IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 16 November 2022, accepted 5 January 2023, date of publication 12 January 2023, date of current version 22 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3236412

== RESEARCH ARTICLE

Enhanced Interoperating Mechanism Between
OneM2M and OCF Platform Based on Rules
Engine and Interworking Proxy in
Heterogeneous loT Networks

NGUYEN ANH TUAN“1, RONGXU XU““2, AND DOHYEUN KIM"“!

! Department of Computer Engineering, Jeju National University, Jeju 63243, South Korea
2Big Data Research Center, Jeju National University, Jeju 63243, Republic of Korea

Corresponding author: Dohyeun Kim (kimdh@jejunu.ac.kr)
This work was supported by the Institute for Information & Communications Technology Pro-motion (II'TP) (NO. 2022-0-00980,
Cooperative Intelligence Framework of Scene Perception for Autonomous IoT Devices), and this work was supported by the Institute for

Information & Communications Technology Promotion (IITP) (2021-0-00188, Open-source development and standardization for
Al-enabled IoT platforms and interworking). Any correspondence related to this paper should be addressed to Dohyeun Kim.

ABSTRACT In recent years, the Internet of Things (IoT) is growing rapidly and is being applied in a variety
of industries including healthcare, smart homes, and smart cities. Many standard IoT platforms are proposed
to connect and communicate with IoT devices easily and securely such as oneM2M, Google Weave and
Apple HomeKit. However, this makes IoT application development difficult as it requires IoT devices and
applications to support multiple protocols to connect different IoT platforms. Therefore, it is necessary
to provide a consistent schema to support interoperability in heterogeneous IoT networks. In this paper,
we propose how to design and implement interoperating schema between two edge servers oneM2M and
Open Connectivity Foundation (OCF) with heterogeneous IoT devices. Specifically, we build proxies for
bridging oneM2M Mobius edge server and OCF IoTivity edge server. The sensor data is collected from
various IoT devices and sent to an edge server with a compatible platform. Next, the data stored in each server
will be exchanged with the other server through a proposed interworking proxy. We also use a rules engine
to automatically identify registered devices to support edge server interaction within the same domain and
across domains. In addition, we build a web application in each edge server to provide friendly IoT services
(data visualization) to clients from different environments. In order to evaluate our system, we collect the
delay time of each process in the edge servers. The results show that our proposal is completely applicable
in practice.

INDEX TERMS Internet of Things, interoperability, oneM2M standard, open connectivity foundation, rules
engine, interworking proxy, hypertext transfer protocol, constrained application protocol.

I. INTRODUCTION

The term ‘““Internet of Things’, which Ashton first intro-
duced in 1999, refers to a technical innovation that will
change how computers and communications operate in the
future [1]. With the advancements in wireless networking

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen

16096

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

(Wifi, Bluetooth, etc), cellular networks, and the increase in
the number of electronic devices (smartphones, etc), objects
all over the world can now interact with one another and
share information about their data, status, and environment
information and allowing the objects to collaborate and carry
out common tasks without the need for human interven-
tion [2]. Recently, IoT technology has garnered a lot of
social attention on a global scale and is the trend in ICT

VOLUME 11, 2023

https://orcid.org/0000-0003-0294-4884
https://orcid.org/0000-0002-4902-0681
https://orcid.org/0000-0002-3457-2301
https://orcid.org/0000-0002-6502-472X

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

IEEE Access

(Information and Communications Technology) [3]. Many
proposed IoT platforms enable developers and producers to
build innovative products and intelligent services to improve
human life [4]. IoT Platforms are software based on standards
from organizations to connect various devices (e.g. sensors,
access points, data networks) [5]. They enable easy manage-
ment, development, and operation of IoT applications. Some
commonly used [oT platforms are oneM2M [6], OCF [7], and
AllSeen Alliance [8], etc.

In 2012, a standards collaboration project called oneM2M
was established by standards development organizations from
many countries [9]. The main objective of oneM2M is to
provide a standardized framework to connect and interact
with different IoT devices and provide intelligent services
to users, such as Healthcare [10], Smart Home [11], [12],
and Smart Car [13]. In order to provide interoperability,
oneM?2M plays as a distributed Operating System for IoT.
It proposes common service functions between applications
and connectivity transport [14]. Applications and IoT devices
can access oneM2M’s common service functions through
RESTful APIs [15]. Besides, semantic technologies on the
Web (Semantic Web of Things) are developed to describe
and analyze the oneM2M resources [16]. Currently, popular
platform software resources that developers can access to
try out and build end-to-end IoT systems using oneM2M
standards such as OCEAN [17], ACME [18], OASIS SI[19].

The OCF standard is developed by Open Connectivity
Foundation which is one of the largest IoT standard organi-
zations with over 500 members [20]. Similarly to oneM2M,
the target of the OCF standard is to build a common service
platform to make it easier for developers to deal with the
complexity of IoT connectivity. It ensures interoperability
trust and secure communication between IP-connected IoT
devices and services. Besides, the OCF standard also supports
various transport protocols (e.g. Wi-Fi, Bluetooth, ZigBee) to
interconnect different IoT devices and provides a common
resource model that developers can use to interface with
all IoT devices and data [21]. Additionally, OCF supports
both IPv4 and IPv6. In the core functions in OCEF, it uses
CoAP [22] protocol to message and discovery in combination
with RESTful design and API expose [23]. CoAP is an appli-
cation protocol created by Internet Engineering Task Force
(IETF) that is used for supporting constrained devices. Some
popular open source platforms implement OCF standard such
as loTivity [24], plgd [25].

As described before, there are now many platforms with
various standards to support interaction with devices in IoT
networks. However, each platform has its own way of manag-
ing and communicating with IoT devices. Furthermore, with
the increasing number of devices in different environments,
some devices only conform to certain standards. The con-
nection and interaction with heterogeneous devices and plat-
forms become a challenge in IoT systems [26]. For example,
sensors are often placed in the edge environment (usually
embedded inside low-power, wireless nodes). They gather

VOLUME 11, 2023

data from their immediate environment and produce usable
information for IoT services. However, because most IoT
businesses use proprietary systems, it can be challenging for
an JoT system in a certain industry (like smart homes) to gain
sensor data from other fields (e.g. smart healthcare). There-
fore, it is important to identify each sensor device and com-
municate and share data between different IoT platforms [27].
To solve this, it is important to provide a consistent schema
to support interoperability in heterogeneous [oT networks.

In this paper, we propose a schema for interoperating
between two edge servers (with oneM2M and OCF plat-
forms). Specifically, we build an IoT proxy with the rules
engine in each edge server as a bridge to recognize differ-
ent IoT platforms and exchange data between platforms and
devices. Edge servers are built on top of Mobius and IoTivity
which are frameworks developed according to oneM2M and
OCEF standards respectively. Edge servers are connected to
IoT devices with compatible platforms to collect data from
sensors (temperature, humidity, and dust sensors). Then, the
proxy in each server will process, and create a message to
deliver data to the other server. In addition, we also build a
Django-based web application that allows users to view the
data collected from sensors in edge servers. Our proposed
system’s contribution can be summarized as follows:

1) Developing a mechanism to connect edge servers with

IoT devices based on oneM2M and OCF standards.

2) Designing and implementing interoperating system
between oneM2M Mobius and OCF IoTivity edge
servers.

3) Deploying a web application in each edge server that
allows users to monitor the historical data of sensors
through visualization.

The remainder of this paper is structured as follows.
In Section II, we introduce related works including oneM2M
Mobius and OCF IoTivity platform, rules engine, proxy, and
studies of interoperability in heterogeneous IoT networks.
Section III describes our proposed system and detail the
components in each edge server. In Section IV, we introduce
the environment and the implementation of our proposed
system. The performance evaluation for delay time in each
process and comparing them in two edge servers are pre-
sented in Section V. Finally, Section VI concludes this paper
and presents our future works.

Il. RELATED WORK

IoT Platforms based on standards enable developers to
distribute applications, connect and manage securely sen-
sor devices from the environment in many industries [28].
OCEAN is one of the IoT platforms based on oneM2M
standards. It provides two versions for supporting servers and
devices, Mobius and nCube respectively [4]. As oneM2M
specifies, Mobius acts as a middleware server platform
that provides common services functions and connects
diverse IoT devices including oneM2M and non-oneM2M
devices [29]. nCube is a device platform based on oneM2M

16097

IEEE Access

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

standard for supporting interworking between device and
server. Implementing Java language, it can run on most
embedded devices through Java runtime virtual machine.
Besides, nCube is suitable for resource-limited devices or
devices in heterogeneous environments [30]. Mobius and
nCube are popular oneM2M platforms for servers and devices
that have been extensively researched, developed, and applied
in many industries. In [31], Yun et al. developed middleware
software based on the nCube platform to support different
sensors and actuators. Sensor values and actuator commands
are transformed into oneM2M resources by the nCube plat-
form. Thereby, the authors developed an Android application
that can access and control sensors and actuators through
REST APIs based on the oneM2M standard. Lee et al. [32]
proposed an architecture to integrate Hololens, a Mixed
Reality device into the Mobius platform. In this way, it gives
users an intuitive and simple experience without major con-
figuration changes in different domains. In [33], the authors
implemented an [oT system based on Mobius for interacting
with old consumer products (Nest thermostat, Withings blood
pressure monitor, etc). By mapping device information to
oneM?2M resource tree, an [oT application can access and
control legacy devices even if they are non-oneM2M devices.
In [34], Choi et al. proposed a real-time data distribution
system with oneM2M platform using Mobius to be imple-
mented in the management system of UAVs. According to
experimental results, this system enhances delay performance
across a range of network environments. In [35], the authors
developed wearable IoT Android software based on Mobius
to gather biosignal data. The resulting biosignal data will be
used to analyze and predict emotions (recognize two emo-
tions of joy and sadness). Um et al. [36] proposed a container-
based smart factory system with oneM2M standard.
It provides a common standard environment that helps man-
ufacturers reduce errors between different devices. Besides,
it offers the benefit of easy version control and is simple to
distribute and apply via the Docker registry.

As for the OCF standard, IoTivity [24] is the most pop-
ular platform developed by the OCF organization itself.
As an open-source project, it provides intelligent functions to
support device-to-device and device-to-server connectivity.
It supports many different connections (e.g. Ethernet, NFC,
Wifi) and can run on various OS (e.g. Windows, Linux,
Arduino, and so on). In order to design, deploy, and con-
trol ToT systems based on the IoTivity platform, a lot of
research was conducted. In [37], Lee et al. developed an
IoTivity application to collect data from healthcare sensors
on the human body. Data is sent to the server via Bluetooth
Low Energy (BLE) and organized to the resource model of
the OCF standard. Mandza and Raji [38] designed a home
energy management system using the IoTivity-Lite platform
(a lighter version of IoTivity for constrained devices). It is
suitable for older devices and it is cost-effective and easy
to scalability. In [39], Doan et al. developed a software
called RES-Hub based on the IoTivity framework to maintain

16098

services to IoT home devices when the connection between
cloud and home devices is unavailable. With IoTivity, RES-
Hub ensures secure access and control of devices. In [40],
the authors designed a smart farm system using the IoTivity
framework. Sensor data and actuator commands are aggre-
gated to the edge server via CoAP. The edge server will
analyze sensor data and give the actuators the next action.

The rules engine in IoT is a system to analyze collected
data and takes specific action if they satisfy a necessary
condition. It first receives data from IoT devices. It then
runs logical analyzes formatted as an “if-then” statement
and takes further action based on the results of the anal-
ysis. It can make it easy to model the logic of complex
systems and help users to adjust the logic of the system
without any coding experience [41]. The rules engine helps
IoT systems automatically make decisions and control the
flow when receiving enormous amounts of data from sensors
or actuators. Nowadays, there are many tools that support
the rules engine in IoT platforms: Drools [42], eKuiper [43],
Jess [44], etc. Drools is a rules engine tool that implements
knowledge-based systems using the rule-based methodology.
The knowledge-based systems are systems that use knowl-
edge representation to perform complex tasks in different
environments. Users can build rules through DRL (Drools
Rule Languages) files. DRL files contain rules defined by
conditions (with the “when”” keyword) and actions (with the
“then” keyword). In [45], Luo et al. designed a Drools-based
rules engine system that can perform large-scale trigger-
action tasks in IoT environments. Besides, they designed an
algorithm to find and delete conflicted rules registered by
users. The results demonstrated that their method is optimal in
terms of energy consumption and system delay time. In [46],
the authors implemented a tool called TrigGen to optimize
the number of rules in Drools. Experiments showed that
TrigGen has optimized more than 80% of the rules written
by users.

According to the previous section, it is challenging to
recognize each heterogeneous [oT device or communicate
and share data between different [oT platforms. Tao et al. [47]
proposed to manage data from different [oT platforms using
the public cloud. They design a data management system for
heterogeneous devices by utilizing ontology representation
in the public cloud. However, not most platforms can use
the cloud, and constant retrieval of the cloud is also a chal-
lenge for constrained devices. Koo and Kim [48] focused on
device ID interoperability in IoT platforms. They proposed
a device ID translator to translate diverse types of ID into
oneM?2M format. It can easily translate the IDs of the plat-
forms that have a similar structure to the oneM2M ID format.
However, with other formats like OCF IoTivity, it will cause
a lack of necessary parts in the oneM2M format. In this [49],
the authors proposed an IoT Smart Hub to aggregate data
from heterogenous devices and map data format into a prede-
fined common resource format. Thus, applications can access
and interact with data through a common resource format.

VOLUME 11, 2023

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

IEEE Access

Client
Data
Retrieve Request
oneM2M Edge Server
Web Application
| Web Server |
I Django Application |

Drools-Based Rules Engine oneM2M Proxy

| Drools Rule Deployer |

| Event Handler

)

¥}

Action Handler

MQTT Subscribe Client

I

OCF
Translator

|_.

OCF
Client

Mobius Platform
| MQTT Broker Server |

tt

MQTT Proxy |

It

HTTP Mobius Server

> |
N—

="

|/

Data
Upload
nCube device

[HTTP Client/ MQTT Publisher | | oneMam Registration Client |

’

| Flask Application |
Y

1

ey

NG
el

Lo

Dust Sensor Humidity Sensor

Client
Data R +
Retrieve eques
OCF Edge Server
Web Application Y
| Web Server
| Django Application I

OCF Rule Proxy
| OCF Rule Deployer |

Action Handler
HTTP oneM2M HTTP Post || .
Client Translator Handler |— DB Action
|
Sl OCF Rules Engine
Rule Rule
Resources Evaluator
? ? MysQL
\l OCF Post Handler |

o5 Data
Upload
loTivity device

| Flask Application |

| OCF Client loTivity Framework |

Temperature Sensor

FIGURE 1. Proposed architecture for interworking between oneM2M edge server and OCF edge server.

However, it requires a predefined format suitable for all
resource formats of different platforms.

Previous related works have often studied interactions
between heterogeneous devices and servers or end-user appli-
cations. In our research, we focus on studying the interwork-
ing between two heterogeneous edge servers (oneM2M and
OCEF servers) as well as designing the interaction mechanism
between the server and the IoT devices. The details of our
proposed method are described in section III.

Ill. PROPOSED INTEROPERATING MECHANISM
BETWEEN oneM2M AND OCF PLATFORM

BASED ON RULES ENGINE AND PROXY

In this section, we introduce our proposed architecture based
on the interworking proxy and rules engine and discuss the
details components of each edge server.

VOLUME 11, 2023

A. PROPOSAL ARCHITECTURE FOR IoT SYSTEM
Figure 1 depicts our proposed architecture to provide inter-
operability between IoT devices, edge servers, and clients.
The proposal comprises three sensors (dust sensor SDS011,
humidity sensor DHT11, and temperature sensor BMP280).
They are connected to two IoT devices to measure in two dif-
ferent places. [oT devices are deployed in the local environ-
ment and based on nCube and IoTivity platforms. [oT devices
collect data from sensors through web services. Specifically,
we build a Flask application in each device to collect data
from sensors. Each device is linked to each compatible edge
server. The oneM2M edge server connects to nCube device
whereas the OCF edge server connects to IoTivity device.
The main components of edge servers include an IoT
platform (Mobius for oneM2M server and IoTivity for OCF
server), interworking proxy, rules engine, and web services.
The nCube device sends data to Mobius in oneM2M edge

16099

IEEE Access

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

oneM2M Edge Server

nCube Mobius Drools-Based oneM2M MysaL
Device Rules Engine Proxy Database
I I

OCF Edge Server

OCF Rule Mysat
Proxy Database

read data
Dl

m
create oneM2M
message

N

L—send data
’é — response — —

I
|
I
I
I
I
|
I
I
I
I
T
F—send data—> I
— I
I

|

|

|

|

|

|

|

|

|

|

>

|

|

Drools rule is triggered |
|
|
|
|
|
|
1

|
|

|

1 1

| |

| | ! |

1] I_request

| | I /action |

1 1 1 —

| | | create OCF Mesage

| | | ha

| | K —response- —

| 1 | [send data————

! ! | 1 1 —

I I I I I OCF rule is triggered

| | | | | !

! ! | | | —store data—¥
! ! | K——==- e

response — — — — —|

FIGURE 2. Sequence diagram of collecting and sending dust and humidity
data.

server through HTTP protocol and IoTivity device sends data
to OCF edge server through CoAP protocol. The rules engine
in each edge server provides inference ability based on reg-
istered rules to perform different actions when receiving data
from different sources. Proxy support to translate messages
and deliver them to the other server via HTTP and CoAP
protocol. As shown in figure 1, the oneM2M edge server
uses a proxy to translate messages containing data collected
from the nCube device and send them to the OCF edge server
via CoAP. Proxy in OCF edge server works with similar
functions. Finally, web services in each edge server allow
clients to access and track the environmental data.

From figure 1, we have two directions of data flow for
each edge server. Figure 2 shows a sequence diagram for
getting dust and humidity data from nCube device and dis-
tributing them to edge servers. Firstly, nCube device gets data
from the dust sensor and humidity sensor through the Flask
application. Then, the nCube device acts as MQTT Publisher
and sends data to Mobius by HTTP Protocol. Sensors data
will be stored in MySQL database and the message will be
sent to the rules engine in oneM2M edge server. Based on
registered rules, action will be triggered and it will send
a request to oneM2M proxy. OneM2M proxy will create
an OCF message with sensor data and send it to the OCF
edge server via CoAP protocol. With registered rules, the
OCF edge server will verify data and store it in the MySQL
database.

Similarly, figure 3 depicts a sequence diagram for getting
temperature data from the IoTivity device and distributing
them to oneM2M and OCF edge servers. Firstly, the IoTivity
device will get data from the temperature sensor and send it
to the OCF edge server through the CoAP protocol. Next, the
OCEF edge server will store it in the MySQL database. Then,
it will create an oneM2M message and send temperature data
to Mobius in the oneM2M edge server via HTTP protocol.
Mobius will store data to MySQL database in oneM2M edge
server.

16100

OCF Edge Server oneM2M Edge Server
IoTv_lty OCF Rule MysQL | Mobius MysQL

Device Proxy Database Database
T | | T T
| | | |
read temperature | | | |
data | | | |
ld | | | |
= | | | |
create OCF : : : :
message | | | |
| | | | |
]—send data—bl | | |
| R | | |
| OCF Rule is triggered | | |

'<-'

| | | | |
| I-store data-» | |
& -response— - | : |
!			
create oneM2M			
message			
I<J [
——send data———»			
: : : :—store datab:			
lk<— — — —response- — — — -			
	I		
! | | [1

FIGURE 3. Sequence diagram of collecting and sending temperature data.

'Web Client Service '

'
'
H I\}\I Data Visualization

Client Layer
‘EdgeServer T TTTTTTTTTTITTTITTITITITTTIIITO :
' '
H [Device Proxy] [Rules Engine] E
'
) Database E
'
1 [loT Resource] [Client Service]
Edge Layer

1 loT Device

'
'
! [Sensors] [Event Management] [IoTResource]

FIGURE 4. Proposed loT system hierarchical architecture.

Device Layer

Figure 4 presents the layer diagram of our proposed IoT
system’s functions including device, edge, and client layers.
In the device layer, IoT devices collect sensor data from the
local environment. Event management is used to create events
(including data and device information) and publish them
to the edge server. Built from IoT platforms, IoT resources
provide services for communicating to edge servers secure,
easy to manage, and track in real-time.

The edge layer contains oneM2M and OCF edge servers
that are used for receiving and distributing sensor data. Each
edge server includes a database for data storage and retrieval.
An interworking proxy is in the edge server for connect-
ing and sharing sensor data with other edge servers. The
rules engine in the edge server is used to make automatic
rules for recognizing IoT devices and handling sensor data.

VOLUME 11, 2023

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

IEEE Access

oneM2M EdgeServer

Mobius Platform

MQTT Broker Server i~ "Drools
uk_>§t_:r_ibe__
“Ipublish

[MQTT Proxy |
nCube Device Drools Configuration
hitp [HTTP Mobius Server |

Drools-Based Rules Engine

‘Framework: |_Framework i

MQTT Subscribe Client

Event Handler

Rule Controller

[System Modules

Frameworks and Libraries
Message

oneM2M Proxy

Drools Rule Deployer
HTTP Post

Handler HTTP
Drools Rule Client
Translator

Action Handler

OCF Edge Server

OCEF translator
OCF Client | —-{c0apH~>| OCF Rule Proxy

HTTP Post
Handler

FIGURE 5. Detail of Mobius, Rules Engine, and Proxy components in oneM2M edge server.

oneM2M Edge Sever
Drools-Based Rule Engines

oneM2M Proxy

Drools Rule Deployer
Drools Rule Client [HTTP Post '
’|_ Handler HTTP
! MQTT Subscribe Client
Client ‘
Drools Rule
Translator Drools Rule| Event Handler
Profile
Action Handler
Drools Configuration | Rule
OCF translator| template

HTTP Post (OCF Client|

Handler Rule Controller

FIGURE 6. Client registers rules to Drools Rules Engine.

Besides, each edge server provides client service to allow
clients can access and track data.

The client service in the client layer is used to provide
historical data to the clients through web applications. Web
client service includes User Interface (UI) and data visual-
ization. Using Ul, data visualization is provided to display
updated and historical values from the sensor.

B. ONEM2M EDGE SERVER ARCHITECTURE ANALYSIS
The oneM2M edge server includes Mobius platform, Drools-
based rules engine, oneM2M proxy, and web application.
Figure 5 depicts in detail the main components of Mobius,
rules engine, and proxy in oneM2M edge server and data
distribution from nCube device.

Mobius provides internal servers to support various data
transfer protocols including HTTP, CoAP, MQTT, and Web-
Socket. In order to communicate with nCube device, we use
an HTTP Mobius server with the default HTTP protocol in
our design. Moreover, the MQTT proxy is used to convert
HTTP to MQTT protocol for Publish/Subscribe (Pub/Sub)
messaging. After receiving the message from nCube device,
HTTP Mobius server will handle and store sensor data to the
MySQL database. At the same time, the MQTT proxy will
translate the message to MQTT protocol. After that, MQTT
message will be published to MQTT Broker server. MQTT
Broker will filter messages based on topic and then distribute
them to subscribers. With Pub/Sub messaging, it announces
event notifications quickly for distributed applications.

VOLUME 11, 2023

OCF Edge Server

OCF Rule Proxy

Action Handler
HTTP oneM2M HTTP Post]
client [| Transtator|[© Handler l—’|DB Action
‘OCF Rules Engine

| Rule Evaluator l:4

Rule Other
Resources

Rule Action
Sensor Resoure
Resource

sending data |

oneM2M Edge Server

—{ http

Rule Expression
Resource

MysaL

loTivity device

OCF Post Handler

—— |,
coa
oxxn = |

I

temperature

OCF Rule Deployer

| OCF Post Handler |

OCF Client

| ‘OCF Rule Translator |

] systemModules

! Frameworks and Libraries

—> Message

FIGURE 7. Detail components in OCF edge server.

The rules engine in oneM2M edge server is developed by
Drools framework. In our system, the rules engine subscribes
to all topics in MQTT Broker. Therefore, it receives all
event messages whenever MQTT Broker publishes them. The
Drools rules engine uses rules to take action when data is
delivered from different sources. If data comes from nCube
device, it needs to be shared with OCF edge server. After
confirming the data is coming from the nCube device, the
event handler component in the rules engine will handle the
MQTT message and send it to the action handler in oneM2M
Proxy.

OneM2M proxy consists of two main components rule
deployer and action handler. The action handler receives the
message from the rules engine and translates message from
HTTP to CoAP protocol.

Drools rule deployer in proxy is used for registering and
updating rules from client. Figure 6 presents the rules reg-
istration process from client. When the event message is

16101

IEEE Access

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

OCF Rule Proxy

OCF Rules Engine

Rule Evaluator |
Expression
Rule Expression || pProer
Resource
- Action
Rule Action |‘__
Resource

OCF Post Handler |
Rule
Information

Rule Other
Resources

Resoure

| Sensor ||

OCF Rule Deployer

register rule

Client —"{http }

HTTP Post Handler

OCF Client

OCF Rule Translator

FIGURE 8. Client registers rules to OCF Rules Engine.

delivered from client, the rule deployer will handle, transfer
message to Drools format and send it to rule engines. Rule
controller will get profile of new rules and extract object ID
and command ID based on rule template in Drools configura-
tion. Then, the rule controller updates objects and command
IDs for condition and action. In our system, the rule will
check if the message is coming from nCube device (humidity
and dust data) or coming from OCF server (temperature data).

C. OCF EDGE SERVER ARCHITECTURE ANALYSIS

Figure 7 depicts detailed components in the OCF edge server
and data distribution from the IoTivity device. The main parts
of the OCF rule proxy include:

o OCF Rule Deployer: Updates rules from the client.

o OCF Rule Server: Stores rules, receives OCF requests
and checks requests with the updated rule.

o Action Handler: Do action if the rule is satisfied.

Different from oneM2M edge server, we use the rules
engine that is integrated with the IoTivity platform. In the
OCF rules engine, a rule is divided into components
and stored in different resources (i.e. Expression, Action
resources). They are linked together to become a complete
rule. Similar to oneM2M edge server, the rules in the OCF
edge server will check if the message is coming from IoTivity
device (temperature data) or coming from oneM2M server
(humidity and dust data).

When the OCF edge server receives any messages through
the CoAP protocol, OCF Post Handler will handle this mes-
sage to get the main factors. After that, based on the registered
rules in rule resources, Rule Evaluator will evaluate and
decide the next action. If the message comes from oneM2M
server, it will be stored database directly. Otherwise, if the
IoTivity device sends the message, rules will be triggered and
Action Handler will handle, convert the message to oneM2M
format and send it to the oneM2M edge server.

Figure 8 presents the rules registration process from
the client to OCF rules engine. Rule information will
be split and stored in Rule Expression and Rule Action
resources. Rule Expression Resource (with resource type id

16102

TABLE 1. Development environment for edge servers.

Hardware Software

os | Ubuntu20.04 Python3.8, Java

64-bit Language

HTMLS5, CSS3,

CPU Intel core -
Javascript

15-9500 3GHz

Memory 8 GB Application Eclipse

PC Django

jQuery, Bootstrap

Drools framework

Framework |_(for oneM2M server)

Hard Disk 100 GB
IoTivity, nCube-Thyme|

(for OCF server)

Mobius
(for oneM2M server)

Spring Boot

Database MySQL

“oic.r.rule.expression’) contains logical expressions which
evaluate a boolean value. Rule Action Resource (with
resource type id “oic.r.rule.action”) contains the action to
be taken. When a message with sensor data arrives, the Rule
Evaluator will trigger actions in the Rule Action Resource
if the logical expressions in the Rule Expression Resource
return true.

IV. IMPLEMENTATION OF PROPOSED SYSTEM

A. DEVELOP ENVIRONMENT FOR EDGE SERVERS

AND IoT DEVICES

Table 1 shows the detailed development specification of the
environment in edge servers. In our proposed solution, both
edge servers (oneM2M and OCF servers) use the same hard-
ware configuration. We use the Ubuntu 20.04 with 100GB
hard disk, 8GB memory, and an Intel core 15-9500 CPU
desktop for each edge server. To build the web application,
we use the Django framework with Python, HTMLS5, CSS3,
and JavaScript. JQuery and Bootstrap libraries are used to
design the front-end of the website. We use Java with Spring
Boot framework to implement proxy and rules engine. The
oneM2M server uses Mobius based on the oneM2M standard
and the OCF server uses loTivity based on the OCF standard
and both of them use the MySQL database. Drools framework
is used in oneM2M server to provide rules-based service
scenarios whereas the OCF server uses rules resources in
IoTivity.

Table 2 shows the development environment in IoT
devices. We use Raspberry Pi 4 with Ubuntu 20.04 64-bit,
Quad Core 15GHz 64-bit CPU, 4GB Memory, and 32GB
MicroSD Card as the IoT device to collect data. Both devices
use Python with Flask framework to connect to sensors.

VOLUME 11, 2023

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

IEEE Access

TABLE 2. Development environment for loT devices.

Hardware Software
Ubuntu 20.04 | Language Python 3.8, Java
(0N . ;
64-bit o]]
Application | Visual Studio Code
Raspberry Quad Core
Pi 4 CPU | 15GHz 64-bit Flask
Model B —
Memory 4GB Io.T1.v1ty .
Framework | (for IoTivity device)
MicroSD nCube-Thyme
Card 32GB (for nCube device)
«‘:(i e
"ii:,;:?
\
(a) (b) ()

FIGURE 9. Photos of sensors deployed in our experiment; (a) Dust sensor,
(b) Temperature sensor, (c) Humidity sensor.

(b)

FIGURE 10. loT devices with sensors; (a) nCube device with dust and
humidity sensors, (b) loTivity device with temperature sensor.

TABLE 3. Sensors output in our experiment.

Sensors Output Description

PM2.5: Fine particulate matter with a diam-
eter of 2.5 microns or less (ug/m?)
PM10: Fine particulate matter with a diam-
eter of 10 microns or less (jg/m3)
Environment temperature (degree Celcius)

Environment humidity (%)

Dust sensor

Temperature sensor
Humidity sensor

We use Visual Studio Code to develop applications. One
device uses the IoTivity framework (called IoTivity device) to
connect to the OCF edge server and the other uses the nCube
framework (called nCube device) to connect to the oneM2M
edge server.

Figure 9 presents the photos of sensors; (a) dust sensor
(SDS011), (b) temperature/pressure sensor (BMP280) and
(c) temperature/humidity sensor (DHT11). Table 3 shows
output of sensors in our implementation.

Figure 10 describes IoT devices with sensors in our imple-
mentation work; (a) nCube device connects to humidity and

VOLUME 11, 2023

"useprotocol”: "http",
"ose"i §
"cbhost™: "192.168.0.3",
"chport": "7579",
“cbname®: "Mobius",

oneM2M edge server
(192.168.0.3)

"cbeseid": "/Mobius",
"mgttport™: "1883"

container

-subscription

"parentpath": "/device0l",
sub-data "ctname": "data"
}
1.
{ '
. "parentpath": "/device0l/data", !
"subname”: "sub-data", :
"nu": "mgtt://AUTOSET"

FIGURE 11. Information registration from nCube device (“device01”) to
oneM2M server.

oneM2M edge sever

Drools-Based Rules Engine

" Drools” "} | KETI nCube’}
‘Framewarki | Framewark._ |

MQTT Subscribe Client

Event Handler

Drools Configuration

;\1\
&

Rule Controller D’z"'s

Profile

FIGURE 12. Registered rule in oneM2M server.

dust sensors while the IoTivity device connects to the temper-
ature sensor.

B. IMPLEMENTATION RESULTS OF THE

PROPOSED SYSTEM

Figure 11 shows the device information config in nCube
device to register to oneM2M server. The oneM2M standard
APIs used a resource-based data model to perform CRUD
request operations on the target resource. This figure shows
the resource structure of oneM2M services. Common Service
Entity (<CSE>) has multiple <AE> (application entity), but
one <AE> has to be under one. A <CSEBase> resource
represents a CSE and serves as the root resource for all
resources that are residing in the CSE. An <AE> resource
represents an Application Entity that is registered to a CSE.
An <AE> resource supports attributes such as identifiers,
contact information, status, and capabilities of the Appli-
cation Entity. Each <AE> can have multiple <container>
indicating the data inside that <AE>. Containers describe
attributes of the data and child resources. Each <container>
has one <contentInstance> which represents a data instance
and one <subscription> contains subscription information for
its “‘subscribed-to’’ resource. In our work, we use Common
Service Entity (<CSE>) as the Mobius server. Application
object (<AE>) is the name of nCube device is “device01”.
The application data resource is collected from sensors.

16103

IEEE Access

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

OCF edge server

OCF Rule Resource

| Rule Evaluator |
meta (deviceName)="device02" or !

i /12 meta(deviceName) = "serverOl" & !
Rule Expression[Expression |} -datal="" _______ ... !
Resource ‘ Profile

Resources

| Rule Other

Rule Action
Resource

Sensor Resoure

| OCF Post Handler |

FIGURE 13. Registered rule in OCF server.

Web Application

File System

request
Client Web Server URLs Views

Browser response
l« .

Django Application

Models mysaL
[database|

Templates

Static files

FIGURE 14. Web application in the edge server.

Figure 12 shows the registered rule in the oneM2M server
from the client. The Drools rule profile is stored in a rule
controller in the rules engine. When receiving data from
nCube device (device name is “‘device01’’), send data to
the Action method. The Action method will create an OCF
message and send data to OCF edge server. If the rule is not
satisfied (device name is not “device01”’) and the device is
registered, data will be stored in the MySQL database and
not trigger the Action method.

Figure 13 presents rule registration in the OCF edge server.
Rule Evaluator evaluates received messages, and identifies
key elements in the message (i.e. device name, data). The
logical expression in the Rule Expression Resource includes
checking whether the message is coming from the IoTiv-
ity device (““device02’’) or coming from the oneM2M edge
server (‘“‘server01”’) and checking if the data is available.
Action in the Rule Action Resource includes the address to
send data to Action Handler to perform the next step.

Figure 14 depicts the simplified flow of a web request from
a visitor’s browser to the Django service in the edge server
and back. Both edge servers use the same template and design
for web services. Clients send a request to the web server
through the interface in the web browser. Then, the web server
will access to MySQL database and respond to client history
sensor data.

Figure 15 presents the interface of web service in the
oneM?2M edge server (the same interface in the OCF edge
server). It provides the data visualization function when cus-
tomers want to monitor the data collected from sensors.

16104

N

FIGURE 15. Web service interface in edge sever.

Demo Tree ~ I

& c QO D 127.0.0.1:8000/hc

— Temperature History

- - = Humidity History

Lol & \ “-" Air Quality History

FIGURE 16. Data visualization of Web services in the edge server.

Client Client
—= ——=
5] (6]

oneM2M edge server OCF edge server

Web Application Web Application

o response
- -

@ Mobius Platform loTvity Platform @
e

i @ response -
(2]

| response

| response

loTvity
Device

(TX2) Sending data from devices to edge servers respectively
(@X 4] Exchange data between two edge severs
© O web services for data visualization

FIGURE 17. Testing scenario in our implementation.

Figure 16 depicts the implementation result of the edge
client for data visualization. When clients click to button,
it provides new sensor values collected and history data of
dust, temperature, and humidity sensors.

V. PERFORMANCE EVALUATION
In order to evaluate the performance of our proposed system,
we collected the time delay of all processes between devices,

VOLUME 11, 2023

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

IEEE Access

ms)
o ©
o o

Time delay (
ey
o

N
=]

% 5 10 15 20 25 30

Number of times

FIGURE 18. Time delay of sending data from nCube device to oneM2M
edge server.

% 5 10 15 20 25 30

Number of times

B [=)) o]
o o o

Time delay (ms)

N
=]

FIGURE 19. Time delay of sending data from loTivity device to OCF edge
server.

% 5 10 15 20 25 30

Number of times

w
o

Time delay (ms)
= [N]
o o

FIGURE 20. Time delay of sharing data from oneM2M edge server to OCF
edge server.

edge servers, and clients including sending data from IoT
devices, exchanging data between two servers, and accessing
data visualization through the Web application. Figure 17
presents 6 testing scenarios in our experiment (3 testing
processes in each server). Each process is tested 30 times and
recorded.

Figures 18 and 19 show the results of evaluating the net-
work communication time delay of sending data from devices
to edge servers. In Figure 18, the time delay when sending
sensor data from the nCube device to the oneM2M edge
server range from 52 ms to 65.4 ms. Whereas, figure 19 shows
that the connection time delays between the IoTivity device
and the OCF edge server are between 70 ms to 90 ms.

Figures 20 and 21 present the results of evaluating the time
delays of exchanging data between two edge servers. When
sharing data from the oneM2M edge server to the OCF edge
server, the time delays are between 12 ms and 38 ms as shown
in figure 20. In figure 21, the delays range from 10 ms to
33 ms in sharing data from OCF edge server to oneM2M edge
server.

Figures 22 and 23 present the results of evaluating the
network communication time delays for accessing data
visualization through the oneM2M Web service and OCF

VOLUME 11, 2023

N w
o o

Time delay (ms)
=
o

% 5 10 15 20 25 30

Number of times

FIGURE 21. Time delay of sharing data from OCF edge server to oneM2M
edge server.

% 5 10 15 20 25 30

Number of times

15

=
o
o o

Time delay (ms)
w
o

FIGURE 22. Time delay of accessing data visualization through oneM2M

Web service.
150|‘ | ‘|| ‘| | | H ‘||

% 10 15 20 25 30

Number of times

FIGURE 23. Time delay of accessing data visualization through OCF Web
service.

Time delay (ms)
=
o
o

(%]
o

5

180 145.63 14446

140
120
100
80.07
an
- 654
60
40
209 2001
]
(b} {c)

moneM2M server m OCF server

Time delay (ms)

FIGURE 24. Average time delay comparisons between oneM2M and OCF
server; (a) getting data from devices, (b) exchanging data to other edge
servers, (c) data visualization from client web services.

Web service. Figure 22 shows the delays in accessing
oneM2M Web service are between 122.43 ms to 166.42 ms.
Whereas, the time delays of accessing OCF Web service are
between 117.39 ms and 172.08 ms in figure 23.

Figure 24 describes the average time delay comparisons
between the oneM2M edge server and the OCF edge server.
The average time delays of oneM2M in each process are

16105

IEEE Access

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

65.4 ms, 20.04 ms, and 145.63 ms while the results of OCF
sever are 80.07 ms, 20.01 ms, and 144.46 ms respectively.
We can see that the time delays in the processes of the two
edge servers are almost the same.

VI. CONCLUSION
Nowadays, with the development of IoT technologies, there
are numerous [oT platforms in development. However, each
platform has its own way of managing and communicating
with IoT devices. In this paper, we propose a schema for
interoperating between oneM2M Mobius and OCF IoTivity
platform. The goal is that they can connect and exchange
sensor data with each other. To solve this, we use a proxy
with the rules engine to operate the process. Edge servers
are connected to IoT devices with compatible platforms to
collect data from sensors. Then, the proxy in each server will
process, and create a message to exchange data with the other
server. Besides, we also built a Django web application to
provide services that allow clients can view sensor data (dust,
temperature, and humidity sensors). Our experimental results
show proposed system is suitable for real-world applications.
In the future, we plan to extend our research to integrate
other IoT platforms such as AllJoyn, Google Weave, and
Apple HomeKit. In addition, we will research to improve
delay time when exchanging data between platforms.

REFERENCES

[1] K. Ashton, “That ‘Internet of Things’ thing,” RFID J., vol. 22, no. 7,
pp. 97-114, Jun. 2009.

[2] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A survey on 5G networks for the Internet of Things: Communication
technologies and challenges,” IEEE Access, vol. 6, pp. 3619-3647, 2018.

[3] A. Paul and R. Jeyaraj, “Internet of Things: A primer,” Hum. Behav.
Emerg. Technol., vol. 1, no. 1, pp. 37-47, Jan. 2019.

[4] J.Kim, S.-C. Choi, J. Yun, and J.-W. Lee, ““Towards the oneM2M standards
for building IoT ecosystem: Analysis, implementation and lessons,” Peer-
Peer Netw. Appl., vol. 11, no. 1, pp. 139-151, Jan. 2018.

[5] J. Koo, S.-R. Oh, and Y.-G. Kim, “Device identification interoperability in
heterogeneous IoT platforms,” Sensors, vol. 19, no. 6, p. 1433, Mar. 2019.

[6] OneM2M Specification. Accessed: Sep. 28, 2022. [Online]. Available:
https://www.onem2m.org/technical/published-specifications

[71 OCF Specification 2.2.5. Accessed: Sep. 28, 2022. [Online]. Available:

https://openconnectivity.org/developer/specifications

AllSeen Alliance. AllJoyn Open Source Project. Accessed: Sep. 28, 2022.

[Online]. Available: https://github.com/alljoyn/alljoyn.github.com/wiki

[9] X. Costa-Pérez, A. Festag, H.-J. Kolbe, J. Quittek, S. Schmid, M. Stiemer-
ling, J. Swetina, and H. van der Veen, “‘Latest trends in telecommunication
standards,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 2,
pp. 64-71, Apr. 2013.

[10] J. N. S. Rubf and P. R. L. Gondim, “IoMT platform for pervasive health-
care data aggregation, processing, and sharing based on oneM2M and
OpenEHR,” Sensors, vol. 19, no. 19, p. 4283, 2019.

[11] H. Sun, C. Zhang, J. Si, and W. Xu, “Smart home system design and
implementation based on oneM2M,” in Proc. 2nd Int. Conf. E-Commerce
Internet Technol. (ECIT), Mar. 2021, pp. 344-347.

[12] A. Muhammad, B. Afzal, B. Imran, A. Tanwir, A. H. Akbar, and G. Shah,
“OneM2M architecture based secure MQTT binding in Mbed OS,” in
Proc. IEEE Eur. Symp. Secur. Privacy Workshops, Jun. 2019, pp. 48-56.

[13] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, “Toward semantic
interoperability in oneM2M architecture,” IEEE Commun. Mag., vol. 53,
no. 12, pp. 35-41, Dec. 2015.

[14] H. Park, H. Kim, H. Joo, and J. Song, ‘“Recent advancements in the
Internet-of-Things related standards: A oneM2M perspective,” ICT Exp.,
vol. 2, no. 3, pp. 126-129, Sep. 2016.

[8

16106

[15]

(16]

[17]

(18]
[19]
(20]

(21]

(22]

(23]
(24]

(25]
[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

(40]

L. Richardson and S. Ruby, RESTful Web Services. Sebastopol, CA, USA:
O’Reilly Media, 2008.

A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and
A. F. Skarmeta, “‘Semantic web of things: An analysis of the application
semantics for the IoT moving towards the IoT convergence,” Int. J. Web
Grid Services, vol. 10, nos. 2-3, pp. 244-272, 2014.

OCEAN: A Global Alliance Based on Open Source and IoT
Standards. Accessed: Sep. 28, 2022. [Online]. Available:
http://developers.iotocean.org

ACME OneM2M CSE. Accessed: Sep. 28, 2022. [Online]. Available:
https://github.com/ankraft/ ACME-oneM2M-CSE

Oasis SI OneM2M Server. Accessed: Sep. 28, 2022. [Online]. Available:
https://github.com/iotoasis/SI

Open Connectivity Foundation. Accessed: Sep. 28, 2022. [Online]. Avail-
able: https://openconnectivity.org

H. S. Oh, S. B. Seo, G. T. Lee, W. S. Jeon, and M. G. Lee, “OCF-to-
ZigBee (02Z) bridging technique and IoTivity-based implementation,”
IEEE Internet Things J., vol. 8, no. 22, pp. 16418-16426, Nov. 2021.

C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application pro-
tocol for billions of tiny internet nodes,” IEEE Internet Comput., vol. 16,
no. 2, pp. 62-67, Mar. 2012.

S. Park, “OCF: A new open IoT consortium,” in Proc. 31st Int. Conf. Adv.
Inf. Netw. Appl. Workshops (WAINA), Mar. 2017, pp. 356-359.

loTvity: Open Source for IoT. Accessed: Sep. 28, 2022. [Online]. Avail-
able: http://iotivity.org/

PLGD. Accessed: Sep. 28, 2022. [Online]. Available: http://iotivity.org/
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of Things: A survey on enabling technologies, protocols, and
applications,” IEEE Commun. Surveys Tuts.,vol. 17, no. 4, pp. 2347-2376,
4th Quart., 2015.

M. Ganzha, M. Paprzycki, W. Pawtowski, P. Szmeja, and K. Wasielewska,
“Semantic interoperability in the Internet of Things: An overview from the
INTER-IoT perspective,” J. Netw. Comput. Appl., vol. 81, pp. 111-124,
Mar. 2017.

J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward a stan-
dardized common M2M service layer platform: Introduction to oneM2M,”
1EEE Wireless Commun., vol. 21, no. 3, pp. 20-26, Jun. 2014.

A. Garg and N. Mittal, “A security and confidentiality survey in wireless
Internet of Things (IoT),” in Internet of Things and Big Data Applications.
Cham, Switzerland: Springer, 2020, pp. 65-88.

J. Yun, I.-Y. Ahn, N.-M. Sung, and J. Kim, “A device software platform
for consumer electronics based on the Internet of Things,” IEEE Trans.
Consum. Electron., vol. 61, no. 4, pp. 564-571, Nov. 2015.

J. Yun, L-Y. Ahn, J. Song, and J. Kim, “Implementation of sensing and
actuation capabilities for IoT devices using oneM2M platforms,” Sensors,
vol. 19, no. 20, p. 4567, Oct. 2019.

S.Lee, G. Lee, G. Choi, B.-H. Roh, and J. Kang, “Integration of oneM2M-
based IoT service platform and mixed reality device,” in Proc. IEEE Int.
Conf. Consum. Electron. (ICCE), Jan. 2019, pp. 1-4.

J. Yun, R. C. Teja, N. Chen, N.-M. Sung, and J. Kim, “Interworking of
oneM2M-based IoT systems and legacy systems for consumer products,”
in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2016,
pp. 423-428.

S.-C. Choi, I.-Y. Ahn, J.-H. Park, and J. Kim, “Towards real-time data
delivery in oneM2M platform for UAV management system,” in Proc. Int.
Conf. Electron., Inf., Commun. (ICEIC), Jan. 2019, pp. 1-3.

1. Y. Ahn, N.-M. Sung, J.-H. Lim, J. Seo, and I. D. Yun, “Development of
an oneM2M-compliant IoT platform for wearable data collection,” KSII
Trans. Internet Inf. Syst.), vol. 13, no. 1, pp. 1-15, 2019.

C.Um, J. Lee, and J. Jeong, ““Virtualized oneM2M system architecture in
smart factory environments,” in Proc. 28th Int. Telecommun. Netw. Appl.
Conf. (ITNAC), Nov. 2018, pp. 1-6.

J.-C. Lee, J.-H. Jeon, and S.-H. Kim, “Design and implementation of
healthcare resource model on IoTivity platform,” in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2016, pp. 887-891.

Y. S. Mandza and A. Raji, “IoTivity cloud-enabled platform for energy
management applications,” IoT, vol. 3, no. 1, pp. 73-90, Dec. 2021.

T. T. Doan, R. Safavi-Naini, S. Li, S. Avizheh, and P. W. L. Fong,
“Towards a resilient smart home,” in Proc. Workshop IoT Secur. Privacy,
Aug. 2018, pp. 15-21.

S. Yoon, M.-H. Choi, and J. Park, “Implementation of smart farm devices
using open source software,” in Proc. 23rd Int. Conf. Adv. Commun.
Technol. (ICACT), Feb. 2021, pp. 205-209.

VOLUME 11, 2023

N. A. Tuan et al.: Enhanced Interoperating Mechanism Between OneM2M and OCF Platform

IEEE Access

[41]

[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

C. E. Kaed, I. Khan, A. Van Den Berg, H. Hossayni, and C. Saint-Marcel,
“SRE: Semantic rules engine for the industrial Internet-of-Things gate-
ways,” IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 715-724, Feb. 2018.
P. Browne and P. Johnson, JBoss Drools Business Rules. Birmingham,
U.K.: Packt Publishing, 2009.

Kuiper—An Edge Lightweight loT Data Analytics Software. Accessed:
Sep. 28, 2022. [Online]. Available: https://ekuiper.org/docs/en/latest/

E. Friedman-Hill, “Jess, the rule engine for the Java platform,” Sandia Nat.
Laboratories, 2008. [Online]. Available: https://www.sandia.gov/

X. Luo, Y. Fu, L. Yin, H. Xun, and Y. Li, “A scalable rule engine system
for trigger-action application in large-scale IoT environment,” Comput.
Commun., vol. 177, pp. 220-229, Sep. 2021.

C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-based
smart Homes,” in Proc. ACM Workshop Program. Lang. Anal. Secur.,
Oct. 2016, pp. 97-102.

M. Tao, K. Ota, and M. Dong, “Ontology-based data semantic manage-
ment and application in IoT- and cloud-enabled smart Homes,” Future
Gener. Comput. Syst., vol. 76, pp. 528-539, Nov. 2017.

J. Koo and Y.-G. Kim, “Interoperability of device identification in hetero-
geneous IoT platforms,” in Proc. 13th Int. Comput. Eng. Conf. (ICENCO),
Dec. 2017, pp. 26-29.

A. Ahmed, M. Kleiner, and L. Roucoules, “Model-based interoperability
IoT hub for the supervision of smart gas distribution networks,” IEEE Syst.
J., vol. 13, no. 2, pp. 1526-1533, Jun. 2019.

NGUYEN ANH TUAN received the B.S. degree
in applied mathematics and informatics from the
Hanoi University of Science and Technology,
in 2021. He is currently pursuing the integrated
master’s and Ph.D. degree in computer engineer-
ing with Jeju National University, South Korea.

His research interests include the develop-
ment of the Internet of Things, optimization, and
machine learning.

VOLUME 11, 2023

RONGXU XU received the B.S. degree in com-
puter science from the Yanbian University of Sci-
ence and Technology, China, in 2014, the M.S.
degree in computer engineering from Konkuk
University, South Korea, in 2017, and the Ph.D.
degree from the Mobile Computing Laboratory
(MCL), Department of Computer Engineering,
Jeju National University, South Korea, in 2022.
\ He has been a Postdoctoral Researcher with the
Big Data Research Center, Jeju National Univer-
sity, since March 2022. He is currently working as a Project Manager for
a research project with the National Research Foundation of Korea. His
research interest includes integrating edge computing with intelligent mech-
anisms for smart services. In addition, he studies optimization and machine
learning for smart homes, deep neural networks, and federated learning for
edge intelligent practice.

DOHYEUN KIM received the B.S. degree in
electronics engineering and the M.S. and Ph.D.
degrees in information telecommunication from
Kyungpook National University, South Korea,
in 1988, 1990, and 2000, respectively.

From 2008 to 2009, he was a Visiting
Researcher with the Queensland University of
Technology, Australia. He joined the Agency
of Defense Development (ADD), from March
1990 to April 1995. Since 2004, he has been with
Jeju National University, South Korea, where he is currently a Professor
with the Department of Computer Engineering. His research interests include
sensor networks, M2M/IoT, energy optimization and prediction, intelligent
service, and mobile computing.

16107

