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ABSTRACT Collecting large-labeled data is an expensive and challenging issue for training deep neural
networks. To address this issue, active learning is recently studied where the active learner provides informa-
tive samples for labeling. Diversity-based sampling algorithms are commonly used for representation-based
active learning. In this paper, a new diversity-based sampling is introduced for semi-supervised active
learning. To select more informative data at the initial stage, we devise a diversity-based initial dataset
selection method by using self-supervised representation. We further propose a new active learning query
strategy, which exploits both consistency and diversity. Comparative experiments show that the proposed
method can outperform other active learning approaches on two public datasets.

INDEX TERMS Active learning, semi-supervised learning, data-efficient deep learning.

I. INTRODUCTION
Collecting large-labeled datasets is important for the success
of modern deep neural networks. However, labeling from
humans is generally expensive. In some applications where
the labeling should be conducted by domain experts, building
a large-labeled dataset is extremely difficult, which limits the
development of deep learning. Active learning is a task that
tries to address this issue where the active learning method
suggests informative data for labeling to annotators under the
limited budget of annotation.

The core component of active learning algorithm is
the query strategy for quantifying the usefulness of unla-
beled samples for selecting more useful samples for label-
ing at active learning cycles. Query strategies are used
for representation-based active learning where the meth-
ods select data that encode more diverse representational
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information. The k-means++ initialization [2], [4] and the
k-Center-Greedy algorithms [33], [45] have been widely used
for annotating a diverse set of samples. However, recent active
learning studies have been explored on supervised learning
setting where the unlabeled data is not used during training
of the model.

Recently, semi-supervised learning studies are widely
explored, which utilize both unlabeled data with labeled
data for the training of the model. By designing methods
to use unlabeled data during training, these studies improve
the model, which can reduce the need for labeling for the
success of deep learning. It is a natural choice to utilize both
ideas of semi-supervised learning and active learning for the
success of deep learning under the limited budget for the data
labeling.

In this study, we introduce a new semi-supervised active
learning method which suggests the data for labeling where
the model is trained with semi-supervised learning con-
ditions. Compared with previous active learning studies,
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the information gained from the labeling is changed under
semi-supervised learning and it is an important task to pre-
dict the information quantity of data for successful train-
ing under the limited annotation budget. For this purpose,
the proposed method consists of a diversity-based initial
dataset selection based on self-supervised representation and
a query strategy which uses both consistency and diversity for
semi-supervised active learning. The proposed method com-
bines consistency and diversity by using a consistency-based
embedding scheme. Our contributions are summarized as
follows:

1) A new initial dataset selection method based on
the diversity of self-supervised representation is pro-
posed for better starting active learning. The proposed
approach yields significantly more informative initial
datasets than traditional random selection methods.

2) A new active learning query strategy is designed for
semi-supervised active learning. Central to the method
is an embedding space that exploits both a sample’s rep-
resentational information and the consistency of model
predictions.

3) Comparative experiments have been conducted to ver-
ify the effectiveness of the proposed method. Our
method yields significant performance improvements
on two public datasets.

A preliminary version of the paper was presented in [9].
By building upon [9], we further introduce the analyses
to understand the characteristics of samples selected by the
proposed method. To understand the samples from initial
dataset selection approaches, class distribution imbalance
and sample diversity are measured in random selection, k-
means++ initialization step, and k-Center greedy algorithm
(please see Figure 4). We further examine the distribution of
sample embeddings which are calculated by self-supervised
representation learning. TSNE approach [41] is used to visu-
alize sample embeddings (please see Figure 5). To analyze the
samples in the active learning query strategies, consistency
and sample diversity are measured over different active learn-
ing approaches (please see Figure 6, Figure 7). Also, TSNE
visualization is introduced to show the limitation of a purely
consistency-based query strategy (please see Figure 2).
These comprehensive analyses will improve the understand-
ing of diversity-based sampling for semi-supervised active
learning.

II. RELATED WORK
In the following, we discuss related work in the fields
of semi-supervised learning, self-supervised learning and
active learning with a particular focus on diversity-based
sampling. As our work exclusively focuses on algorithms
based on image classification using deep neural networks,
we limit the discussion of related work to corresponding
lines of research. For a broader introduction into these
fields, we refer to the comprehensive survey of active
learning [35] and introductory material on semi-supervised
learning [10].

A. ACTIVE LEARNING
Recently studies on deep batch active learning follow one
of two streams of approaches: Uncertainty-based meth-
ods and representation-based methods. Uncertainty-based
active learning algorithms [14], [21], [30], [32], [40], [43]
select data on which the current model’s predictions are
not confident. Entropy-based sampling [21] uses Shannon’s
entropy [36], an information-theoretic measure of uncer-
tainty, to select samples for labeling, while margin-based
algorithms [30], [32], [40] aim at selecting samples close to
the current classifier’s decision boundary. Monte Carlo (MC)
dropout [14] is a more advanced approach for estimating
model uncertainty.

In the representation-based active learning, a diverse batch
of data which encode diverse representational information is
selected as a representative of the entire dataset. Coreset [33]
formulates representation-based sampling as core-set selec-
tion in a suitable embedding space and uses the k-Center-
Greedy algorithm for sample selection.

In addition to active learning methods that solely rely
on one of the previously discussed approaches, there are
approaches that combine both uncertainty and diversity.
BADGE [4] embeds unlabeled data into gradient embedding
space. The representation of the data in the gradient embed-
ding space is computed by multiplying the uncertainty by the
feature. The k-means++ clustering initialization is used for
selecting the samples on the gradient embedding space in [4].

B. SEMI-SUPERVISED LEARNING
Recent studies in semi-supervised learning have explored
pseudo-labeling [25] and consistency regularization [31].
Mean Teacher [39] uses consistency regularization based
on a teacher model. They utilize an exponential moving
average of model weights over previous training iterations.
MixMatch [7] employs the augmentation strategyMixUp [46]
and exploit both pseudo-labeling and consistency regular-
ization. Recently, FixMatch [37] combines pseudo-labeling
and consistency regularization in a simple way. Using both
weak and strong augmentation strategies to introduce a form
of consistency regularization, FixMatch achieves state-of-
the-art results across a variety of standard semi-supervised
learning benchmarks.

C. SELF-SUPERVISED REPRESENTATION
Self-supervised learning is used to learn low-dimensional
representations of data samples that extract useful infor-
mation from data [5], [11], [12], [16], [28]. To utilize
large-unlabeled data during training, the studies propose var-
ious pretext tasks. RotNet [16] predicts rotations of image
by 0, 90, 180, and 270 degrees. It has proven to yield powerful
image representations, which have been successfully used
in downstream tasks such as image classification. Context
encoders [28] learn semantic image representations by pre-
dicting large masked areas of an input image. SimCLR [11]
leverages augmentations for self-supervised representation
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learning. BYOL [18] relies on an online and a target network,
which interact with each other in order to learn meaningful
semantic representations.

Ideally, the self-supervised representations encode dis-
criminative features, which makes them be useful in down-
stream tasks [5]. In the context of supervised learning, deep
convolutional neural networks have shown to learn seman-
tically meaningful image representations from large-labeled
datasets on image classification tasks. The learned image
representations generalize well and can be transferred to other
vision tasks such as semantic segmentation [17] or image
captioning [22]. Consequently, there has been an increased
interest in learning good high-level representations of images
in an unsupervised manner.

D. SEMI-SUPERVISED ACTIVE LEARNING
Semi-supervised learning and active learning are studies
for minimizing the labeling effort required for neural net-
work training. Therefore, research exploring the integra-
tion of these two approaches seems natural and promis-
ing. Semi-supervised active learning has been previously
explored for time-series data, graphs, and natural language
processing [8], [19], [20], [26], [27]. In image classification,
proposed semi-supervised active learning algorithms have
mostly been based on straightforward combinations of exist-
ing algorithms in both fields [12], [29], [33], [38]. How-
ever, only little research has been conducted into exploring
active learning query strategies specifically constructed for
the semi-supervised learning setting. Gao et al. [15] propose
a consistency-based selection criterion, i.e. a criterion based
on concepts used in semi-supervised learning, and report
significant improvements over mere combinations of active
and semi-supervised learning algorithms.

Following this line of research, in this study, we pro-
pose a new query strategy for the semi-supervised active
learning, which utilizes the diversity-based sampling as well
as a carefully constructed embedding space. Our method
can automatically balance consistency and diversity based
on consistency-based embedding. Moreover, we introduce a
diversity-based initial dataset selection, which improves the
performance of the model in the follow-up active learning
steps.

III. DIVERSITY-BASED SAMPLING ALGORITHMS
Diversity-based sampling algorithms have been widely used
in active learning. The k-means++ initialization [4] and
the k-Center-Greedy algorithm [33], [45] are representa-
tive approaches. Let D denote the set of labeled data. The
diversity-based sampling iteratively select data based on their
distance to the closest selected data. For the i-th sample, the
distance is calculated as

di = min
j∈D

∥∥f i − f j
∥∥
2 , (1)

where di represents the L2-distance between the features of
data f i, and the features of the closest data in D. The data is

selected as

p
(
f = f i

)
=

d
1
T
i∑Nd

j=1 d
1
T
j

(2)

where p
(
f = f i

)
represents the probability of selecting the

i-th data. T denotes a balancing hyperparameter. Nd denotes
the number of labeled data in D. After each sampling step,
the set D and the distances are updated before selecting
next data. This is iterated until the target number of data is
selected.

The connection between the k-means++ initialization and
the k-Center-Greedy algorithm becomes clear when consid-
ering different values of T . For T → 0, p (f ) converges
to a ‘‘one-hot’’ distribution, which precisely corresponds to
the k-Center-Greedy algorithm. It greedily selects the sam-
ple whose embedding has the largest distance to the clos-
est selected sample embedding. Similarly, the k-means++

initialization algorithm is equivalent to T = 0.5. It selects
samples with probability proportional to the squared distance
to the nearest selected sample embedding. In general, the
hyperparameter T can also be thought of controlling the
extent to which the diversity-based sampling process is ran-
domized.

IV. DIVERSITY-BASED SEMI-SUPERVISED ACTIVE
LEARNING
We introduce two important applications of diversity-based
sampling for semi-supervised active learning. Firstly,
we show that diversity-based sampling can be used for initial
dataset selection on self-supervised representation. Secondly,
a new semi-supervised active learning query strategy, which
is based on diversity-based sampling from consistency-based
embedding space is introduced.

A. DIVERSITY-BASED INITIAL DATASET SELECTION
Semi-supervised active learning methods generally start from
a small labeled initial dataset. The methods iteratively select
data over multiple active learning cycles for annotation.
We propose a method that can select informative initial
datasets for improving the whole active learning steps.
Figure 1 shows an overview of the proposed initial dataset
selection algorithm pipeline.

Basically, the diversity-based selection can be designed
based on the features extracted from the trained model in
the current active learning stage. Contrary to query strategies
in active learning, there is no trained model at the initial
dataset selection stage. Therefore, it is challenging to assess
the diversity of data without having access to any label at
all. The advances in self-supervised learning [11], [16], [18]
have shown that it is feasible to learn meaningful repre-
sentations from unlabeled data. It motivates our approach
to initial dataset selection. The proposed method consists
of representation learning step and diversity-based sampling
step.
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FIGURE 1. Overview of the initial dataset selection algorithm pipeline.

1) REPRESENTATION LEARNING
A self-supervised representation is used to calculate the fea-
ture vectors from unlabeled data. Depending on the charac-
teristics of data, it is possible to choose proper representation.

2) DIVERSITY-BASED SAMPLING
In this step, the method selects an informative set of
data based on the self-supervised representation. The
diversity-based sampling is used to choose diverse infor-
mative data for training a model. In this study, we empiri-
cally use the hyperparameter T of 0.5 to select informative
initial samples for labeling. These two steps constitute our
diversity-based approach to the initial dataset selection for
active learning. Section VI provides a thorough analysis of
diversity-based sampling in this context.

B. DIVERSITY-BASED QUERY STRATEGY IN
SEMI-SUPERVISED ACTIVE LEARNING
We further introduce the application in the query strategy
of semi-supervised active learning. Reference [15] have pro-
posed using consistency, referring to the consistency ofmodel
predictions on augmented input images, as the selection cri-
terion. They assume that the unlabeled samples with highly
inconsistent predictions are not useful for semi-supervised
learning which is designed from the consistency regulariza-
tion [6], [7], [37], [39]. In other words, if the model’s pre-
dictions are inconsistent after model training, it is reasonable
to assume that the semi-supervised learning algorithm can-
not extract useful information from that sample. Therefore,
querying its label can be expected to be highly informative.

FIGURE 2. Heatmap of TSNE-embeddings [41] colored according to
percentile of consistency scores (CIFAR-10).

However, [15] does not explicitly consider the diversity.
As in [4] and [33], this might result in high overlaps of the
data in a selected batch for annotation. Figure 2 illustrates
the problem by showing a heatmap of TSNE-embeddings
colored according to the consistency of model predictions.
The embeddings and model predictions are based on an ini-
tial model trained using MixMatch with 150 labeled initial
samples (randomly selected) on CIFAR-10. One can observe
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FIGURE 3. Overview of the proposed consistency-based embeddings query strategy for semi-supervised active
learning.

that samples, on which model predictions are highly incon-
sistent are concentrated in small areas of embedding space.
Interestingly, a key strength of recently proposed state-of-the-
art supervised active learning algorithms such as BADGE [4]
and SRAAL [45] lies in the effective combination of proven
selection criteria such as diversity and uncertainty. Hence,
combining diversity and consistency-based sample selec-
tion for semi-supervised active learning appears to be a
highly promising approach. This critical insight inspires the
semi-supervised active learning query strategy we introduce
in the following. By applying diversity-based sampling on
the consistency-based embedding, it is possible to consider
both consistency and diversity for active learning. Let S t =

{si : i ∈ (1, . . . ,Nt)} denote the pool of unlabeled samples at
active learning step t . LetMt denote the trained target model
at active learning step t . The consistency of model Mt on an
unlabeled sample si can be calculated by class-wise variances
of predictions σ 2

i,c on Na augmented versions of input images
s̃i,k = T (si) as:

σ 2
i,c = V

[
pMt (yc|si) , pMt

(
yc|s̃i,1

)
, . . . , pMt

(
yc|s̃i,Na

)]
(3)

T (·) denotes a standard transformation operation for data
augmentation. V[·] is the function for calculating variance
and σ 2

i =

(
σ 2
i,1, . . . , σ

2
i,Nc

)
is the vector where the c-th

element is defined as the variance of model predictions for
class c ∈ {1, . . . ,Nc}. Nc denotes the number of class for the
dataset.

Given a sample si, the activations of the penultimate layer
of the target model, denoted by f i, encode sample-specific
representation [33]. We can define a consistency-embedding
gi for data si as the last-layer activation f i scaled by the sum
of class-wise variances of predictions as

gi =

( Nc∑
c=1

σ 2
i,c

)
· f i (4)

∥∥gi∥∥2 =

( Nc∑
c=1

σ 2
i,c

)
·
∥∥f i∥∥2 . (5)

The size of consistency-based embedding is same with
the dimension of the last-layer feature vector. By con-
struction, the norm of the consistency-based embeddings
is proportional to the sum of class-wise prediction vari-
ances. The diversity-based sampling algorithm is used on
consistency-based embedding to select samples. These pro-
cedures are also illustrated in Figure 3.
As in [4], diversity-based algorithms select diverse and

high-magnitude embeddings. In other words, the sampling
algorithm is encouraged to select both diverse and inconsis-
tent data where the model’s predictions are inconsistent and
having large embedding norms.

V. EXPERIMENTAL CONDITIONS
A. SETTINGS AND IMPLEMENTATION
1) DATASETS
In this study, experiments are conducted on two image clas-
sification datasets, CIFAR-10 [24] and Caltech-101 [13].
The CIFAR-10 dataset consists of 60,000 images of size
32 × 32 with 10 classes. The images are split into a train
set of 50,000 images and a test set of the remaining 10,000
images. The Caltech-101 dataset consists of 8,677 images
with 101 classes. The size of each image is roughly 300 ×

200 pixels. The images are resized to 224× 224. The dataset
is randomly split into 90% of training set and 10% of test set.

2) IMPLEMENTATION
Following previous work on semi-supervised active learn-
ing [15], [38], MixMatch [7] is used for model training.
A Wide ResNet-28-2 [44] is used as network architecture for
CIFAR-10 experiments. The default MixMatch hyperparam-
eters for CIFAR-10 are kept for semi-supervised model train-
ing. A ResNet-18 is used for Caltech-101 experiments. The
MixMatch hyperparameters used on Caltech-101 are adopted
from default setting originally presented for CIFAR-100 [24],
a dataset with a comparable number of classes. All considered
algorithms, i.e. also supervised active learning algorithms, are
run with the same learning rate of 0.002 and weight decay
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of 0.00004 (default MixMatch settings [7]) using Adam opti-
mizer [23]. The size of the initial-labeled dataset and the
budget sizes, i.e. the number of samples selected for label-
ing at every active learning cycle, were chosen as in [15].
For Caltech-101 dataset, the initial dataset size was 388
(5%) and the budget size was 5% in each active learning
step. For CIFAR-10 dataset, the initial dataset size was 150
(0.3%) and the budget sizes were [50 (0.1%), 50 (0.1%),
250 (0.5%), 250 (0.5%), 250 (0.5%)]. Due to the reason
that model achieved high accuracy with a small number of
labeled samples on CIFAR-10, we set the active learning
configuration in this way.

The standard augmentation operation with random hor-
izontal flips and random crops is used for the calculation
of class-wise prediction variances (please see Equation 3).
For calculating class-wise variances, the model predictions
are obtained from 50 random augmentations on CIFAR-10
dataset [15] and 10 random augmentations on Caltech-101
dataset.

3) BASELINE ALGORITHMS
For comparison, we consider four different baseline
query strategies. Maximum entropy [21] is a purely
uncertainty-based baseline method, which selects data with
the highest entropy at every active learning cycle. Core-
set [33] selects the data based on the activations of the penul-
timate network layer as embedding and K-center-Greedy
algorithm for considering diversity. BADGE [4] constructs
gradient embedding to encode both diversity and uncertainty.
The expected model change is used for calculating uncer-
tainty. The k-means++ initialization algorithm is applied
for balancing diversity and uncertainty on the gradient
embedding. The supervised learning is used for Maximum
entropy, Coreset and BADGE formodel training. The training
starts from random initial dataset. The data augmentation
is conducted on each image by horizontally flipping and
random cropping for supervised learning. Consistency [15]
uses the sum of class-wise variance of the predictions over
augmented versions of input image as the selection criterion.
MixMatch [7] is adopted as for semi-supervised learning and
the training is started from random initial dataset. We follow
public implementations [3], [34].

4) EVALUATION
The empirical validation and qualitative analysis of the
method proposed in this work is conducted based on a set
of metrics introduced in the following.

In addition to comparing algorithms solely based on test
accuracy, we analyze active learning query strategies with
respect to characteristic features such as consistency and
diversity following [15]. Unless otherwise stated, these met-
rics are computed as:

• Consistency: The consistency of model predictions on
a given sample is computed based on predictions on
augmented versions of the image. More formally, the

consistency of model predictions of sample ui, which is
denoted by ci, is defined as the sum of class-wise pre-
diction variances computed over predictions on multiple
augmented versions of that sample, i.e. ci =

∑K
k=1 σ 2

i,k
(see Equation 3). Low values of ci indicate very consis-
tent model predictions, while higher values of ci indi-
cate inconsistent model predictions on the unlabeled
sample ui.

• Diversity: The diversity of a batch of samples is defined
as the average, pairwise L2-distance between sample
embeddings, which are given by activations of the
penultimate network layer. Low values of the diversity
measure indicate a potentially high overlap in represen-
tational information of the samples in the batch. By con-
trast, high values of the diversity measure suggest a low
overlap in representational information and have shown
to be indicative of highly informative batches.

Based on the general experimental setting described above,
the following sections present empirical evidence validating
all design choices as well as showing the effectiveness of the
proposed approach.

VI. EXPERIMENTAL RESULTS
A. DIVERSITY-BASED SAMPLING FOR INITIAL DATASET
SELECTION
In the following, we provide an empirical analysis of the
diversity-based approach to initial dataset selection. The
analysis is conducted on CIFAR-10 and RotNet [16] is
used to generate sample embeddings. The default network
architecture as well as hyperparameters are kept for training.
In accordance with [16], the activations after the second
layer of the network are used to compute sample embed-
dings. As the second layer activations are of dimension
192 × 8 × 8, a simple flattening operation would yield
embedding vectors of dimension 12288 × 1. As discussed
in [1], distance metrics such as the euclidean distance behave
oddly in very high-dimensional spaces and therefore are not
suitable as input to a diversity-based sampling algorithm.
Hence, a global average pooling operation is applied to
the second layer activations yielding sample embeddings
of dimension 192 × 1. This addresses the curse of dimen-
sionality and reduces the computational time required by
the sampling step. We evaluate the effectiveness of the
diversity-based initial dataset selection algorithm for different
values of T (see Equation 2) based on two critical metrics.
Firstly, we evaluate the sample diversity of selected initial
datasets, which is defined as the average L2-distance between
RotNet-embeddings of selected samples [15]. Secondly,
we evaluate to what extent the class distribution of initial
datasets selected by our approach matches the class distribu-
tion of the source dataset, i.e. CIFAR-10. For this purpose,
we introduce a distance measure d , referred to as class-
distribution distance in the following. Let X = {

(
xi, yi

)
:

i ∈ (1, . . . ,N )} denote a selected initial dataset with
samples xi and corresponding labels yi. Then the
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FIGURE 4. Analysis of our diversity-based initial dataset selection
algorithm with respect to (a) class imbalance and (b) diversity for
different values of T . The bars represent the standard error.

class-distribution distance is defined as

d = max
c

|p̃c − pc|, (6)

where p̃c =
1

|X |

∑|X |

i=1 1{yi,c = 1}, yi,c is the c-th element of
the one-hot label of sample xi and pc is the true proportion of
samples belonging to class c in the source dataset (e.g., pc is
equal to 10% for all c in CIFAR-10).

Figure 4 presents results on the selection of 150 ini-
tial samples on CIFAR-10 and averaged over ten runs for
each sampling algorithm. It compares random sampling, the
k-Center-Greedy algorithm (T → 0) and the formulation
of the diversity-based sampling algorithm with respect to
the previously introduced metrics. Note that the k-means++

initialization step is equivalent to T = 0.5. k-means++

initialization step selects initial datasets, whose class distri-
bution is as close to the class distribution of the source dataset
as the class distribution of randomly selected datasets. At the
same time, it succeeds at sampling amore diverse set of initial
samples than random selection. The difference is statistically
significant (p<0.001 by t-test). The k-Center-Greedy algo-
rithm, by contrast, selects highly imbalanced initial datasets
and is therefore not suitable for the initial dataset selection.

For qualitative analysis of self-supervised represen-
tation, we visualize the feature embeddings. Figure 5
shows TSNE-embeddings of the representations learned

by the self-supervised representation learning algorithms.
For CIFAR-10 dataset, RotNet [16] is used for calculating
features. For Caltech-101 dataset, BYOL [18] which is pre-
trained from ImageNet dataset is used. As shown in the fig-
ure, for both datasets, feature representations from the same
classes are clustered and different classes are discriminated to
some degree although the feature embedding model is trained
without any labels in the target dataset (for CIFAR-10) or only
pretrained from ImageNet (for Caltech-101).

B. DIVERSITY-BASED SAMPLING FOR CONSISTENCY-
BASED EMBEDDINGS QUERY STRATEGY
This section provides empirical analysis of the semi-
supervised active learning query strategy introduced in Sub-
section IV-B, which applies the diversity-based sampling
algorithm to the consistency-based embeddings. In particu-
lar, we analyze samples selected by the query strategy with
respect to consistency and diversity for different values of T .
Furthermore, we show that the consistency-based embed-
dings query strategy succeeds at balancing both of these
selection criteria when compared to baseline active learning
algorithms.

As in Subsection VI-A, diversity is computed as the aver-
age L2-distance between the sample embeddings, which,
in this context, are given by the activations of the penul-
timate network layer of the trained model (at the current
active learning cycle). The consistency of model predictions
is computed as the sum of class-wise prediction variances
on augmented versions of a given sample (see Equation 3).
The following analysis is conducted on CIFAR-10 and all
considered query strategies start from the same initial models
trained on a randomly selected initial labeled dataset using
MixMatch. In accordance with the general experimental set-
ting on CIFAR-10, the initial dataset is of size 150 and all
query strategies are run with a budget size of 50. We compute
the metrics based on samples selected by each query strategy
and averaged over five independent runs.

1) ANALYSIS OF DIVERSITY-BASED SAMPLING FOR OUR
QUERY STRATEGY
We start by evaluating our query strategy, which uses
consistency-based embeddings and the diversity-based sam-
pling algorithm, for different values of T . Figure 6 shows
that using lower values for T leads to selecting more diverse
samples as well as samples, on which model predictions are
more inconsistent. On the basis of these results, the k-Center-
Greedy algorithm is identified as the preferred sampling algo-
rithm in the context of the consistency-based embeddings
query strategy and used to obtain the experimental results
presented in Subsection VI-C.

2) BALANCING SELECTION CRITERIA
The critical weakness of purely consistency-based query
strategy [15] is, that it does not explicitly consider the
diversity of representational information for sample selec-
tion. Therefore, it is interesting to study to what extend
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FIGURE 5. Qualitative analysis of self-supervised representation learning algorithms. The representations learned by self-supervised learning on
(a) CIFAR-10 and (b) Caltech-101 are qualitatively analyzed based on their TSNE-embeddings. The representations on CIFAR-10 are generated using
RotNet, while the representations on Caltech-101 are generated using a BYOL model, which is pretrained on ImageNet.

the proposed query strategy with consistency-based embed-
dings can addressing this issue. The core idea of the pro-
posed query strategy with consistency-based embeddings is
to naturally combine effective selection criteria by applying
diversity-based sampling to a consistency-based embedding
space. We demonstrate the effectiveness of this approach
based on a comparison with the query strategies of baseline
algorithms, namely Maximum Entropy [21], Coreset [33],
BADGE [4] and consistency-based semi-supervised active
learning [15]. Note that in this context, we consider the
characteristics of samples selected by the query strategies of
the baseline algorithms in an initial sampling step. Figure 7a
shows the comparison of baseline algorithms with respect to
the consistency of model predictions of samples they select.
By construction, the purely consistency-based query strat-
egy [15] (referred to as ‘‘Consistency’’ in the figure) selects

the samples with the highest prediction variance. Contrary to
that, active learning algorithms originally developed for the
supervised active learning setting tend to select samples with
significantly lower prediction variance. Furthermore, one can
observe that, as intended, the consistency-based embeddings
query strategy (referred to as ‘‘Ours’’) selects samples with
the second highest prediction variances on average. Figure 7b
illustrates a comparison of all selected baseline algorithms
with respect to sample diversity. Coreset selects batches for
having the highest sample diversity by construction, while
batches selected by other algorithms exhibit significantly
lower sample diversity. Our query strategy selects samples
with the second highest diversity score. Overall, the empir-
ical analysis highlights that, as intended, our query strategy
succeeds at balancing diversity and consistency as selection
criteria for semi-supervised active learning.
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FIGURE 6. Empirical analysis of the consistency-based embeddings query
strategy with respect to (a) consistency and (b) diversity of selected
samples for different values of T .

C. EVALUATION ON ACTIVE LEARNING
We compare the active learning performance compared
with other active learning approaches including maxi-
mum entropy [21], Coreset [33] and BADGE [4] as well
as consistency-based semi-supervised active learning [15].
Please note that maximum entropy, Coreset and BADGE rely
on supervised learning. Consistency-based semi-supervised
active learning and our algorithm use semi-supervised learn-
ing (i.e., MixMatch [7] in this study). Active learning steps
start from initial models trained on the same initial datasets.
Random selection is used for setting initial datasets. For
the case of BADGE, the computational complexity increases
with respect to the number of classes, which makes it difficult
to apply BADGE to Caltech-101 setting. As a result, we only
conduct BADGE experiments on CIFAR-10. We follow the
testing protocol in [6], [7], and [37] where the test accuracy
is calculated from an exponential moving average of model
parameters. We use the median accuracy of the last 20 epochs
on CIFAR-10 [7] and themedian accuracy of the last 6 epochs
on Caltech-101. We repeat the experiments over five times
by changing the random seeds and calculate the average
accuracy from five runs.

Note that our initial dataset selection algorithm uses
embeddings which are obtained from RotNet [16] for
CIFAR-10 setting. For Caltech-101 setting, which is a more
challenging dataset, we use BYOL [18] with a ResNet-50

FIGURE 7. Comparison of active learning query strategies based on
diversity and consistency.

pretrained on Imagnet [42] for obtaining embeddings from
samples. The activations of the penultimate network layer
(i.e., dimension of 2024) are used as sample representations.

Figure 8 shows the results of comparison. As shown in
the figure, our approach outperforms other active learn-
ing methods over multiple active learning stpes on both
CIFAR-10 and Caltech-101 datasets. Semi-supervised active
learning approaches outperform supervised active learning
algorithms. Figure 9 shows the detail comparison of our
approach with consistency-based approach [15]. As shown
in the figure, On CIFAR-10, the proposed method achieves
an accuracy of 92.81% by only labeling 2% of training
data. The consistency-based approach [15] achieves 91.66%
with the same annotation cost. On Caltech-101, our method
can achieve an accuracy of 65.99% by only labeling 20%
of training data which is higher than the accuracy of
consistency-based approach [15] (i.e., 62.68% with the same
annotation cost). Please note that supervised active learn-
ing algorithms achieve accuracies of approximately 60% on
CIFAR-10 and 56% on Caltech-101 with the same annotation
cost. These results show the efficiency of our method in terms
of annotation cost. The major difference between our method
and consistency-based approach [15] is that our method
can consider the diversity of samples during the selection.
As shown in Figure 7 (b), our method can balance consistency
and diversity during the sample selection by using diversity
sampling on consistency-based embeddings.
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FIGURE 8. Comparison of the proposed approach to baseline algorithms
based on active learning performance.

D. ABLATION STUDY
In this subsection, we provide further empirical evidence
validating the effectiveness of the initial dataset selection
algorithm and the consistency-based embeddings query strat-
egy, separately.

1) EFFECTIVENESS OF THE INITIAL DATASET SELECTION
ALGORITHM
Figure 10 shows a comparison of the performance obtained in
the two different settings on both CIFAR-10 and Caltech-101.
As shown in the figure, the proposed initial sample selection
strategy improves the accuracy of initial models. The accu-
racy of initial model from our approach is 87.90% on CIFAR-
10 which is higher than random initialization where the accu-
racy is 86.26%.Also, the accuracy is 51.39%with ourmethod
which is higher than random initialization which achieves
the accuracy of 47.71% on Caltech-101. These improvements
results in higher accuracies over following active learning
steps. This is mainly due to the reason that Our approach
can select more diverse sample compared to random selection
(please see Figure 4). In the same time, the class distribution
imbalance is comparable between our approach and random
selection which is also important to have a good starting point
for active learning.

FIGURE 9. Comparison of the proposed approach to pure
consistency-based approach [15] on the active learning performance.

2) EFFECTIVENESS OF THE CONSISTENCY-BASED
EMBEDDINGS QUERY STRATEGY
Figure 11 shows the performance of the proposed
consistency-based embeddings semi-supervised active learn-
ing algorithm compared to the consistency-based semi-
supervised active learning algorithm on CIFAR-10 and
Caltech-101. It is important to note, that both approaches
start from the exact same initial models trained on randomly
selected initial datasets in order to guarantee comparability.
In the context of this comparison, the approach proposed in
this work does therefore not employ the diversity-based initial
dataset selection algorithm.

On CIFAR-10, the proposed algorithm achieves an accu-
racy of 92.41% by only using 2% of labeled data, i.e. the
equivalent of 100 labeled images per class. For reference,
the purely consistency-based semi-supervised active learning
algorithm [15] achieves an accuracy of 92.33%. Further-
more, the proposed algorithm slightly outperforms purely
consistency-based semi-supervised active learning on 4 of
5 active learning steps. The largest difference between the
two algorithms can be observed on the fourth active learn-
ing step: the proposed algorithm achieves an accuracy of
91.90% compared to an accuracy of 91.66% achieved by the
purely consistency-based algorithm. Similarly, the proposed
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FIGURE 10. Validation of the initial datasets selection algorithm based on
test accuracy.

algorithm outperforms purely consistency-based semi-
supervised active learning on 2 out of 3 active learning steps
on Caltech-101. On the last step, it reaches an accuracy of
64.47% with around 20% of labeled data, i.e. the equivalent
of roughly 15 images per class on average. In comparison,
the purely consistency-based algorithm achieves an accuracy
of 62.68% on the final step.

VII. DISCUSSION
Experimental results of this study verify the effectiveness
of the proposed diversity-based sampling in semi-supervised
active learning. For the applications, we show two interesting
directions of initial dataset selection and a new query strategy
for semi-supervised active learning.

Interestingly, we found that introducing randomization, i.e.
using the k-means++ initialization step for sample selection,
increased the effectiveness of the initial dataset selection
algorithm (see Subsection VI-A). It is reasonable to assume
that the extent to which randomness is beneficial in this con-
text strongly depends on the quality of sample embeddings.
More specifically, we expect that the better the learned rep-
resentations capture semantic information the less random-
ization is required to ensure the robustness and effectiveness

FIGURE 11. Validation of the consistency-based embeddings query
strategy based on test accuracy.

of the initial dataset selection algorithm. Future work might
further explore the influence of the quality of learned sam-
ple embeddings on the effectiveness of the proposed initial
dataset selection algorithm.

Our choice of the initial dataset size was guided by
previous works [7], [15]. However, ideally, active learn-
ing algorithms should be started with the smallest possible
initial dataset size in order to optimally use the learning-
based sample selection in subsequent cycles. At the same
time the initial dataset has to be large enough to avoid
the cold-start problem discussed in [15], i.e. large enough
to ensure the convergence of semi-supervised learning.
Gao et al. [15] provide an exploratory analysis of opti-
mal start sizes based on random initial dataset selection.
We believe that future research using our representation-
based approach to initial dataset selection can play a crit-
ical role in further improving the label-efficiency of deep
learning.

We acknowledge that the presented analysis and results
are limited to the task of image classification on well-known
benchmark datasets. Therefore, an interesting direction for
future research would be generalizing the presented con-
cepts to alternative datasets and tasks such as semantic
segmentation.
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VIII. CONCLUSION
We introduced diversity-based sampling algorithms for two
important steps of semi-supervised active learning. The
empirical analysis showed that introducing randomization
to our diversity-based initial dataset selection algorithm
increases its robustness as well as ensuring that selected
samples encode diverse representational information and are
balanced among classes. We proposed the consistency-based
embeddings query strategy highlighting that diversity-based
sampling can be applied to a specifically constructed embed-
ding space in order to naturally balance effective selection
criteria. Furthermore, we demonstrated that the empirical
analysis of both proposed components translates into signifi-
cant gains in performance in semi-supervised active learning
for image classification. We hope the presented concepts
inspire future research and are built upon to improve the
label-efficiency of neural network training.
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