨s∈S ·

[
Re∗
(
p

◦

i , s
)
∧ Re (s, d)

]
and NMG as 8T

(
p

◦

i , d
)

=

∧s∈S ·

[
8Re∗

(
p

◦

i , s
)
∨8Re (s, d)

]
,8T

(
p

◦

i , d
)

= ∧s∈S ·

[
8Re∗(

p
◦

i , s
)
∨8Re (s, d)

]
for all d∈D∗. For given Re and Re∗, the

relation T∼
= ReoRe∗ can be calculated. From the informa-

tion of Re and T∼, one can calculate an improved version of
IFRR for which the following holds.
1) SRe =

1
4

(
2 + Re

+ Re −8Re −8Re

)
is the greatest.

2) The equality T∼
= ReoRe∗ is retained.

Example 5: Suppose we have four patients: Ali, Jabir,
Ubaid, and Umar in the hospital. Their symptoms are

headache, temperature, stomach pain, cough, and chest pain.
Then, P

◦

= {Ali, Jabir,Ubaid and Umar} is the set of
patients, S ·

= {Headache, temperature, stomach pain, cough,
chets pain} . Now, IFRR Re

(
P

◦

→ S ·
)
is given in Table 9.

Let D∗
= {Fever,Malaria,Typhoid, Stomach issues,

Heart issues}. IFRR Re∗ (S ·
→ D∗) is given in Table 10.

Therefore, the composition T∼
= ReoRe∗ is given in

Table 11. We calculate SRe as given in Table 12.
From Table 12, we can observe that Ali is suffering from

fever, Jabir and Umar face stomach issue, and Ubaid is suf-
fering from typhoid. Note that, based on the more advanced
structure of IFRSs, we can perform the applications of med-
ical diagnosis. IFRS covers the issues of data loss in terms
of considering the upper and lower operators and provides
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TABLE 8. Aggregated values by using the IFRWG operator.

TABLE 9. Intuitionistic fuzzy rough relation.

TABLE 10. Intuitionistic fuzzy rough relation.

TABLE 11. Intuitionistic fuzzy rough relation.

more space to analyze more complex data. So, based on
these observations, we can say that this developed algorithm

is stronger, more efficient, and can help in many medical
diagnosis problems.
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TABLE 12. Intuitionistic fuzzy rough relation.

TABLE 13. Comparative analysis.

VII. COMPARATIVE ANALYSIS
In this part of the article, we study the comparative analysis
of our initiated work along with some existing methods to
show the superiority and reliability of our initiated work.
Here, we will compare our work with IFWA [13], IFWG [12],
IFDWA [16], IFDWG [16], IFRWA [25], and IFRWG [25]
operators. The overall analysis of the comparative study is
given in Table 13. From the analysis, we can observe that
1. The IFWA [13], IFWG [12], IFDWA [16], IFDWG [16],

IFRWA [25], and IFRWG [25] operators can only deal
with IF data, and these notions lack the extra characteristic
of handling rough information. While our initiated work
has the advantages of using rough information in their
stricture.

2. Moreover, we can see that established work can provide
more space to decision-makers in the form of an IFR
structure. While existing notions cannot do so. So our
initiated work is more general.

VIII. CONCLUSION
In our daily life, we have to deal with complicated and
advanced data. For this type of data, we need to make such
types of methods and tools that can ease our work and
compute overall information. As aggregation operates are
fundamental tools to convert the overall information into a

single value. So, here in this article, we establish some
new aggregation operators (AOs) called confidence level
intuitionistic fuzzy rough (CLIFR) weighted average, CLIFR
ordered weighted average, CLIFR weighted geometric, and
CLIFR ordered weighted geometric AOs. Furthermore, the
properties of these operators have been discussed in detail.
We also initiate an MCDM algorithm based on the notion of
our proposed work. Moreover, an illustrative example shows
the effective use of these initiated notions in daily life, such
as medical diagnosis. Also, we have given a comparative
analysis of our proposed work with some existing methods
to show the reliability of the established work.
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