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ABSTRACT Potholes are one of the most important issues in African road-networks. They pose a major
threat to mobility and, with time, cause accelerated degradation of the underlying road infrastructure as well
as extensive vehicle damage. To address the need for improved infrastructure management, an advanced data
gathering solution is required. This paper presents one such solution. The pothole detection, classification
and logging (PDCL) system is under active development by Sensorit (Pty) Ltd in collaboration with the
University of Cape Town (UCT) Radar Remote Sensing Group (RRSG). This system represents the initial
step in Sensorit’s modular approach to producing fully autonomous vehicles for African markets. In this
paper, an overview of the PDCL system is presented and early results are shown. The efficacy of the system’s
unique combination of active infrared stereo vision and mmWave frequency-modulated continuous-wave
(FMCW) radar sensors is explored. Under various experimental conditions, range-Doppler maps (RDMs)
produced by the radar were unable to provide meaningful pothole detections. In contrast, processed depth
maps produced by the stereo vision system are demonstrated to successfully detect even shallow potholes.

INDEX TERMS Machine learning, radar, FMCW radar, road maintainance.

I. INTRODUCTION
Collaboration between Sensorit (Pty) Ltd, the University of
Cape Town (UCT) Radar Remote Sensing Group (RRSG)
and the University of Pardubice (UPA) is supporting devel-
opment of the pothole detection, classification and logging
(PDCL) system. The long term goal of this system is to enable
active avoidance of potholes for autonomous vehicles and
thus to reduce road accidents. Furthermore, the mapping of
individual pothole locations and properties may be used to
improve the rate and prioritisation of pothole repair.

The United States (US) department of transportation has
defined a pothole as a bowl-shaped hole with a minimum plan
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dimension of 150mm [1]. They assign a pothole severity level
based on the maximum depth of the hole from the surface of
the road. Classification of potholes for the purpose of repair
is, however, far more complicated than simply determining
the potholes’ dimensions. The specific repair action required
for each pothole is dependant on several properties, such
as the local road surfacing material, the state of the road
base material, and whether or not road surface cracking has
caused the pothole [2]. If these and other properties can
be measured and mapped, then road maintenance services
can manage their resources more effectively and prioritise
repairs.

Current pothole detection methods are typically cate-
gorised according to their utilisation of either vibration
sensing, 2D imaging or 3D reconstruction techniques [3].
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Accelerometer-based vibration sensing [4] requires that at
least one of a vehicle’s wheels pass through or over a pothole
for detection to occur. This is clearly undesirable, as tyre
damage may result and potholes in the middle of a lane
are unlikely to be detected. As such, vibration should ide-
ally only be used to validate detections made using other
sensors. Alternatively, traditional computer vision and con-
temporary machine learning algorithms have been applied
to 2D images captured using hyperspectral [5] and thermal
cameras [6] in addition to standard red, green, blue (RGB)
colour sensors [7]. Finally, 3D reconstruction methods make
use of more complex sensors such as lidar [8], structured
light cameras [9], time-of-flight cameras, and stereo vision
systems.

Absent from the preceding categories is any form of
radar-based detection strategy. While uncommon, the ability
of ground-penetrating radar (GPR) systems to successfully
detect potholes has been demonstrated [10]. Recently, simula-
tions have shown that the radar cross-section (RCS) of a pot-
hole at automotive radar frequencies is only significant if the
dielectric properties of the road surface are significantly dif-
ferent than those exposed within the hole [11]. Interestingly,
these simulations also reveal that the potholes’ wall curvature
and overall dimensions only marginally effect its RCS. Given
these findings, the initial development prototype of the PDCL
system comprises an active infrared stereo vision system and
a forward-looking 77GHz frequency-modulated continuous-
wave (FMCW) radar.

The two major elements of novelty presented in this work
can thus be summarised as (1) the combination of optical
and radar sensors for pothole detection and classification,
and (2) the targeted development of such a system for use in
developing countries with unique infrastructural challenges
and tight budget constraints.

The remainder of the paper is structured as follows.
Section II presents the PDCL system and provides an
overview of its hardware and software components. The intri-
cacies of capturing optical, radar and system metadata are
explored in Section III. Aspects of the experimental config-
uration used to test the system are presented in Section IV.
Section V reveals the results of early system trials and con-
clusions are drawn in Section VI.

II. SYSTEM OVERVIEW
A. HARDWARE
A block diagram of the PDCL system is presented in Fig. 1.
This diagram reveals all of the system’s major hardware
components and their interconnections.

An Nvidia Jetson Nano developer kit [12] is at the heart
of the system. Powered by the vehicle’s internal 12V battery
through the use of a DC-DC converter, the Jetson Nano serves
as the command centre from which all other components are
controlled. The Jetson Nano board also ensures that all sen-
sors interface and communicate with each other in a seamless
manner.

FIGURE 1. Block diagram of the PDCL system, illustrating all major
hardware components and their interconnections.

The AWR1843BOOST evaluation module from Texas
Instruments (TI) [13] is a complete 77GHz FMCW radar
solution. Its integrated patch antenna array consists of 3
transmit (TX) and 4 receive (RX) elements to enable object
detection in three dimensions. It is powered by an indepen-
dent DC-DC converter and communicates with the Jetson
Nano over a universal serial bus (USB) 2.0 connection.

In contrast, the Intel RealSense D455 [14] is an active
infrared stereo vision camera which is powered by and com-
municates over the same USB 3.1 port. It bundles an RGB
colour sensor, a pair of infrared imagers, and an infrared pro-
jector into a single package. Additionally, the D455 contains
a Bosch BMI055 inertial measurement unit (IMU), which is
useful for vibration-based validation of pothole detections.

The radar and stereo vision sensors are supported by the
NEO-M9N; a quad-band global navigation satellite system
(GNSS) unit which boasts a hot start time of 2 s, up to 25Hz
update rate, and horizontal positional accuracy up to 1.5m.

Finally, the Jetson Nano is connected to an external solid
state drive (SSD) for storage of large datasets. Communica-
tion with a host laptop is achieved over Ethernet.

B. SOFTWARE
There are three distinct software components that make up
the PDCL system: the control server, quick-look viewer and
processing chain.

Firstly, the control server runs on the Jetson Nano. In addi-
tion to performing several real-time processing steps, the
control server presents a web interface that allows the oper-
ator to control and monitor all aspects of the system using a
laptop and a web browser. Examples of real-time processing
steps include the colourisation algorithm which is described
later in this paper, and the stacking and compression of
sequential range-Doppler maps (RDMs) produced by the
AWR1843BOOST. The web interface includes a section for
live video feeds, where the D455’s colour and depth frames,
and the AWR1843BOOST’s RDMs can optionally be dis-
played. Additionally, the interface includes a map section
that displays the current location of the PDCL system and
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the uncertainty thereof. Numerous system parameters are dis-
played on the interface to provide a real-time overview of sys-
tem health. These parameters include system temperatures,
memory utilisation, processor load, remaining storage space,
sensor configuration details, and ambient weather conditions.
Furthermore, buttons are available to control the initialisation
and completion of dataset recordings.

As the name suggests, the quick-look viewer is a tool for
rapid verification of dataset integrity. During measurement
campaigns, each dataset can be immediately reviewed by the
system operator following its capture using the quick-look
viewer to check that it is readable, complete and usable.. This
tool is invaluable in the system prototyping and testing phases
where datasets may unintentionally become unusable. With
rapid integrity verification, experiments and data captures can
simply be repeated where errors may have occurred, before
leaving the test site.

Finally, the processing chain currently contains all compu-
tationally intensive and analysis-orientated processing steps
that are presently not performed by the control server on the
Jetson Nano. Examples of these processing steps include the
flattening procedure which is described later in this paper and
the time alignment of optical and radar data for analysis. In
future iterations of the PDCL system, this processing chain
will be tightly integrated into the control server for real-time
operation and analysis.

III. DATA ACQUISITION
A. OPTICAL
The Python wrapper for Intel’s C++ RealSense software
development kit (SDK)was used to interfacewith, and extract
data from the D455 sensor. In addition to control and config-
uration of the unit, the SDK exposes invaluable functionality
such as real-time pixel alignment between colour and depth
streams. When these streams are configured for the same
resolution and frames per second (FPS), synchronisation is
guaranteed between colour and depth frames. This, in addi-
tion to the sensor’s global shutters, makes the D455 ideally
suited for vehicle-borne pothole detection.

During system design it was decided to prioritise FPS
over resolution, despite the fact that the D455 produces more
accurate depth maps at higher resolutions. This decision was
driven by the requirement to capture several images of each
pothole at different ranges (and therefore scales) as the vehi-
cle proceeds. In the future, this may enable temporal analysis
for improved pothole detection, and supply as much data as
possible to any future detection/classification algorithm that
requires training data. A resolution of 640 by 480 pixels at
a rate of 60Hz was selected in an attempt to optimise the
trade-off between FPS and resolution for a reasonable data
rate. These parameters can, however, be adjusted in the con-
trol server to enable flexibility during experiment campaigns.

For bonnet-mounted sensing, the D455 was configured
for depths between 1m and 5.5m, which falls within Intel’s
recommendation. Sensor accuracy is quoted as ≤ 2% of

the depth [14], which means that its accuracy decreases as
a function of depth.

Initially, the synchronised colour and depth frames were
stored as matrices in separate datasets of an hierarchical
data format (HDF) file. However, this approach proved to be
impractical due to the associated high storage rate require-
ments and large file sizes. As such, it was decided to rather
encode and store the sequence of frames as video files.
To achieve this, each unsigned 16 bit depth map was trans-
formed into an RGB image in a process known as colourisa-
tion. Once colourised, standard video encoding could be used
to compress both the colour and depth streams, drastically
reducing storage rates and file sizes.

The colorize method provided in the RealSense SDK was
found to significantly stress the Jetson Nano’s central pro-
cessing unit (CPU). To avoid this, the colourisation algorithm
published in [15] was implemented in compute unified device
architecture (CUDA), to instead run on the Jetson Nano’s
graphics processing unit (GPU). A decolourisation algorithm
for depth map recovery was also implemented in CUDA as
part of the processing chain. Note that the inequality limits
presented in [15] were found to contain errors that prohibit
correct mapping to the hue colour map.

While this colourisation approach enables a significant
data rate reduction, it carries other disadvantages. Firstly, the
recommended hue colour mapping linearly varies hue while
keeping saturation and value constant, which constrains the
depth map to a maximum of 1529 unique values. As such, the
dynamic range of the depthmap is greatly reduced from 16 bit
to log2(1529) ≈ 10.5 bit. This quantisation introduces band-
ing in the colourised image and prevents true recovery of the
input depth map. Secondly, the hardware-accelerated video
encoders supported by the Jetson Nano (NVENC) are lossy,
which introduces additional error in the recovered depth map.
Further issues associated with colourisation include flying
pixels and depth inversion, which are both covered in detail
in [15].

To quantify the aforementioned quantisation error, a syn-
thetic depth map was passed through the colourisation and
decolourisation pipeline without any form of video encoding.
This synthetic depth map was generated by varying the depth
value linearly along a single axis between 1m and 5.5m.
Fig. 2 presents the quantisation error introduced during this
process. The error signal observed in this figure is consistent
with that of quantisation by truncation, with one exception;
the inequality imposed during colourisation and decolourisa-
tion cause the sign of the non-zero mean value to alternate at
the transition between limits. As such, the measured mean
value alternates between plus and minus half of the least
significant bit (LSB),

±
1
2
LSB = ±

1
2
(5.5 − 1)
1529

≈ ±0.147 cm. (1)

The measured root mean square error (RMSE) value in each
region also agrees with that expected of quantisation by
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FIGURE 2. Measured quantisation error introduced through colourisation,
presented as a function of depth. The mean value of the positive and
negative regions each agree with that expected of quantisation by
truncation and are illustrated by dotted horizontal lines.

truncation,

1
√
3
LSB =

1
√
3

(5.5 − 1)
1529

≈ 0.17 cm. (2)

These results show that it is desirable tominimise the required
range of depth values in order to minimise the effects of
quantisation.

Next, the compounded error attributed to quantisation and
encoding was assessed by passing the same synthetic depth
map through the entire colourisation, encoding and decolouri-
sation pipeline.

The effect of encoding the synthetic colourised depth map
using Nvidia’s implementation of VP8 is illustrated in Fig. 3,
where the RGB channels of the encoded frame are decom-
posed in 3(a) and the compounded error of quantisation and
encoding in the recovered depth map are presented in 3(b).
Significant levels of noise are clearly present in each of the

RGB channels of Fig. 3(a), which should ideally be composed
of perfectly linear segments. The hue colour mapping is seen
to consist of six segments in which a single channel’s value
is varied linearly. The transition between these segments cor-
responds to the point at which the polarity of the quantisation
noise’s mean value changes.

The RMSE of the error signal in Fig. 3(b) was calculated
to be 1.68 cm, approximately an order of magnitude greater
than that of the quantisation error in Fig. 2. This RMSE is
appreciable, since detection of potholes relies on searching
for fluctuations in the measured depth map in the order of
centimetres. Minimisation of this RMSE is therefore required
to avoid false detections.

Table 1 presents the RMSE and the minimum and max-
imum difference between the recovered and original depth
map for all hardware-accelerated video encoders supported
by the Jetson Nano.

When applied to the colourised synthetic depth map, the
H.264 and H.265 encoders from both vendors are seen to
outperform VP8 in RMSE and extreme values. Based on
its small extreme values and competitive RMSE, Nvidia’s

FIGURE 3. (a) RGB channels of the encoded, colourised depth map,
(b) compounded error of quantisation and encoding in the recovered
depth map. Encoding was performed using Nvidia’s implementation of
VP8.

TABLE 1. Error analysis for depth map recovery.

implementation of H.265 was selected for use in the PDCL
system.

It must be noted that while the synthetic depth map is
representative of bonnet-mounted measurements in terms of
spatial redundancy, the impact of temporal redundancy was
not considered in these tests. As a result, each encoder’s inter-
frame prediction is not taken into account. An investigation
into this is left for future work.

Finally, the importance of colourising disparity values (the
reciprocal of depth), rather than raw depth values is illustrated
in Fig. 4. The profiles presented in Fig. 4(a) and 4(b) are
both one-dimensional vertical slices through colourised depth
maps that were captured from the same stationary position,
in a similar experimental configuration to that presented in
Fig. 5. By colourising disparity, the number of quantisation
levels at close depth are increased [15]. As a result, the depth
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FIGURE 4. Comparison of RGB channels following colourisation using
(a) depth and (b) disparity values. The profiles presented in (a) and
(b) are one-dimensional slices through RGB images taken from the same
stationary bonnet-mounted perspective.

values are more spatially dispersed in Fig. 4(b) compared to
that of 4(a), and the dynamic range is better utilised.

B. RADAR
TI provides its mmWave SDK to enable configuration, con-
trol and data extraction from its suite of radars. As part
of the SDK, TI has developed demos that enable users to
begin working with their sensors rapidly. ThemmWave Demo
Visualiser is provided as a web-based interface that allows
users to interact with these demos over a serial connection.
This visualiser provided the foundation for interfacing with
the AWR1843BOOST using the Jetson Nano.

The baud rate of the serial connection used to interface
with the AWR1843BOOST is not high enough to support the
transfer of raw analogue-to-digital converter (ADC) samples.
As a result, the provided demos only output processed data
products, owing to their reduced data rates, such as the mag-
nitude of the RDM. Even so, the FPS of products such as the
RDM magnitude is highly constrained [16].
Table 2 presents the parameters used to configure the

AWR1843BOOST for data captures. These parameters were
carefully tuned to sustain the achieved output of 8 RDM
frames per second. At the maximum supported vehicle veloc-
ity of 5.5m/s the system captures 4 RDM frames of each
pothole over the 3.2m swath. While a maximum vehicle

TABLE 2. AWR1843BOOST parameters.

velocity of 5.5m/s is not acceptable for the final version of
the PDCL, it was sufficient for initial system tests.

Under the condition that detections were limited to only
potholes that appear directly in front of the bonnet-mounted
radar, it was hypothesised that the pothole returns could be
separated from those of clutter based on radial velocity.

C. METADATA
In addition to optical and radar data, the PDCL system stores
GNSS, weather and system configuration data in an HDF file.
Camera parameters include the depth scaling factor, whether
or not pixel alignment and disparity are enabled, image
dimensions, and camera temperature. GNSS values include
latitude, longitude, altitude, speed, and the error associated
with each of these. System information includes processor
load, remaining disk space, memory usage, and system tem-
perature. Finally, weather data queried by the system includes
ambient temperature, pressure, wind, and chance of rain.

This weather data may provide contextual information
to a future detection/classification algorithm. For example,
the sensitivity of such an algorithm might be dynamically
adjusted based on rainy conditions, where potholes might
be filled with water and present differently compared to dry
conditions.

Furthermore, GNSS information may contribute to a solu-
tion that tracks the state of any particular pothole over time,
provided each pothole can be uniquely identified on repeat
passes.

IV. EXPERIMENTAL CONFIGURATIONS
The bonnet-mounted sensor configuration for the PDCL
system is illustrated in Fig. 5. Both the D455 and
AWR1843BOOST are seen to be attached to the vehicle using
suction-cups and tilted for depression angles of 35◦ and 15◦

respectively. At a height of 0.9m above the road surface, the
lower and upper 3 dB points of the radar’s antenna intersect
the road at a range of 2.4m and 6.4m respectively. This
ensured overlap with the depth camera’s 58◦ vertical field
of view (FOV). A pothole of interest is present near the
rightmost edge of Fig. 5, but is obscured by the shade of
overhead trees. This pothole was used for both stationary and
moving tests. For clarity, the location of the pothole has been
enclosed by a dashed circle.
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FIGURE 5. Bonnet-mounted experimental configuration of the D455 and
AWR1843BOOST sensors. The remainder of the PDCL system was
positioned inside the vehicle. The location of a pothole of interest has
been highlighted in front of the vehicle.

V. RESULTS
A. OPTICAL
Initial stationary measurements saw the vehicle parked 1.8m
away from the pothole, as seen in Fig. 5. Visualisation of the
depth map proved challenging in this configuration due to
the pothole’s small (centimetre-level) deviation in the road
surface within the depth map’s dynamic range of several
metres. To address this challenge the depth map was flattened
by modelling the road’s curvature in the width and height
dimensions and then subtracting this model from the mea-
sured depth data. This was achieved by first computing the
reciprocal of the depth map to form a disparity map, then fit-
ting polynomials in the width and height dimensions through
the centre of themap. The intended effect was to transform the
perspective of the depth camera to that of top-down, such that
the extent of values was reduced and any deviations would be
easier to detect. The result of this procedure is presented in
Fig. 6(b).

The RGB image and disparity map of Fig. 6(a) and 6(b)
respectively are pixel-aligned to enable direct comparison.
While the pothole is relatively difficult to identify in the RGB
image, its presence is clear in the disparity map. Dashed cir-
cles have been used to highlight the location of the pothole in
the RGB image and disparity map. Note that the dimensions
of the disparity map have been reduced to aid in this visu-
alisation. In addition to the pothole, the gutter and sidewalk
on either side of the road present a significant deviation in
the otherwise mostly flat road surface. This explains their
prominence in the disparity map. The vertical dotted line
at a width value of 320 illustrates the location at which a
one-dimensional slice was taken through the disparity map.

Fig. 7 is the one-dimensional profile that corresponds to
the vertical dashed line in Fig. 6(b). A dashed ellipse has
been superimposed over the region of disparity values that
corresponds to the pothole.

Even in stationary tests, both the measured disparity map
and profile show significant variation between frames due to
the previously analysed compound quantisation and encoding
error. This compound error is visible in Fig. 7, where it
appears as additive noise. It is vital to note that the Open-
MAX VP8 encoder was used for all measurements in this

FIGURE 6. Pixel-aligned (a) RGB image and (b) relative disparity map of
the same pothole seen in Fig. 5, both captured using the D455. Note that
the disparity map in (b) presents relative depth values over the range of
20 cm.

FIGURE 7. One-dimensional relative disparity profile which corresponds
to the vertical dashed line in Fig. 6(b).

campaign, which took place before the detrimental impact of
this encoder was known. Future work therefore includes more
measurement campaigns using the superior Nvidia H.265
encoder.

Based on the presented results, it is hypothesised that
a convolutional neural network (CNN) trained on flattened
disparity maps should provide a suitable means of pothole
detection and classification. This is reasonable, given the
perceptible presence of the pothole in the flattened disparity
map of Fig. 6(b) and the fact that CNNs are inspired by

VOLUME 11, 2023 6015



D. A. Jordan et al.: Road to Repair (R2R): An Afrocentric Sensor-Based Solution to Enhanced Road Maintenance

FIGURE 8. (a) RGB image, (b) disparity map, and (c) RDM captured when
a corner reflector was placed next to the pothole of interest. For
comparison, the corner reflector has been removed to produce the RDM
in (d).

the way that the human visual cortex processes informa-
tion. Furthermore, the current generation of computational
resources, such as those available on the Jetson Nano, enable

deployment of deep layer CNNs at the edge. Lastly, for
classification tasks where objects are perceivable by humans,
collection of massive amounts of tagged training datasets
has become relatively easy, which has fuelled the training
of deep CNNs. These three factors have made CNNs the
best pattern classification machines for image-based object
classification where the images are in the bandwidth that is
human perceivable [17].

B. RADAR
As discussed previously, it was decided that the RDM was
the most appropriate option for pothole detection given the
platform limitations. This decision was based on the ability
of the RDM to separate the response of targets from clutter
based on radial velocity. The radial velocity associated with
stationary targets with respect to the moving radar is a func-
tion of their angle in both elevation and azimuth, measured
relative to the antenna boresight. Having orientated the radar
in the vehicles’ forward looking direction, objects located in
the centre of the road are perceived as having a greater radial
velocity than those located at the edges. Under the condition
that targets of interest are located within the bounds of the
road, the RDM can therefore be used to isolate targets based
on velocity and improve signal-to-clutter ratio (SCR).
Unfortunately, but not surprisingly, the results obtained

with the forward-looking radar are in linewith the simulations
obtained in [11], and the RCS of the pothole proved too small
to be reliably detected in the RDM. This was determined by
comparing the RDM produced for a scenario in which a small
corner reflector was positioned alongside the pothole, to the
RDM produced for a standalone, unmodified pothole. Fig. 8
presents this comparison of RDMs along with the associated
RGB image and disparity map which were captured by the
D455 simultaneously.

The location of the pothole and corner reflector have been
marked in the RGB image and disparity map of Fig. 8(a) and
8(b) respectively. Note that only the vertical sides of the cor-
ner reflector are visible in the disparity map. At the vehicle’s
velocity of 5.5m/s the Doppler spectrum was aliased around
the velocity axis. As such, the velocity axes of the RDMs in
Fig. 8(c) and 8(d) have been unwrapped. This is evidenced
by the aliased feed-through component. Comparison between
the RDMs reveal that the RCS of the pothole is not significant
enough to be successfully detected by the radar.

VI. CONCLUSION
This paper has provided an overview of the PDCL system
and presented results from initial measurements. A detailed
comparison of the error in depth map recovery for several
video encoders revealed that Nvidia’s H.265 encoder should
be used for all future measurement campaigns. Furthermore,
the disparity maps produced through depth map flattening
show great promise for CNN-based detection. Unfortunately,
however, the RDMs produced by the radar proved ineffective
in the detection of potholes.
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Future work includes the implementation of plane detec-
tion methods for depth maps, such as random sample con-
sensus (RANSAC). Alternative mappings for depth map
colourisation should be investigated to potentially improve
dynamic range. Finally, the temporal performance of the
videos encoders should be analysed for a more comprehen-
sive comparison.
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