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ABSTRACT Deep neural networks can be used to distinguish partial discharge (PD) signals despite their
complexity. This study analyzes the appropriateness of interpreting phase-resolved partial discharge (PRPD)
signals using a convolutional neural network (CNN) through the Shapley additive explanation (SHAP)
method. The generated PRPD signals were accumulated by applying AC voltage to four types of electrodes
with a polyethylene sheet, followed by their conversion into scattered images to construct a classification
model, CNN. The SHAP values for each pixel in the test images were then calculated. The result indicated
that the pixels around the 0 V line retained high absolute SHAP values in every label, and the average of the
summation of absolute SHAP values over all labels and all test images, which indicates the weight of each
pixel, shows a similar tendency. Additionally, insight tests of the two CNN models were conducted, and the
results showed that some structural defects could be detected by visualizing the SHAP values for each pixel.
Finally, the verification of parameter-and-data vulnerability showed that SHAP has sufficient endurance
against some types of instability in the data and model. Although the SHAP method lacks a perfect causal
model because of its origin, the results imply that in appropriate use cases, weights on classifications of
PD signals could be described by SHAP’s interpretability.

INDEX TERMS Convolutional neural network, diagnosis, machine learning, phase-resolved partial
discharge, Shapley additive explanations.

I. INTRODUCTION
In recent years, an increasing number of electric power
devices have been associated with higher voltages, higher
electric fields, and more complex environments. Therefore,
electric power equipment and devices should be more reliable
and durable. These circumstances have increased the need for
research on the diagnosis of electrical insulators.

Partial discharge (PD) measurement is a diagnostic tech-
nique used for electrical insulators in devices such as mortar
and other equipment [1], [2]. PD is recognized as a dis-
charge phenomenon, which emits a slight electrical signal
and light and causes incomplete electrical breakdown [3]
inside insulators. In general, the deterioration of the insu-
lator affects the PD signals, which are characterized by the
number, phase angle, magnitude, and repeating discharge
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pattern [4], [5], [6], [7], [8], and are sometimes depicted in the
schematic shown in Figure 1 and/or its variation. For exam-
ple, the abc-model shown in Figure 1 represents the solid
insulator and its deteriorated part as a capacitor. Cb, Cc, and
Ca in Figure 1 indicate the capacitances of the void/impurity
inside the insulator, the insulating part serially connected
to the void, and the rest of the insulator (healthy part),
respectively. PD occurs when the applied voltage exceeds
the dielectric strength of Cb. Once the discharge occurs, the
charge accumulation in Cb disappears, causing the potential
between both sides of the void to become equal. However,
when an oscillating voltage (for instance, AC voltage) is
applied, electric charges accumulate, then the threshold volt-
age is exceeded, discharge occurs again. In other words, the
deterioration of insulating materials and/or that of electric
products can be diagnosed by measuring the PD signals
under a high AC voltage (or pulsed inversion of DC voltage).
In particular, research on discharging phase patterns has been
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FIGURE 1. Analytical electrical circuit model of PD diagnosis.

conducted for many types of targets. Therefore, the phase-
resolved PD pattern is considered an important diagnostic
research technique.

On the other hand, in recent years, research, development,
and evaluation involving the automation of certain processes
of PD diagnoses have been increasingly conducted. This is
mainly because highly experienced workers are required to
perform diagnoses that exploit the PD patterns. For example,
the process of judging whether the signals are benign or
malignant for the system. Reference [9] reviewed and com-
pared lots of such diagnostic methods.

Recently reported studies that used deep neural networks
(DNN) and/or their variational techniques achieved high per-
formance, with an accuracy score more than 90 %. These
research absorbed and assimilated the latest machine learning
techniques, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and generative adversarial
networks (GAN). For example, a UHF PD signal dataset cre-
ated by a finite-difference time-domain simulation was trans-
formed into a two-dimensional spectral frame representation
using the short-time Fourier transform (STFT) method [10].
The STFT results were processed using a CNN model to
accomplish feature extraction and classification with an accu-
racy of 0.967, which was higher than that of the processes
using other machine learning methods. A GAN is used as an
additional option for data augmentation, which decreases the
cost of collecting and labeling data sources. Wang et al. used
a GAN and achieved a higher score than that of the origi-
nal datasets [11]. From another viewpoint, some researches
focused on the relation between learning data and learning
process. Mantach et al. discussed the difference of classi-
fied single-sourced and multiple sourced Phase Resolved PD
(PRPD) patterns when training [12]. As suggested by the
abovementioned results, it has been revealed that analyzing
signals that involve PD and applying deep learning has suf-
ficient potential to achieve high performance. Reference [13]
surveyed and arranged the tendency of the combination of PD
diagnoses and DNNs/CNNs and/or their variation.

On the other hand, most studies using deep learning have
failed to consider the causes of PD in associated electrical
models. In the actual use case, the prediction/classification

insights are equally significant as the result itself. This is
mainly because reasonable explanations are required to insist
on the indispensability of themaintenance of electrical infras-
tructure owing to its value and impact.

Thus, in our previous work [14], we discussed the relation-
ship between the physical phenomena associated with elec-
trical circuit models and several machine-learning methods.
The efficiency of conventional machine-learning methods for
application to phase-resolved PD signal data was clarified and
arranged. The present study is a variant of the previous study,
which attempts to connect the input data and DNN/CNNs.

However, the present study did not use electrical circuit
models. This is mainly because DNN/CNNs are black-box
models and are not necessarily analyzed completely in a
mathematical context. In other words, considering the cur-
rent advancements, it is extremely difficult to describe the
relationship between DNN/CNNs and physical phenomena.
This implies that no methods enable us to directly connect a
DNN/CNNmodel and an electrical circuit model; Thus, alter-
native methods should be used to evaluate the relationship
and/or usage [15].

This study used model-agnostic methods to explain the
DNN/CNN models, with a focus on the interpretability of
the models of the phase-resolved PD signals using a CNN
for different electrode systems. To exploit model-agnostic
methods, the relationship between the prediction results and
the input data is described. More important signals tend to
be visualized for each model and/or sample. Several methods
can be used to visualize the reasons for the pre-learned model
and/or prediction/classification results, such as local inter-
pretable model-agnostic explanations (LIME) [16], Shapley
additive explanations (SHAP) [17], and gradient-weighted
class activation mapping (grad-CAM) [18]. On the contrary,
there are methods that edit model itself and make it inter-
pretable. Mantach et al. reported the potential of attention-
based model and discussed the better usefulness of its com-
bination with grad-CAM [19].

Such methods can be useful, but some have complicated
or elusive methods for determining hyperparameters, cal-
culation burdens, or mathematical backgrounds [20], [21].
In addition, a considerable number of examples pertain to
the image recognition of concrete objects in the actual world,
for example, distinguishing an apple or a dog. However,
in the present study, the targets are images of the dot pattern
of electrical signals to prevent human beings from clearly
and immediately distinguishing a picture from others. Then,
by analyzing such methods, what the ‘‘interpretability’’ actu-
ally shows us of the models/results must be verified. This
is a basic analysis to test the interpretability of the entire
diagnostic system and its limitations. Moreover, it is impor-
tant to consider the application of machine learning methods
in actual appliances with respect to the mechanism through
which the data should be treated for actual use.

Hence, the present study aimed to verify the conformity
of what is explained in a CNN model. We attempted to
arrange the relationship between the inputs and outputs using
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FIGURE 2. Analytical processing model.

FIGURE 3. Schematic depiction of experimental PD measurement setup.

processed images of stacked PRPD data as input data for
CNN training, followed by calculating the SHAP value.
Moreover, the ‘‘insight’’ of the model, namely the results of
visualization, is examined to determine whether the values
are likely to be appropriate and/or useful. Finally, considering
both the results and theoretical background, we concludewith
the important points of the use of the SHAP method.

II. METHODS
An outline of the analysis process is shown in Figure 2. The
process was divided into four parts: (1) PD measurement,
(2) data preprocessing, (3) supervised learning with a CNN,
and (4) evaluation of the resulting data.

A. PD MEASUREMENT
Figure 3 shows the experimental setup used for the PD mea-
surements. A polyethylene sheet specimen with a thickness
of 0.1 mm was used as the target for diagnosis. For the PD
experiment, a cylindrical electrode was used as the lower
electrode, as shown in the lower-left part of Figure 3. The
upper electrode was an electrode of types A–D, as shown
in Figure 4. The upper and lower electrodes were made of

FIGURE 4. Schematic depiction of the upper electrodes.

brass. Note that the reason for using such different electrodes
is to make verifying the factor affects on this measurement
clearer. The sample’s detail deterioration-status and/or the
mode of PD (= different PD types, for examples, corona,
surface, void, slot discharge, etc.) is not treated in this
paper to simplify the verification process. B010 (band-pass
range:15–150 kHz, 3 dB, manufactured by Fujikura Dia
Cable Ltd.) was used as the PD detector for the measurement.
The applied voltage was monitored along with the PD sig-
nal from B010, using a Tektronix DPO 4034 oscilloscope.
The frequency of the applied power voltage was 60 Hz.
The sample interval and recording length of the oscilloscope
were 100 ms and 10,000 points, respectively. A total of
4,000 measurements were performed for each type of elec-
trode, and the sample was exchanged after every 200 mea-
surements to avoid unexpected deterioration. To maintain the
maximum PD charge within the range of 800–3,000 pC for
all measurements, the applied voltage was set in the range of
0.8 to 1.5 kV.

B. PD DESIGN OF CNN LAYERS
CNN is an advanced option for DNNs. Convolutional neural
networks (CNN) are often utilized for image recognition.
A highly complex network structure and several tuning tech-
niques enable the learning model to have adequate weight
coefficients to predict labels precisely. The layer designs of
the CNN used in the present study are listed in Table 1.
‘‘Normal network’’ is the standard model in this paper,
and ‘‘narrowed network’’ is the modified network which is
notably similar to the normal network; however, some con-
volution parameters and the number of usage of max-pooling
execution is slightly different from the normal.

C. DATA PREPROCESSING
An example of raw PD signal data and smoothed applied volt-
age data is shown in Figure 5. In the experiment, 4,000 mea-
surements were recorded for each electrode. In the present
study, the phase angle dependence of the PD signal is reflec-
tive of the electrode type. Considering the construction of
the CNN models in this study, feature values are the binary
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TABLE 1. Design of CNN layers. ‘‘Normal network’’ is used for majority of
the analysis as the following chapters, and ‘‘Narrowed network’’ is used
for the insight test in Chapter 3-C.

values of each pixel in an image of the stacked PD signal
data. Therefore, owing to the limitations of data acquisition
and preprocessing, we exploited cut binary-images converted
from the PRPD diagram data, whose black dots indicate
the existence of an electrical signal at the phase point, as
previously shown in the lower left of Figure 2. The total
size of the PD image dataset (original image dataset) was
16,000, which did not contain any augmented data, and the
numbers of training, validation, and test data were 12000,
2000, and 2000, respectively. Note that the limitation of the
batch processing and batch size (32), some images are not
actually used on each epoch (for example, the actually chosen
number of test data is 32× 62= 1984 (< 2000) on each test).

D. SHAP AND ‘‘GRADIENT EXPLAINER’’
The straightforward interpretability of some machine-
learning methods, especially for DNNs, has not been proven.
The straightforward interpretability of a machine learning
method remains unproven, particularly for DNNs. One plau-
sible way to connect the results of a prediction to the learning
model is to overhaul the contribution of each element of a
datum [22]. In this study, ‘‘Gradient explainer,’’ a package
from the SHAP methods was used [23]. Gradient explainer
consists of ‘‘Integrated gradient’’ [24] and SHAP. SHAP is

FIGURE 5. Examples of raw PD signal data from electrode types:
(a) A, (b) B, (c) C, and (d) D. The applied voltage (set value) and PD signal
voltage corresponds to the black oscillating line and red scatter plots,
respectively.

an additive method so that it can be applied after the creation
of networks is completed. A brief comparison of SHAP and
similar methods’ features is shown in Table 2. In short, SHAP
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TABLE 2. Brief comparing of SHAP and relate methods.

has useful and unique mathematical properties that make the
comparison of each result easier than other similar methods;
Let g is a function of explanation model, z′j ∈ {0, 1}M is
called as the coalition vector, which means the existence or
not-existence of each feature, M is the maximum size of
the coalition vector, φj ∈ R is Shapley value [22], which
indicates the attribution of feature-value j, f is the original
model, x is the target instance, and x ′ is x’s correspond-
ing simplified-expression as the coalition vector (simplified
input). Then, as the definition of SHAP, g is described as
followings;

g
(
z′
)

= φ0 +

M∑
j=1

φjz′j (1)

SHAP satisfies ‘‘Local accuracy’’, which requires the match
of f(x) and g(x ′), and indicates which the summation of
feature contributions must be equal to,

f (x) = g
(
x ′

)
= φ0 +

∑M

j=1
φjx ′

j (2)

‘‘Missingness’’ is

x ′
j = 0 ⇒ φj = 0 (3)

and ‘‘Consistency’’ is, roughly speaking, SHAP value does
not decrease when the original model f changes to its
alternative f’ so that some simplified input’s contribution
(= marginal contribution of a feature-value) increases or
stays the same. Note that the detail of SHAP’s mathematical
property is described in [17] and [21].

The entire process of the gradient explainer is illustrated
in Fig. 6. First, the data to be explained (data-to-explain) by
SHAP, the machine-learning model to be explained (model to
evaluate, as a pre-learned Model) and bulk data for training
or testing the model (data-for-test) are prepared. Second,
a datum of the compound of datum-to-explain and datum-for-
test) with a rate of 1 – α: α is created (samples_input). Third,
after creating considerable data according to the abovemen-
tioned steps, the data are input to themodel-to-evaluate. Then,
the gradients corresponding to the pairs of the model and data
are calculated, just as intermediate products of inferences.

FIGURE 6. Data-flow of SHAP (Integrated Gradient).

TABLE 3. Precision, recall, F-value, and accuracy of each label of the
PRPD image data (128 × 128 pixels).

On the other hand, the subtraction of the bulk data (here
the same as the second step) from the data-to-explain is
calculated (samples_delta.) In this case, the subtraction refers
to that of the value of each pixel. Finally, the gradients were
multiplied with the corresponding sample_delta(s), the mean
was calculated, and the result of SHAP (SHAP value) is
obtained.

Note that the gradient explainer shows a Shapley value
for the result of each integrated gradient method so that it
contains an approximation (Monte Carlo method-like parts)
in the calculation to reduce the calculation burden.

E. LEARNING AND PREDICTION PROPERTY OF CNNS
Table 3 shows the scores of the prediction test performed
by the CNN defined in chapter 2-C. Note that the accuracy
is defined as the value obtained by dividing the number
of correct predictions by the total number of predictions.
TP refers to a true positive, the result of a positive prediction
that is also equal to the actual label. Similarly, TN, FP, and
FN refer to true negatives, false positives, and false negatives,
respectively. Accuracy was denoted as (TP of all labels) / (all
test data). Similarly, ‘‘recall’’ is defined as (TP) / (TP + FN),
precision is defined as (TP) / (TP + FP), and the F-value is
defined as 2 × recall × precision / (recall + precision).
According to the table, the models created by sufficient

quality of data and contain a reasonable network structure
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FIGURE 7. Binary images of PRPD, whose sign from (a) to (g) correspond
to those of Figure 8. The label in each image is an ID name.

performs with an accuracy of over 96 %. It should be noted
that the score itself has low validity here because of SHAP.
The results of SHAP are not directly affected by whether the
predicted and true labels are the same; In other words, there
are no problems if the accuracy in the scope of this study is
not high.

III. RESULTS AND DISCUSSIONS
A. BASIC RESULT OF SHAP
Figure 7(a)–(g) show the original test data (= cut binary-
images of PRPD data) corresponding to the examples of the
results of SHAP shown in Figure 8(a)–(g). In Figure 8, the
upper left, upper right, lower left, and lower right figures
correspond to electrodes A, B, C, and D, respectively. Each
pixel position on the X-Y plane corresponds to the original
test data in Figure 7, like the left-bottom point (x, y) =

(0, 0). The red and blue pixels indicate high positive and
negative values, respectively. White pixels are of little/no
absolute value; therefore, they are not concerned about the
prediction. In this case, the number of prediction classes is
four (A, B, C, D), and each prediction-class-candidate can
have SHAP values, although three of the four candidates
are incorrect labels. In other words, although an image has
a false-predicted result, the SHAP values can be calculated
in accordance with the label chosen by the user. Therefore,
in this study, we preferentially choose the predicted labels
when there are no additional explanations. Notably, the sum-
mation of all the SHAP values at one pixel of all the candi-
dates of an image (for example, the summation of the SHAP
values at (64, 64) pixels in images A, B, C, and D) is almost
equal to 0. This is because the SHAP values shown in this
study were zero-adjusted in accordance with the properties
of SHAP, as previously described in chapter 2.

Some typical results were obtained. Some parts of the
dotted area, especially the area around the bottom baseline
(= around (x, 36), 0 V line) and some spots in the upper
half of the original picture data, tend to have large abso-
lute values (and their distribution) of SHAP. This result is
intuitively considered correct; However, the SHAP values
of the correct label are not necessarily larger than those
of the incorrect label, as shown in Figure 8(d)–(g). On the
other hand, the lower-left and upper-half parts of images in
Figures 8(a) and (b) show the dotted red and/or blue pixels
in the area corresponding to the void space (= no signal
detected) of the original picture data. Another typical feature
is that the SHAP values corresponding to electrodes C and D
are smaller than those of electrodes A and B. Figure 9 shows
the average SHAP values of each label. This indicates that the
aforementioned tendency is statistically correct.

The results of the SHAP values show a significant number
of patterns; Thus, a comprehensive treatment is required to
make practical use of the results.

B. EVALUATION OF THE WEIGHT OF EACH PIXEL
To introduce the weight of each pixel, it seems good that
the absolute value of each pixel is added; If the SHAP value
(not the absolute value) for each pixel is simply added, the
addition becomes 0 for all pixels, as shown in Figure 10
and already explained in chapter 3-A. To prevent this, SHAP
valuesmust be converted into absolute values before addition,
and the resulting values indicate the weight of each pixel.
Hence, Figure 11 shows the average SHAP values of ‘‘the
summation over all test data’’ of ‘‘the summation of absolute
SHAP values over all labels’’ on each pixel (average values
of the summation of absolute SHAP values over all labels and
all test images on each pixel.)∑

test data
∑D

labelA |(SHAP value)|
(number of test data)

(4)

From the result, the weights of the pixels in the lower side
of the picture are relatively high, particularly around the area
corresponding to the 0 V line of the PD signals. Therefore,
the contribution of the lower-amplitude and wide-phase parts
of the images was generally proven to be high in this case.
Note that this is a comprehensive tendency and every picture
in the data has the same/similar tendency, and that individual
evaluation should be considered at the same time in an actual
use case.

C. INSIGHT TEST WITH GRADIENT EXPLAINER
Figures 12 (a) and (b) show the results when the trained neural
network was changed from a normal network to a narrowed
network. A comparison of the properties of each layer of both
networks is presented in Table 3. The narrowed network is
intentionally ‘‘compressed’’ at its creating CNN layer stage
so that the network can only affect a limited area in the
original area.

With the SHAP values, Figure 12 successfully visualizes
the accessible area of each network, such that the lower

VOLUME 11, 2023 4757



R. Kitani, S. Iwata: Verification of Interpretability of Phase-Resolved Partial Discharge Using a CNN With SHAP

FIGURE 8. SHAP images of PRPD, whose sign from (a) to (g) is correspond to those of Figure 7. Red square surrounding an
image indicates that its original PRPD image is predicted by the CNN model. Blue square shown in (f) indicates the image of
true label’s, which implies failure of prediction of the original image (f).
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FIGURE 9. Average SHAP values of each label.

FIGURE 10. Examples of the simple summation of SHAP values from
electrode A to D. It turns to be almost 0 in every image.

and right parts of the images on the narrowed network can-
not present the SHAP value; Therefore, both parts are not
included in the insight of the narrowed network.

D. PARAMETER AND DATA INVULUNERABILITY
In this section, we verify the results in terms of the hyperpa-
rameter invulnerability. For example, LIME [21], which is a
technique similar to SHAP, consists of arbitrary parameters;
Therefore, it is difficult to use LIME as an invulnerable visu-
alization method for machine learning. On the other hand,
two typical hyperparameters are used for calculating SHAP:
(1) random seed number, which is used to shuffle and ran-
domize the choice of samples, and (2) number of ‘‘Chimera
input data,’’ as shown in Figure 6 (in general, approaches

FIGURE 11. Average SHAP values of the summation of absolute SHAP
values over all labels and all test images on each pixel.

similar to Monte Carlo methods require a significant number
of samples to stabilize the results.) Hence, parameter tests
were conducted according to these parameters.

The results of the verification of the effects of changing
a random number used in the calculation algorithm and the
number of chimera samples used in the algorithm are shown
in Figure 13 and 14, respectively. The extracted results indi-
cate average values of the summation of absolute SHAP
values over all labels and all test images on each pixel.
(in the similar way as Figure 11.) In addition, Figure 15 shows
the result of the effect of changing the learning order of the
CNN model in a similar way. These results indicate that the
algorithm used in the gradient explainer was sufficiently vul-
nerable. In other words, the process of the gradient explainer
only requires 50 randomized chimera samples for each test
and is little affected by the choice of a random number.
Specifically, the required number in this case is significantly
small compared to the brute-force method, which requires
at least O(2N) per datum-division size N, and choosing a
gradient explainer as a method of evaluating the insight of
CNN is reasonable in terms of saving time and calculation
costs.

The properties shown above indicate that SHAPmay allow
the vulnerability depending on the creation stage of a CNN
itself just like the case of chapter 3-C, however, once the
model is created properly, it has a good parameter invulnera-
bility, and there seem to be few arbitrary factors compared to
LIME [21].

E. PRACTICAL AND THEORETICAL APPROPRIATENESS
Unfortunately, as mentioned in Chapter 1, there is no way to
reveal the real reasons for the judgementmade byDNN/CNN,
although SHAP can easily provide obvious visualization.
In other words, no causal relation was proven, and a corre-
lation between the result of the SHAP value and the actual
input data exists [25]; A relationship between the creation
process of each network and its output is also required. This is
critical for the diagnosis of PD signals because, as mentioned
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FIGURE 12. Insight test of the Two Images. Both images indicate that SHAP can evaluate the defects of the
network structure because the outputs of the narrowed network are not fully depicted.

in Chapter 1, such signal data cannot be distinguished by
humans at first glance.

However, from chapters 3-A to 3-C, SHAP is useful
in some cases, particularly in making the first test of
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FIGURE 13. Verification of the effect of changing a random number.
Average values of the summation of absolute SHAP values over all labels
and all test images on each pixel. when the random number inside the
calculation algorithm is changed.

FIGURE 14. Verification of the effect of changing the number of chimera
samples. Average values of the summation of absolute SHAP values over
all labels and all test images on each pixel. when the number of chimera
samples created and used inside the calculation algorithm is changed.

FIGURE 15. Verifying/Comparing the effect of changing the learning order
of the CNN model. Average values of the summation of absolute SHAP
values over all labels and all test images on each pixel.

a DNN/CNN as easy as possible. Moreover, other simi-
lar methods are less theoretically appropriate than SHAP,

owing to the mathematical properties, as explained in
chapter 2-D.

Ultimately, at this moment, a visualization method for the
insight of CNN/DNN should be used to simply ‘‘support’’ the
explanation of the obtained prediction results; For example,
as shown in chapter 3-C, the SHAP values can evaluate the
CNN/DNN whether the structure of the network is correct.

To improve the clarity of the relation between the input
and output, more research on structural causal models [26]
and/or transfer learning [27] may have the potential to allevi-
ate this disparity. Moreover, checking the prediction results
and SHAP values in another way, for example, a random
sampling test, seems important until the theoretical analysis
of DNN/CNN is sufficiently improved.

IV. CONCLUSION
In this study, phase-resolved PD signals using a CNN for
different electrode systems were analyzed, and the relation-
ship between their input and output was evaluated and visu-
alized through SHAP. The motivation of the research was to
validate the efficacy of interpretability, even to the targets
whose appropriateness human beings cannot easily under-
stand. After explaining the basic properties of the SHAP, the
results of a CNN model were validated. Moreover, we deter-
mined what should be done in the PRPD analyses with SHAP.
Our conclusions are as follows:

1. SHAP can be used to visualize the importance of each
pixel in PRPD images. Specifically, some discrete dotted
areas in the upper half of the image and around the 0 V line,
where the signal values are almost equal to 0, have relatively
high moduli of SHAP values.

2. To observe this tendency statistically, data manipulation
(summation and taking an average), was conducted. Subse-
quently, the SHAP values retained a similar tendency to 1.
Additionally, the result of the average SHAP values of ‘‘the
summation over all test data’’ of ‘‘the summation of absolute
SHAP values over all labels’’ on each pixel shows the weight
of each pixel, and the area around the 0V linemaintains a high
modulus of the SHAP values.

3. Insight tests of normal and narrowed networks were con-
ducted. The results indicate that SHAP reflects the network
structure well, so that a strange network can be detected via
visualization.

4. The effect of changing a random number, the number
of chimera samples used in the algorithm and the learning
order of the data of the CNN model was tested to verify
the parameter/learning-order vulnerabilities. Ultimately. The
vulnerabilities are low so that the SHAP has universality in
the range of after-preparation of the neural network.

5. Due to the limitation of theoretical appropriateness,
SHAP cannot explain the cause of the relationship between
input and output. However, SHAP is significantly useful in
some use cases, for example, a simplified test in a brute force
test’s stead or an early test of the network structure.

The above results indicate that it may be possible to order
and evaluate the impact of each model based on accuracy
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scores, despite not being perfectly quantitative. However,
some problems regarding visualization and comprehension
remain in CNN/DNN models. Future issues to be studied
include the following:

1. Revealing the relationship among the physical phenom-
ena, typical PD circuit model, and data science more directly,
including the deterioration of samples and/or types of PD.

2. Connecting what SHAP indicates to the structural causal
models and transfer learning.

In addition, actual use also requires the development of
‘‘white box’’ machine learning eagerly. The accuracy of a
specific model should be improved, and the best explainable
method to implement the model for actual use cases, such
as the maintenance of electrical appliances and equipment,
should be considered. Moreover, to clarify the difference in
each insight, the distinguished results obtained by human
experts should be compared with the results of the present
study. This would help to create a complementary inspection
system for humans and machines.
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