
Received 29 November 2022, accepted 6 January 2023, date of publication 12 January 2023, date of current version 18 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3236403

Distributed Energy-Efficient Clustering and
Routing for Wearable IoT Enabled Wireless Body
Area Networks
MUHAMMAD YEASIR ARAFAT 1, SUNGBUM PAN 2, (Member, IEEE), AND EUNSANG BAK 2
1Department of Computer Engineering, Chosun University, Gwangju 61452, Republic of Korea
2IT Research Institute, Chosun University, Gwangju 61452, Republic of Korea

Corresponding author: Eunsang Bak (bakeunsang@chosun.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education under Grant 2017R1A6A1A03015496.

ABSTRACT Recently, the wearable internet of things (WIoT) has brought a new dimension of connectivity
to wireless body area networks (WBANs). For instance, the WIoT provides valuable functions, such as
collecting, analyzing, and transmitting data for real-time health monitoring of medical services. However,
designing a clustering and routing protocol is challenging because WIoT attributes are subject to high
interference in dense deployment, social mobility, and limited energy. In a WIoT-enabled WBAN, coop-
erative control is the fundamental function of clustering and routing. Cluster-based routing protocols are
preferred for WBAN because of their scalability. However, one-hop neighbor-based clustering approaches
do not ensure connectivity and reachability owing to node mobility. The existing two-hop-based clustering
protocols are mostly centralized-based approaches, which are unsuitable for dynamicWBANs. In this paper,
we propose a distributed energy-efficient two-hop-based clustering and routing protocol (DECR) targeting
WIoT-enabled WBAN. In DECR, in the cluster formation phase, each node obtains the information of its
neighbor nodes within the two-hop range. We utilize the modified grey-wolf optimization algorithm for the
cluster head (CH) selection and routing optimization. Node connectivity and residual energy were jointly
considered when determining the CH in each cluster. We also developed an analytical model to determine the
optimal number of clusters by considering intra- and inter-cluster transmission distances to reduce the overall
transmission distance and number of transmissions. Finally, we proposed a routing algorithm to ensure
energy-efficient packet delivery fromCH to sink. Our simulation outcomes revealed that the proposed DECR
significantly outperforms the existing clustering and routing protocols in various performance metrics.

INDEX TERMS Wearable internet of things, clustering, two-hop range, distributed, cluster head, energy-
efficiency, grey wolf optimization, routing, wireless body area network (WBAN).

I. INTRODUCTION
Recently, the wearable internet of things (WIoT) has fas-
cinated increased interest in both academic and industrial
areas because of its wide range of potential applications.
WIoT enables a new dimension of wireless connectivity in
wireless body area networks (WBANs), which helps improve
the remote healthcare system and real-time health monitor-
ing [1]. According to the Statistics Korea report, 16.5 per-
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cent of South Korean population was aged 65 and older in
2021, which, by 2050, will be more than 44 percent [2]. Due
to the large number of aged people, the cost of healthcare
may increase significantly. In this case, WBANs can pro-
vide senior citizens with a cost-effective healthcare system
[3]. WBANs can be a possible solution for the aging soci-
ety’s healthcare, various chronic diseases, and shortage of
medical facilities. Owing to the advancement of micropro-
cessors, Wi-Fi interfaces, global positioning systems (GPS),
wireless charging, battery technology, smart watch, smart-
phones, wearable technology, unmanned aerial vehicles, and
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various sensors, modern healthcare systems have widely used
WBANs [4].

WBANs can be categorized into three tiers of level com-
munication: Intra-WBAN, inter-WBAN, and beyond-WBAN
communications [5]. Tier-1 is intra-WBAN communication,
consisting of a set of sensors placed on or implanted into
the human body. Tier-2 is inter-WBAN communication using
smartwatches, smartphones, and personal computers. Ad hoc
architecture is distributed to communicate in this tier with a
random topology. The function of Tier-2 is to forward the
information sent by the sensor to Tier-3 (terminal center)
through 3G/4G/5G, WLAN, and other wireless technologies.

In recent years, wearable devices are becoming a potential
candidate for the hub of IoT and WBANs [6]. Wearable
devices have become famous for health monitoring tools
since they can collect data from human body biosensors
and transmit vital data while moving [7]. Wearable devices
enhance the quality of human life and make our daily life
safe. WBAN can be realized in an ad-hoc manner consisting
of WIoT devices. Due to the significant increase in WIoT
users, we predict that within the next few years, the number
of WIoT users and mobile phone users will be the same [8].
In addition, the densely deployed WIoT may cause interfer-
ence between adjacent WBANs. Therefore, the interference
between inter-WBANs should be eliminated to maintain the
quality of the network. Besides the characteristics of tra-
ditional wireless sensor networks (WSNs), such as limited
battery capacity, low computational power, and unreliable
wireless channel, WIoT-based WBANs have many unique
features, including highly dynamic network topology, time-
varying channel quality, and high mobility [9].

Moreover, to maintain reliable data communication,
cluster-based routing protocols are widely used in existing
literature [10]. One of the main challenges associated with
WBANs is the reliable transmission of data to a sink while
minimizing the power consumption of the WBAN [11].
In WBANs, clustering is utilized to maintain the topology
of networks, and routing establishes the path between the
source to the destination node for reliable data transmission.
Since WIoT devices generally have limited battery capacity,
WBAN lifetime is determined by the energy consumption
rate of WIoTs. Thus, energy efficiency is a key issue in
designing the clustering and routing protocol in WBANs.
There are two well-known approaches for clustering; one is
centralized, and another is distributed. Centralized cluster-
ing is suitable for small and static networks. However, for
dynamic networks, distributed clustering is widely used in
existing literature [12]. Moreover, the dual sink approach
is more reliable in WBANs in terms of network lifetime,
network stability, and energy efficiency [13].

To reduce energy consumption in WBANs, researchers
have come up with various new ideas. Energy-efficient clus-
tering and routing are key research issues [14]. Generally,
in the cluster-based approach, the entire network is divided
into several groups or clusters, where the network follows a
hierarchical structure. Most clustering approaches divide all

nodes into two categories: Cluster member (CM) and cluster
head (CH). A CH is elected among all nodes in the cluster
based on node positions, energy, and the degree of a node.
CMs sense and collect the data, then transmit them to the
CH; the CH node is responsible for transmitting the data to
the sink node. The clustering approach solves the network
topology control and long-distance communication issues.
Therefore, cluster-based routing protocols reduce the node
energy consumption, prolong the network lifetime, and have a
low communication overhead. Due to human social mobility,
WIoTs move at random. Hence, network topology control
becomes an important issue, which makes the proposed clus-
ter distributed and self-organized. Moreover, intra- and inter-
cluster distance affect the optimization of clustering. There-
fore, the minimization and maximization of these parameters
make topology control an NP-hard problem.

Recently, several meta-heuristic algorithms have been
widely used to find optimal solutions for NP-hard prob-
lems [15]. Meta-heuristic algorithms have become popular
among researchers due to their flexibility, simplicity, and
low complexity. For example, over the past two decades,
several bio-inspired optimization methods such as particle
swarm optimization [16], grey-wolf optimization [17], and
whale optimization [18] have been widely used in different
kinds of ad-hoc networks for localization, topology control,
clustering, CH selection, and routing.

However, system complexity and overhead may increase
by considering two-hop neighbor information [19]. At the
same time, two-hop neighbor information extends the local
view of the network. The availability of more information
about the network topology increases the overall network
performance. In the existing literature [20] and [21], it is
observed that the clustering and routing protocol based on
two-hop neighbors provides stable clustering and requires a
smaller number of hops from source to destination compared
with one-hop neighbors information-based clustering and
routing. However, due to the significant increase in system
complexity and overhead, considering three- or more-hop
neighbors is less attractive for clustering and routing. Thus,
choosing two-hop neighbor is the tradeoff between perfor-
mance enhancement and protocol complexity.

A. CONTRIBUTION OF THE STUDY
This article proposes a distributed energy-efficient cluster-
ing and routing protocol (DECR) for WIoT-enabled WBAN.
For the clustering purpose, we utilized two-hop neighbor
information. Two-hop neighbor information extends the local
view of network topology, which assists in handling the node
mobility and network topology change. The primary contri-
bution of the article is summarized as follows:

• In the clustering phase, to optimize the cluster intra-
and inter-transmission distance, we utilized two-hop
neighbor information for cluster formation. Moreover,
two-hop neighbor information extends the local view
of network topology, which assists in making optimal
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routing decisions. An optimal energy-efficient cluster-
ing prolongs the network lifetime by reducing the net-
work energy consumption.

• In the CH selection phase, we utilized a modified
grey-wolf optimization (MGWO) algorithm to select
the CH node. For energy-efficient transmission in intra-
cluster communication, the CH plays a key role. In our
proposed approach, a distributed intra-cluster routing is
performed based on a one-hop neighbor node as a relay
for transmitting data to the CH in the two-hop neighbor-
based cluster. MGWO utilized the WIoT node fitness
value to select the CH. MGWO optimizes the average
transmission distance among the nodes within the same
cluster.

• In the routing phase, CH utilized MGWO-based routing
to transmit the data to the sink node via the CH. The
proposed approach utilized the grey-wolf hierarchical
structure to transmit data, which minimizes long trans-
missions and reduces the transmission distance to each
CH.

B. OUTLINE OF THE PAPER
The remainder of this paper is arranged in the following
way. Section II shows a brief overview of existing litera-
ture in this field. In Section III, we examined the prelimi-
naries concerning the motivating scenario, network model,
and energy model. Section IV presents the proposed DECR
algorithms, including cluster formation, CH selection, and
routing. An extensive computer simulation is conducted to
evaluate the performance of DECR, compared with the exist-
ing approaches in terms of various performance metrics.
Finally, in section VI, we present conclusions and future
works.

II. REVIEW OF RELATED STUDIES
Due to the recent development in wireless communication
and IoT devices, WBAN has become the new dimension
of the remote healthcare system. WBAN works in a three-
layer architecture. The tire-1 consists of various body sen-
sors. These body sensors collect biosignals from the human
body and transmit them to a body control unit, for instance,
PDA. In wireless communication, the tire-1 is classified as
an intra-WBAN communication, where sensor nodes are
static, and the distance between sensor nodes and PDA is
very short. The tier-2 forms a network of WBANs com-
posed of several intra-WBANs. Moreover, the tier-2 WBAN
contains inter-WBAN communication, where biosignals are
further transmitted to the sink node in a multi-hop commu-
nication fashion. In modern times, many IoT devices, such
as smart watches, WIoT, smart clothing, activity tracker,
smart footwear, medical wearable, patches, and jewelry [7],
work as tier-2 communication. The Tier-3 network sup-
ports emergency services, hospital networks, doctors, med-
ical workers, and emergency transports. In the last decade,
much research has been done on intra-WBAN communica-
tion. Due to the recent development of WIoT, now is the

time to focus on inter-WBAN communication in an ad hoc
manner. Several research works have been done for inter-
WABN communication. However, there have been many
unsolved issues such as social mobility issues, energy con-
sumption, network lifetime, and reliability of communication
systems.

Mu et al. [3] presented a spectrum allocation method for
inter-WBAN. The approach tried to mitigate the inter-WBAN
interference in a dense deployment using a machine
learning-based intelligent partition method for clustering.
They considered human social mobility for topology con-
trol and clustering. The simulation result shows that the
proposed approach performs well in the fast topology of
altering inter-WBAN. Mu et al. [22] presented a self-
organized dynamic clustering (SDC) method to minimize
the interference between multiple WBANs. The proposed
method borrowed the cellular network concept to allocate
the channel between multiple WBANs. The self-organized
method enhanced the reliability of data transmission between
inter-WBAN. They used frequency division multiple access
(FDMA) and time division multiple access (TDMA), where
FDMA works with a cluster framework and TDMA operates
on a superframe structure. In [23], the authors proposed a co-
channel inter-WBAN coexistence method empowered by a
bio-inspired model to avoid inter-WBAN interference. Each
WBNA sends a superframe in a distributed manner to avoid
interference. Cellular-assisted D2D communication with a
radio resource allocation scheme is used to minimize the
collision between twoWBANswhen they are within the radio
range of each other [24].

Shimly et al. [25] investigated the cross-layer routing per-
formance for inter-WBAN. In this research, they analyzed
the performance of shortest-path routing (SPR) and coop-
erative multi-path routing (CMR). The performance shows
that the alternative paths in CMR performed well in terms
of throughput, end-to-end delay, and energy consumption.
Zahid et al. [26] proposed an energy-efficient harvested-
aware clustering and cooperative routing called E-HARP.
The main contributions of the E-HARP are dynamic CH
selection and cooperative routing. First of all, an optimal
cluster is selected based on the cost function. A cost function
is designed based on node residual energy, required transmis-
sion power, link signal-to-noise ratio (SNR), and energy loss.
Secondly, a routing protocol applies through the CM nodes’
cooperative effort. The performance shows that E-HARP per-
formed well in energy consumption, throughput, delay, and
network lifetime. Olivia et al. [27] proposed a data-centric
load-aware routing protocol called DLQoS for dynamic
WBAN to address the network congestion and prolong the
network lifetime. In this protocol, they considered data deliv-
ery time, reliability, throughput, and network lifetime as
key data-centric parameters. To ensure the performance of
data-centric paraments, they jointly considered the neighbor
nodes’ link quality and node information. Moreover, the pro-
posed protocol distributed the traffic load by a buffer man-
agement system since node mobility significantly impacts
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clustering and routing protocol performance, resulting in fre-
quent topology changes and packet loss. Asim et al. [28]
proposed an efficient cluster formation for IoT-enabled
WBAN called MT-MAC. To ensure network integrity, the
authors considered the node handover mechanism among
the virtual clusters in the network. Simulation results reveal
that MT-MAC reduces significant packet loss during node
mobility.

Li et al. [29] investigated the performance analysis for
body-to-body networks (BBNs), where an end-to-end delay
and packet loss are key performance metrics. In this research,
all nodes can freely and stochastically move in the network
area. Taking into account nodemobility, they introduced node
entrance probability and network entrance probability in the
proposed framework. Moreover, they used the Markov chain
model for node behaviors. Simulation shows the effectiveness
of the proposed approach for mobile WBAN. Raj et al. [30]
proposed an opportunistic energy-efficient and load balance-
aware routing protocol for WIoT-enabled WBAN. The
authors address the WIoT data aggression delay and routing
loops in the proposed protocol. Fawad et al. [31] proposed a
clustering and routing technique based on ant lion optimiza-
tion (ALO) for WBAN. They utilized the ALO algorithm for
the optimal number of clusters. The result shows the effec-
tiveness of the ALO algorithm compared to existing other
bio-inspired algorithms in various scenarios. Khan et al. [32]
proposed energy-harvested and cooperative-enabled energy-
efficient routing called EHCRP for IoT-WBANs. They con-
sidered multiple parameters for path cost calculation, such as
node residual energy, number of hops from source to sink,
traffic congestion, path quality, and available bandwidth. Due
to the path cost estimation function, EHCRP performs well
during data transmission by multi-hop routing. According
to [33], a dynamic hierarchical protocol based on combina-
torial optimization (DHCO) is proposed to achieve a bal-
ance between sensor node energy consumption and network
longevity. Instead of selecting the cluster head or the next hop
node, the DHCO algorithm establishes a feasible routing set
for each sensor node. Authors in [34] provide an overview
of various multi-objective optimization algorithms. Towards
improving the energy efficiency of ultra-dense WSNs, the
authors proposed the use of a combined approach of unsuper-
vised learning and genetic algorithms [35]. A novel algorithm
was proposed in [36] that applies machine learning tech-
niques and genetic algorithms to improve the performance
of ultra-reliable and low-latency WSNs (uRLLWSNs). In the
proposed algorithm, the fetal dataset, denoted by the popu-
lation, is designed by utilizing the K-means clustering algo-
rithm to construct a two-tier network topology. A method for
energy conversion is then developed to prevent cluster heads
from becoming overloaded during clustering. The purpose
of this multi-objective optimization model is to simultane-
ously address multiple optimization objectives including the
maximum network connectivity and reliability as well as the
longest network lifetime. Table 1 summarizes the clustering
and routing protocols in WBANs.

FIGURE 1. WIoT-enabled WBAN: WIoT users are organized into clusters.
Cluster members are transferred data to the sink using multi-hop routing.

III. PRELIMINARIES
In this section, we introduce a motivational scenario, net-
work model, assumptions, energy model, and the associated
assumptions. In addition, the MGWO algorithm is explained
as preliminary knowledge of our study. Here are the notations
used throughout the paper in Table 2.

A. MOTIVATION SCENARIO
In this paper, we consider the application of WBAN in a
public space such as a park or outdoor exercise area. In the
scenario, all users have WIoT devices such as a smartwatch.
A smartwatch collects the body biosignal from the various
sensors installed in the human body. The received biosignal
from the human body is transmitted to a static sink node
in the deployed area, as shown in Fig. 1. In our application
scenario, we assumed that the position of the sink node is in
the middle of the deployed area. In addition, the sink node has
a 5Gmodule to transmit the data to the healthcare monitoring
center for further processing. In this model, we demonstrated
that users transmit the WIoT-sensed data to the sink node by
multi-hop communication.

B. SYSTEM MODEL AND ASSUMPTIONS
In our network model, we considered n number of WIoT
devices that are uniformly distributed and randomly deployed
in a M × M square region, and the sink node is placed at
the center of the region, as shown in Fig. 1. Moreover, all
the WIoT users have human walk mobility at a speed of
2–5 m/s [37]. All the WIoT nodes have a communication
radius of R, which is a circular area. Initially, all WIoT nodes
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TABLE 1. Summary of clustering and routing protocols in WBANs.

TABLE 2. Notations.

have the same energy level and are aware of it. There is no
further energy supply when all the WIoT nodes are deployed.

When a node drains off its battery power completely, it is
considered a dead node. Each node can measure the distance
between its neighbor nodes, or the sink node based on the
received signal strength indicator (RSSI). The sink node has
unlimited energy, processing power, and buffer capacity and
can cover the entire deployed area. The proposed DECR
has three phases: clustering, CH selection, and routing,
as shown in Fig. 2. In the next section, we explain all three
phases.

FIGURE 2. Block diagram of the DECR framework.

C. ENERGY MODEL
In this paper, we utilized the first-order radio model [16] to
measure the energy consumption of the WIoT nodes. The
required energy for transmitting l bits of data over d distance
is ETx(l, d), and the receiving energy is ERx(l). The equations
of transmitting and receiving energy are represented by Equa-
tions 1 and 2, respectively.

ETx(l, d) =

{
l · Eelec + l · εfs · d2, if d < d0
l · Eelec + l · εmp · d4, if d ≥ d0,

(1)

ERx(l) = l·Eelec, (2)

where Eelec is the energy required for electronic circuitry,
d0 is the threshold distance, and εfs and εmp are the energy
associated with the transmitter amplifier for free-space fading
and multipath fading respectively. Threshold distance can be
calculated as follow

d0 =

√
εfs

εmp
, (3)
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D. MGWO ALGORITHM
MGWO is inherited from the GWO algorithm. The GWO
is one of the bio-inspired optimization algorithms designed
based on grey wolves’ leadership and hunting strategy [38].
The main principle of the GWO algorithm is simplicity.
Hence, a quick speed and high–precision search is easy to
achieve using this model. GWO is widely used to solve many
optimization problems in the real world. Several swarm algo-
rithms mimic the hunting and searching behaviors of some
animals. For example, in GWO, wolves are labeled into four
categories: alpha (α), beta (β), delta (δ), and omega (ω). The
alpha wolf is the dominant leader and decision-maker. The
beta wolf helps the alpha wolf to make decisions, and the
beta takes over the alpha if the alpha passes away. The delta
wolf is the third strong wolf who dominates the omega wolf,
and the omega wolf follows the orders of the alpha and beta
wolves. As the GWO algorithm follows the leadership hier-
archy between wolves, three solutions can be obtained during
the optimization process. Therefore, compared to other bio-
inspired algorithms, the GWO has significantly less proba-
bility of yielding premature solutions or falling into a local
minimum [39] and [40].

The grey wolf hunting behavior follows three steps: find-
ing, encircling, and attacking the prey. The population of N
wolves is denoted as X = [X1, . . . ,Xn, . . . ,XN ]. Position of
the nth wolf in D dimensional search space is defined as
Xn =

[
X1
n , . . . ,X

d
n , . . . ,X

D
N

]T
. The mathematical model for

grey wolf hunting [41] behavior can be represented as

Xdn (t + 1) = Xdp (t)− Adn
∣∣∣Cd

n · Xdp (t)− Xdn (t)
∣∣∣ , (4)

where t is the iteration, Xdp is the position of the prey in d

dimension, and Adn
∣∣∣Cd

n · Xdp (t)− Xdn (t)
∣∣∣ is the size of the

encirclement. Adn and Cd
n are coefficient vectors denoted by

Adn = 2a · r1 − a, (5)

and

Cd
n = 2 · r2, (6)

where r1 and r2 are random numbers between [0, 1], and
variables a (decreasing linearly from 2 to 0) are the functions
of the iteration steps:

a = 2(1 −
t

tmax
), (7)

where t shows the current iteration and tmax is the maximum
number of iterations [42].

To find the optimal solution, the GWO algorithm simulates
the behavior of wolves. It utilized three fittest solutions and,
in turn, used these three solutions to update other solutions.
For other iterations, the positions of the wolves are updated

FIGURE 3. Hello packet format.

as follows:

Xdn,α (t + 1) = Xdα (t)− Adn,α
∣∣∣Cd

n,α · Xdα (t)− Xdn (t)
∣∣∣ , (8)

Xdn,β (t + 1) = Xdβ (t)− Adn,β
∣∣∣Cd

n,β · Xdβ (t)− Xdn (t)
∣∣∣ , (9)

Xdn,δ (t + 1) = Xdδ (t)− Adn,δ
∣∣∣Cd

n,δ · Xdδ (t)− Xdn (t)
∣∣∣ , (10)

Xdn (t + 1) =
1
k

∑
k∈α,β,δ

Xdn,k (t + 1) (11)

where k denotes the three wolves α, β, and δ, and k = 3.
The standard GWO algorithm only considers the global

best value without considering individual wolf experiences
during iteration. To consider the individual wolf experience,
we added the memory in each wolf inspired by the PSO algo-
rithm. Finally, the proposed MGWO updates the positions as
follows:

Xdn (t + 1) = µ1 ·
1
k

∑
k∈α,β,δ

Xdn,k (t + 1)

+ µ2 · r3 ·
1
k

∑
k∈α,β,δ

(Xdn,best − Xdn,k (t)), (12)

where social and individual learning factors of wolves are
defined by µ1 and µ2 respectively, r3 is a random value with
range [0, 1], and Xdn,best represents the personal historical best
solution of the wolf.

IV. DECR ALGORITHMS
In this section, the DECR algorithms for WBANs are dis-
cussed in detail, which include clustering, CH selection, and
routing algorithm.

A. TWO-HOP NEIGHBOR DISCOVERY
For the two-hop clustering in a distributed fashion, each node
needs to obtain its two-hop range neighbor information.

Hello packet is used to obtain the neighbor node infor-
mation in our case node two-hop connectivity ratio (TCR),
energy factor (EF), and node stability factor (NSF). The node
EF indicates residual energy level. Each WIoT node has its
immediate one-hop and two-hop neighbor nodes. Moreover,
each node has its unique identification number and has a
neighbor table containing various neighbor information in the
Hello packet formulated in Fig. 3.
Any node i needs to broadcast the initial Hello packet,

as shown in Fig. 3(a), before a new round starts. The Hello
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TABLE 3. Simulation parameters.

packet contains SelfIDi,TCRi,EF i, and NSF i. If a node i
receives the Hello packet from a node j, it indicates the node
i and j are within a one-hop communication range (R). In the
same way, the node j exchanges the Hello packet with the
node i. After that, the node i updates its neighbor tables, which
contain the node j information, as shown in Fig. 3(b). The
neighbor table contains valuable information about neighbor
nodes including node position, energy level, and distance.
In this way, the node i obtains the one-hop neighbor infor-
mation from the node j. However, the node i detects the node
k information from the node j Hello packet, which indicates
that the node k does not have direct communication with the
node i, and the node k is a two-hop neighbor node of the node
i. Through this process, we obtain the one-hop and two-hop
neighbor node information.

B. TCR
To extend the local view of the network we utilized TCR [43],
which presents the connectivity ratio of a node with its neigh-
borhood. To obtain the TCR, a node accesses its two-hop
neighbor node information. The TCR value for a node i is
calculated as follows:

ψi =


N2(i)∑
j=1

|N (j)|

j∈N2(i)

 + |N (i)|

[N2(i)] + 1
, (13)

TCRi = |N (i)| − ψi, (14)

where N2(i) is the two-hop neighbor nodes of the node i and
ψi is the average connectivity within the two-hop neighbor
node of the node i. A node having a high TCR value indi-
cates that it has a large number of neighbor nodes within its
transmission range. Such a node is considered to be selected
as a CH node.

C. EF
As we mentioned earlier, initially all the nodes have the same
energy level. However, after several rounds, the battery starts
to drain. Nodes placed near the sink node and CH nodes
drain the battery faster than other nodes because of further
processing and communication tasks. Therefore, the node
residual energy is critical in extending the network lifetime by
choosing a CH node considering energy balance. The residual
energy level of node i can be calculated as follows:

EF i =
Ere(i)
E int (i)

, (15)

where Ere(i) and E int (i) are the residual and initial energy of
node i, respectively. As we consider the two-hop neighbor
range, the normalized energy factor for the two-hop range can
be estimated as follows:

φi =
Ere(i)

max
[
EreN2

(i)
] , (16)

where φi is the normalized EF and EreN2
(i) indicates the set of

residual energy of the two-hop node i.

D. NSF
The node stability affects cluster lifetime. The main objective
of NSF is to find the appropriate node that is close to CH as
shown in Fig. 4. In our cluster model, we consider the node
stability factor based on transmission power as follows:

NSF =


1 −

∣∣dmin − dij
∣∣

dmin
, 0 ≤ dij < dmin

1, dmin ≤ dij ≤ dmax

1 −
|dmin − dmax |
R− dmax

, dmax ≤ dij ≤ 2R,

(17)

where dij, dmin, and dmax are the distance between node i
and j, minimum transmission distance (0 ≤ dmin < dmax),
and maximum transmission distance (dmin < dmax ≤ R),
respectively.

Moreover, R, 2R are one-hop, two-hop communication
distances. If the distance between two nodes i and j is dmin
that means they are very close to each other resulting in higher
NSF. On the other hand, if the distance is dmax then they are
far away from each other, but still within a communication
radius, as shown in Fig. 4.

E. CLUSTER FORMATION
The communication for WIoT is represented by a graph G =

(V ,E), where V is the number ofWIoT nodes and E is the set
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FIGURE 4. Illustration of NSF.

of links betweenWIoT nodes. For cluster formation based on
TCR, EF, andNSF, we compute a weight factorWi as follows:

Wi = η × TCR+ θ × EF + ξ × NSF, (18)

where η, θ , and ξ are the weight coefficients of the corre-
sponding metrics and η + θ + ξ = 1. Our proposed DECR
algorithm is distributed where each node obtains the two-hop
neighbor information. As we considered three critical param-
eters TCR, EF, and NSF during the clustering process, the
DECR works in highly dynamic networks. The pseudo-code
for the proposed clustering algorithm is described in Algo-
rithm 1.

Algorithm 1 Cluster Formation of DECR
Input:Node information
Output: Cluster formation
Procedure
1: Initialize N (i) = ∅ and Wi = 0.
2: for every node i ∈ V do
3: Broadcast Hello packet (IDi,TCRi,EF i,NSF i);
4: if any node i received Hello packet do
5: |N (i)| = |N (i)| + 1;
6: Update the TCRi value by Equation (14);
7: Node degree Deg (i) = |N (i)|;
8: Update the CRL i list;
9: end if
10: Update weight valueWi by Equation (18);
11: Broadcast Hello packet;
12: N1(i).add (One-hop neighbor node);
13: N2(i).add (Two-hop neighbor node);
14: N1−2(i) ⇐ N1(i)

⋃
N2(i)

15: end for
end procedure

At the initial stage, each node exchanges the Hello packet,
as shown in Fig. 3(a). After receiving the Hello packet, each
node builds its neighbor table based on the connectivity ratio,
which also gives us the degree of a node. Subsequently,
each node builds a clustering record list (CRL) based on the

degree of a node. In the second step, the weight factor is
calculated by Equation (18), and again, each node broadcasts
the Hello packet, as shown in Fig. 3(b). After receiving the
Hello packet, Algorithm 1 completes the one- and two-hop
neighbor node lists. Finally, after obtaining the one-hop and
two-hop node information, the proposed algorithm forms a
cluster, which includes one-hop and two-hop neighbor nodes.

F. OPTIMAL NUMBER OF CLUSTERS
Assume that the average number of clusters is C and the
average number of nodes per cluster is N

C , where N is the
number of nodes [44]. The number of CH per cluster is only
one, therefore each cluster contains N

C − 1 number of the
cluster member nodes. As we consider two-hop neighbors
for clustering, the number of one-hop and two-hop nodes per
cluster is calculated as follows

E[N 1] =
πR2

π (2R)2
·

(
N
C

− 1
)
. (19)

E[N 2] =

(
N
C

− 1 − |N (i)|
)

=
3
4

(
N
C

− 1
)
. (20)

As intra-cluster distance is a key parameter, we consider
the two-hop neighbor-based clustering. A two-hop neighbor-
based cluster will be larger than a one-hop-based cluster. The
average distance square between the CH node and two-hop
neighbor nodes is expressed as

d(CH,N2) =
M2

2πC
, (21)

where M is the square area. The average distance square
between the CH node and one-hop neighbor nodes is pre-
sented as

d(CH,N1) =
M2

8πC
. (22)

Therefore, the average distance square between one-hop
neighbor nodes and two-hop neighbor nodes can be defined
as

d(N1,N2) =
M2

8πC
. (23)

Two-hop neighbor nodes transmit the data to one-hop
neighbor nodes. The energy consumption for this transmis-
sion is defined as

ETx(2h,1h) = N2 · ETx (l,1d)

=
3
4

(
N
C

− 1
)

· l ·
(
Eelec + εfs ·

M2

8πC

)
. (24)

The energy consumption for receiving data from two-hop
nodes to one-hop neighbor nodes is defined as

ERx(2h,1h) = N1 · 3 · ERx (l)

=
3
4

(
N
C

− 1
)

· l · Eelec. (25)
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The energy consumption of transmitting aggregate data
from the one-hop neighbor to the CH node is defined as

ETx(1h,CH) = N1 · ETx (l, d)

=
1
4

(
N
C

− 1
)

· l ·
(
Eelec + εfs ·

M2

8πC

)
. (26)

The energy consumption of received aggregate data from
the one-hop neighbor to the CH node is defined as

ERx(1h,CH) = N1 · ERx (l)

=
1
4

(
N
C

− 1
)

· l · Eelec. (27)

Therefore, total energy consumption for data transmission
between two-hop neighbor nodes to CH node can be calcu-
lated as follows

Eintra = ETx(2h,1h) + ERx(2h,1h) + ETx(1h,CH) + ERx(1h,CH).

(28)

For the inter-cluster transmission, we used relay nodes to
transmit the data to the sink, and energy consumption for
relay inter-cluster data is defined as

Erelay = ERx (l)+ ETx (l, d) . (29)

The total energy consumption Etotal of the entire network
will be a summation of all intra-cluster and inter-cluster
energy consumption. First derivation of Etotal provides the
optimal number of clusters as follows

dEtotal
dC

= 0. (30)

Copt =

{
C | C ∈ N ,

dEtotal
dC

= 0
}
. (31)

Finally, for the N number of nodes the optimal probability
to become CH in the network is Copt

N .

G. CLUSTER HEAD SELECTION
For the CH selection, we utilized the MGWO algorithm. The
CH selection process is described in Algorithm 2. As GWO
algorithm offers the three best solutions alpha, beta, and delta
according to the sequence. Therefore, the alpha node is the
best solution with the best knowledge about the search space
whose position is more likely to be near the prey. Initially,
the CH is selected based on the node connectivity ratio and
energy level. We formulated a fitness function based on TCR
value and EF as follows:

F(CHm) =

 λ ·
Ere(i)
E int (i)

+ (1 − λ) · TCRi, Ere(i) > 0

0, Ere(i) ≤ 0.
(32)

where λ is the weight coefficient of the corresponding fitness
function. A nodewith higher residual energy and connectivity
ratio will be selected as a CH. When the current alpha node

energy level reaches the threshold level, the next CH may
choose from the beta node. CH lifetime is obtained as follows

CHLT
m =

Ere(i)
Etotal

, (33)

where Etotal indicates the total amount of energy consumption
in a single round. Subsequently, the position of the prey is
updated as follows

Xdn (t + 1) = Fn,αXdn,α (t + 1)+ Fn,βXdn,β (t + 1)

+ Fn,δXdn,δ (t + 1) , (34)

Fn,α =
Fα

Fα + Fβ + Fδ
,Fn,β =

Fβ
Fα + Fβ + Fδ

,

Fn,δ =
Fδ

Fα + Fβ + Fδ
, (35)

where Fn,α , Fn,β , and Fn,δ are the weight of the alpha, beta,
and delta wolf respectively and Fα , Fβ , and Fδ are the three
best fitness values.

Algorithm 2MGWO-Based CH Selection
Input: Clusters Cm and number of nodes N
Output: Cluster head CHm, where m = 1, 2, . . . , ??.
/∗ Initialization phase ∗/
1: Initialize the position of the wolf pack
X = [X1, . . . ,Xn, . . . ,XN ].
2: Initialize the MGWO parameters (a,Adn ,C

d
n ).

/∗ Computation ∗/
3: while (t < tmax), do
4: for each search agent CHm do
5: Compute the fitness value using Equation (32);
6: Select the three best solutions Xdn,α , X

d
n,β , and X

d
n,δ;

7: Update the coefficient vector (a,Adn ,C
d
n );

8: Update the wolf position using (8)–(12);
9: Update the prey position using (35);
10: end for
11: t = t+ 1
12: end while
13: return CHm

Initially, the positions of the wolf pack and the MGWO
parameters are initialized in lines 1–2. For each round to
select the CH from the wolf pack, a fitness value is computed
based on Equation (32). According to the principle of the
MGWOalgorithm,we obtain the three best solutions by using
Equations (8)–(12). Finally, the algorithm selects the alpha
wolf as a CH.

H. ENERGY-EFFICIENT ROUTING
In this paper, routing is categorized in two ways. First, all
the WIoT nodes transmit their data to the nearest CH node.
Nodes placed at a two-hop distance from CH transmit their
data to one-hop neighbor nodes, and then one-hop neighbor
nodes transmit the received data to its nearest CH. Second,
CH receives data and aggregates the data. After intra-cluster
transmission, inter-cluster transmission happened. Details of
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the process of intra-cluster transmission are described in the
first part of Algorithm 3. To optimize the inter-cluster trans-
mission, we utilized the MGWO algorithm. The proposed
algorithm’s objective is to choose the high residual nodes
during routing to distribute energy over the whole network
and minimize the transmission distance between the CH to
the sink.

When the sink node is out of range from the CH nodes, the
CH nodes utilized the multi-hop routing to transmit data to
the sink. In the routing path, we choose high residual energy
nodes as follows:

RPnext−hop(CH i,CH j) ∝ Ere(CH j), (36)

where RPnext−hop(CH i,CH j) is the next-hop routing between
CH i and CH j. A CH needs to select its nearest CH for data
transmission as follows

RPnext−hop(CH i,CH j) ∝
1

(CH i − CH j)
. (37)

A CH requires to choose the next hop CH, who is nearest
to the sink node as follows

RPnext−hop(CH i,CH j) ∝
1

(CH j − sink)
. (38)

Finally, the MGWO fitness value is computed for routing as
follows

RPnext−hop(CH i,CH j)

∝
Ere(CH j)∥∥CH i − CH j

∥∥ ·
∥∥CH j − sink

∥∥ . (39)

Mini : F = RPnext−hop(CH i,CH j)

∝
Ere(CH j)∥∥CH i − CH j

∥∥ ·
∥∥CH j − sink

∥∥ . (40)

Inter-cluster routing is presented in Algorithm 3 second
part.

I. COMPUTATIONAL COMPLEXITY
In our networkmodel, we considerN number ofWIoT nodes.
Every node is involved in the CH selection process by broad-
casting the Hello packet. Therefore O(n) number of packet
broadcast for CH selection. After the CH selection, CHm
node broadcasts an announcement, where O(m) number of
packets broadcast. All the CMs need to compare the distance
after getting the CH announcement. The total communication
overhead for the clustering process is O(mn). Moreover, each
node broadcasts the Hello packet to its one-hop neighbor
nodes; thus, the algorithm overhead for this process requires
O(n). We assume that the maximum number of iterations is
tmax . The total communication overhead for the clustering
process is O(mn2tmax).
To compute the overhead for routing we assume that hmax

number of hops are required to send the data from CM to
sink. Thus, the communication overhead for CHm number of
nodes isO(mhmax). In DECR, the total overhead is the combi-
nation of clustering and routing overhead, that isO(mn2tmax+
mhmax).

Algorithm 3MGWO-Based Routing
Input: Cluster formation, Cluster head CHm, where m = 1,
2, . . . , M.
Output: Best routing path RPnext−hop
/∗ Initialization ∗/
1: Position of the wolf pack X = [X1, . . . ,Xn, . . . ,XN ].
2: MGWO parameters (a,Adn ,C

d
n ) and (Xdα ,X

d
β ,X

d
δ ).

3: Iteration t = 1 and allow maximum iteration number tmax .
/∗ Intra-cluster routing ∗/
4: for all CMs ∈N2(i)\N1(i) ∩ CH do
5: Transmit data to the nearest CM ∈N1(i)\N1(i) ∩ CH ;
6: end for
7: for all CMs ∈N1(i)\N1(i) ∩ CH do
8: Received data from CM ∈N2(i)\N2(i) ∩ CH ;
9: Transmit data to the nearest CM ∈ CH;
10: end for
/∗ Inter-cluster routing ∗/
11:for all CM ∈ CH do
12: Received data from CM and aggregate data;
13: end for
14: Compute the fitness value using Equation (40) for each
search agent;
15: for (t < tmax), do
16: Update the position of the search agent by (8)–(12);
17: Update (a,Adn ,C

d
n );

18: For each search agent, compute the fitness value by
(36)–(39);
19: Select the three best solutions Xdα , X

d
β , and X

d
δ ;

20: end for
21: Return the best RPnext−hop(CHi) = RPbest

V. PERFORMANCE EVALUATION
To evaluate the performance of the proposed DECR, we con-
ducted an extensive computer simulation using MATLAB
R2021a [45]. Moreover, we compared our proposed DECR
with two recent clustering and routing protocols, MT-
MAC [28] and ALOC [31]. Both ALOC and MT-MAC were
designed for WBAN applications.

A. SIMULATION ENVIRONMENT
In our simulation, initially, 100 nodes are deployed in a
100m × 100m square region. All nodes are uniformly dis-
tributed in a random fashion. The sink node is placed at the
center of the region with the coordinate of (50m, 50m) for
scenario-1 and in the scenario-2 sink position is outside of
the network area with the coordinate of (0m, 0m). All nodes
have a random waypoint mobility (RWM) model, and the
speed of nodes is 2 to 5 m/s [37]. Simulation parameters are
summarized in Table 3.

We compared DECR with MT-MAC and ALOC in terms
of the packet delivery ratio (PDR), control overhead (CO),
average end-to-end (AE2E) delay, network lifetime, net-
work energy consumption, cluster building time, and cluster

5056 VOLUME 11, 2023



M. Y. Arafat et al.: Distributed Energy-Efficient Clustering and Routing for WIoT Enabled WBANs

FIGURE 5. Deployment of WIoT nodes in an RWM model.

lifetime. The definition of the above performance metrics is
defined in [21].

B. SIMULATION RESULTS AND DISCUSSION FOR
SCENARIO-1
In this subsection, we analyzed and compared the perfor-
mance of DECR algorithm with the existing clustering and
routing protocol.

The simulation environment is presented in Fig. 5, where
200 nodes are deployed randomly and uniformly distributed
on a 100 m2 square region.

The sink node indicated by the black color is located at
the center of the region. All the nodes can move freely and
follow the RWM model, which is more similar to the human
walk.

1) PDR VS. NUMBER OF NODES
As depicted in Fig. 6, we investigated the performance of
protocols by varying node densities in the network. Herein,
we varied the nodes from 50 to 200. Node densities have an
impact on PDR. Because of the low density, the nodes face
frequent link disconnection problems resulting in low PDR.
After increasing the number of nodes, PDR increases sharply
for all the protocols. However, our proposed DECR performs
better than MT-MAC and ALOC. This is because we con-
sidered the two-hop neighbor-based clustering that works
better than the one-hop neighbor-based clustering. Two-hop
neighbor information extends the overall network knowledge
and reduces packet loss even in high nodemobility.Moreover,
when the number of nodes is less, the number of CH is also
less; thus, CM nodes need to transmit data to the CH from a
distance. However, after increasing the number of nodes, the
number of CH increases as many, resulting in higher PDR.

2) AE2E DELAY VS. NUMBER OF NODES
As depicted in Fig. 7, as the node density increases, AE2E
delay also increases. This is because it takes time to find the
node position and route building time when the nodes are
mobile. Our two-hop neighbor scheme minimizes the node
AE2E delay compared to the one-hop-based clustering and

FIGURE 6. PDR vs. number of nodes.

FIGURE 7. AE2E delay vs. number of nodes.

routing protocols. In DECR, we utilized a new factor called
NSF in clustering, which provides cluster stability.

3) CO VS. NUMBER OF NODES
Fig. 8 presents the effect of CO as a function of node densities.
CO is one of the critical factors in low-energy networks like
WBANs, measuring the Hello packet exchange for clustering
and CH selection. Initially, DECR showed higher CO com-
pared to ALOC. Generally, two-hop neighbor information
utilized more CO than the one-hop neighbor-based clustering
protocol. However, in our case, our proposed protocol is
more stable in clustering than ALOC and MT-MAC, which
significantly increase the cluster lifetime, thus reducing the
re-clustering.

4) CLUSTER BUILDING TIME VS. NUMBER OF NODES
The cluster building time refers to the cluster formation and
CH selection time. Long cluster setup time indicates the pro-
tocol complexity is high. Fig. 9 illustrates that node densities
impact the clustering building time. In our DECR, we used
MGWO for CH selection. Like other bio-inspired algorithms,
we utilized a fitness value to select the CH. The MGWO
computational complexity is significantly low compared to
other bio-inspired algorithms. Concerning a large number
of nodes, the cluster-building time increases significantly
for most of the clustering protocols. However, in DECR,
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FIGURE 8. CO vs. number of nodes.

FIGURE 9. Cluster building time vs. number of nodes.

we utilized our designed Hello packet and the TCR factor
reduced our clustering building time.

5) CLUSTER LIFETIME VS. NUMBER OF NODES
The time from a cluster formation to its destruction indicates
the cluster lifetime, which is an important factor for network
energy consumption. In DECR, a node with a higher fitness
value takes over the position of CH. In our proposed work,
we consider TCR and residual energy as key fitness values
for CH selection.

We defined the cluster lifetime in Equation (33). When
the node energy goes down from a certain threshold level,
the algorithm needs to activate the CH selection process
since a short cluster lifetime increases the CO because of
re-clustering and CH selection. Fig. 10 depicts that the cluster
lifetime decreases as node densities increase. Due to the node
mobility, the network topology frequently changes, resulting
in a lower cluster lifetime.

6) ENERGY CONSUMPTION VS. NUMBER OF NODES
Fig. 11 illustrates that the energy consumption varies as the
node density changes. The DECR consumes less energy than
ALOC and MT-MAC because it considers node energy as a
crucial factor in clustering, CH selection, and routing due to
the optimal number of clusters. In our proposed approach,
we analytically optimize the number of clusters for our net-

FIGURE 10. Cluster lifetime vs. number of nodes.

FIGURE 11. Energy consumption vs. number of nodes.

FIGURE 12. Total energy consumption vs. round.

work, which minimizes the number of single-node clusters
resulting in low energy consumption.

7) TOTAL ENERGY CONSUMPTION VS. ROUND
Since WBANs are mostly run by limited battery power,
energy consumption is the key factor in evaluating the
performance of clustering and routing protocol. Fig 12
depicts the total energy consumption as a function of
rounds.

From Fig. 12, it can be observed that MT-MAC consumes
more energy than ALOC and DECR. DECR’s overall energy
consumption curve is slow and stable mainly due to two-hop
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TABLE 4. Performance metrics comparison for different Simulation scenarios.

FIGURE 13. Residual energy vs. round.

clustering, the optimal number of CH, and energy-efficient
routing. Utilizing two-hop neighbor information in clustering
helps the two-hop nodes transmit the data to the CH node by
using one-hop neighbor nodes as a relay node. This process
reduces the energy consumption in receiving the data from
long-distance nodes.

8) RESIDUAL ENERGY VS. ROUNDS
Fig. 13 represents the rate of the node residual energy
decrease. The proposed DECR has higher residual energy
than ALOC and MT-MAC since the DECR proto-
col distributes the energy consumption between the
nodes, which makes the death node slower. Therefore,
in DECR, more nodes can survive compared with other
methods.

9) NUMBER OF LIVING NODES VS. ROUNDS
In our simulation, we consider a node as a dead node
when it drains its battery completely. Fig. 14 represents
the number of alive nodes for a round. DECR balances
the energy consumption between the nodes, resulting in a
slower node death rate. Our proposed approach balances
the network topology well by better clustering, optimiz-
ing the number of CH, balancing the transmission distance
into the cluster, and reducing the inter-cluster transmis-
sion distance, leading to less energy consumption in the
network. Low energy consumption, higher residual energy,
and a higher number of living nodes indicate the protocol
stability.

FIGURE 14. Number of living nodes vs. round.

C. SIMULATION RESULTS AND DISCUSSION FOR
SCENARIO-2
In scenario-2, 200 nodes are deployed randomly and uni-
formly distributed on a 200 m2 square region and a sink
node is placed outside of the network area. Here, DECR has
been simulated for evaluating the PDR, AE2E delay, the total
number of raw packets to sink, and average network energy
consumption rate in scenario-1 and 2. Additionally, the simu-
lation results of the round of first node death (FND), half node
death (HND), and all node death (AND) are presented and
their outcomes have been compared with existing clustering
algorithms in Table 4.

We found that the proposed algorithm extends the network
lifetime, and this happens because of the inclusion of energy-
efficient clustering, CH selection, and packet routing strategy.
The number of raw packets sent to the sink node can well
represent the transmission efficiency of the routing protocol.
For both scenarios, DECR shows higher FND, HND, and
AND compared with ALOC and MT-MAC. Results show
that when the sink is placed outside of the network area,
shorter is the life span of WIoT nodes. The amount of data
is spectacular when the sink is located at the center of the
network.

VI. CONCLUSION
In this paper, we have proposed a distributed energy-
efficient clustering and routing protocol for WIoT-enabled
WBANs. The proposed DECR has three phases: cluster for-
mation, CH selection, and routing. For the cluster formation,
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we utilized two-hop neighbor information. Two-hop neighbor
information extends the local view of the network topol-
ogy, which helps maintain the network topology. Moreover,
we also introduce new factors such as TCR, EF, and NSF,
which are jointly considered for cluster formation. In the CH
selection phase, we utilized the MGWO algorithms inspired
by GWO. The node TCR and residual energy are consid-
ered to select the CH node. Our proposed analytical model
helps compute the optimal number of clusters in the network.
Finally, our energy-efficient routing optimizes intra- and
inter-cluster communication. The simulation results indicate
that the proposed DECR is superior in performance metrics
such as PDR, AE2E delay, control overhead, cluster build-
ing time, cluster lifetime, and network energy consumption.
Additionally, the distributed energy balancing among the
nodes significantly prolongs the overall network lifetime.

In our future work, we will consider finding more optimal
solutions using different heuristic algorithms.
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