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ABSTRACT This research focuses on the long empty cutting path problem during the laser cutting process
by employing an improved proximity method to establish the starting point set in complex closed graphics.
Specifically, this work improves the particle swarm algorithm and proposes the Levy Flight, power function,
and Singer map employed particle swarm optimization (LPSPSO) to avoid the disadvantages of the standard
particle swarm optimization (PSO) algorithm. Specifically, the comprehensive prospect-regret theoretical
model evaluation value is used as the fitness value to guide the algorithm’s evolution and adaptively adjust
the parameters in the LPSPSO algorithm, including the inertia weight power function, the learning factors,
and the chaotic random number based on the Singer chaotic map. Additionally, the Levy flight is introduced
to disturb the particles and prevent local optimization. This is achieved by adjusting the Levy flight threshold
based on the distance between the particles to prevent the Levy flight from starting prematurely and
increasing the calculation burden. To verify the performance of the LPSPSO algorithm, it was challenged
against three state-of-the-art algorithms on 22 benchmark test instances and a laser cutting problem, with the
results revealing that the LPSPSO algorithm has a better performance and can be used to solve the empty
length of the laser cutting path problem.

INDEX TERMS Laser cutting path planning, improved particle swarm optimization, improved proximity
method, Levy flight threshold, comprehensive prospect-regret theory, chaotic random number.

I. INTRODUCTION
Laser cutting has many advantages, including speed, narrow
kerf, high cutting quality, and wide cutting range, and it has
been widely employed in modern industrial processing fields,
such as machinery manufacturing, electronics, auto parts, and
other industries. The laser cutting path determines the cutting
quality, processing efficiency, and laser life, directly affecting
the production cost. The time consumed in the laser cutting
process is divided into the actual processing time and the
walking time the laser headmoves between different patterns.
As long as the processing speed is set well, the actual process-
ing time is fixed, and optimizing the walking distance of the
laser head between different patterns can reduce the walking
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time. Therefore, manufacturers must reduce the empty laser
cutting length when the laser moves from one graphic to
another.

The empty trip problems of laser cutting have been
investigated extensively in recent years. For instance,
Kongkidakhon et al. [1] presented the Hybrid Particle
Swarm Optimization and Neighborhood Strategy Search to
solve a tractor scheduling and routing problem with equip-
ment allocation constraints in sugarcane field preparation.
Han et al. [2] addressed the problem of optimal torch path
planning for the 2D laser cutting of a stock plate nested
with irregular parts. Moreover, Davoud et al. [3] combined
particle swarm optimization and the artificial bee colony
algorithm, while Luciano et al. [4] developed an off-line
two-dimensional flight path optimization scheme based on a
particle swarm algorithm to investigate the potential of the
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optimization techniques for flight path generation. Besides,
Sathiya et al. [5] introduced the fuzzy enhanced Improved
Multi-objective Particle Swarm Optimization algorithm to
solve the best safe path with minimum path length, minimum
motor torque, minimum travel time, minimum robot accel-
eration, and maximum obstacle avoidance. Huang et al. [6]
suggested a path-planning algorithm based on reinforce-
ment learning and particle swarm optimization to overcome
rapid path planning and effective obstacle avoidance for
autonomous underwater vehicles in a 2D underwater envi-
ronment. Furthermore, Xia et al. [7] developed and applied
a novel multi-objective particle swarm optimization algo-
rithm based on the Gaussian distribution and the Q-Learning
technique to determine the feasible and optimal path for
autonomous underwater vehicles. Chen et al. [8] used an
interval multi-objective particle swarm optimization algo-
rithm, which updates the global best position and local best
position of the interval law based on the crowding distance
of each risk degree interval. Hilli et al. [9] employed particle
swarm optimization to find the best path, and Islam et al. [10]
proposed a new hybrid metaheuristic algorithm that com-
bined particle swarm optimization with variable neighbor-
hood search to solve the clustered vehicle routing problem.
Liu et al. [11] designed a hybrid path-planning algorithm
based on optimized reinforcement learning and improved par-
ticle swarm optimization to solve the path-planning problem
of intelligent driving vehicles. Halassi et al. [12] presented a
new multi-objective discrete particle swarm algorithm for the
Capacitated vehicle routing problem, and Wisittipanich et al.
[13] applied two metaheuristic methods with particular solu-
tion representation, i.e., particle swarm optimization and dif-
ferential evolution to find delivery routings with minimum
travel distances. Early research often focused on cutting path
problems using particle swarm optimization relying on inertia
weight and individual and social learning factors. At the same
time, a few researchers optimized the PSO utilizing a Singer
map, Levy flight, and a Levy flight threshold to improve the
algorithm’s performance.

The empty path problems in laser cutting are an exten-
sion of the traveling salesman problem (TSP), which is a
typical NP-hard problem. Several works investigated this
issue. For example, Hajad et al. [14] modeled the laser cut-
ting path problem as a TSP and proposed a hybrid method
combining population-based simulated annealing with an
adaptive large neighborhood search algorithm to solve the
problem. Rafał [15] introduced a focused ant colony algo-
rithm to improve the performance through algorithm refine-
ments and parallel implementation. Zhu et al. [16] proposed
an ant colony optimization for the laser cutting path pro-
cess to solve the processing elements’ starting and ending
points. Chen et al. [17] proposed an adaptive heating simu-
lated annealing algorithm for solving the TSP, aiming to solve
the case where the traditional simulated annealing algorithm
falls into the optimal local solutionwhen solving the problem.
Han et al. [18] proposed a contour path planning method
based on an ant colony algorithm to reasonably plan the

printing sequence of each contour, focusing on the situation
where some parts have many closed curves in the slicing path
research of 3D printing. However, only a few studies defined
the starting cutting point set utilizing an improved proximity
method. In contrast, the starting point is defined randomly
to ensure the minimum distance between the feature points
among the graphics. When solving the TSP problem, the
traditional proximity method calculates the shortest distance
traversing all cities from the fixed starting point, while the
improved approach uses the random starting point when
calculating the shortest distance of all cities. Based on this
concept, the fixed and random starting points are used to
verify laser cutting empty path performance.

Research on prospect and regret theory for manufacturing
problems has increased recently. Note that prospect theory
considers the risk attitude of decision-makers when facing
gains and losses. Ning et al. [19] proposed a value function
measurement method based on prospect theory and a dis-
turbance management strategy relying on user psychologi-
cal perception for the disturbance during uncertain job shop
scheduling problems. Wang et al. [20] used prospect theory
to establish a time-based mathematical programming model
with constraints such as cost, quality of deliverables, and
service quality as the objective function. Zhao et al. [21] cal-
culated the satisfaction between the supply and demand sides
of the resources through multi-attribute evaluation based
on prospect theory and determined the matching subject’s
Preference order. Additionally, Zhu et al. [22] proposed
an optimal method based on cumulative prospect theory to
find the algorithm solution for the high-dimensional multi-
objective replacement flow of the shop scheduling problem.
Zhu et al. [23] presented the comprehensive prospect value to
judge the non-inferior solution quality to guide the evolution
of the optimal foraging algorithm. At the same time, the
regret theory considers other possible outcomes and the regret
avoidance of the decision-makers’ psychology. For instance,
Shen et al. [24] proposed a new multi-objective power dis-
patching model based on regret theory, which minimizes the
economic cost and considers the regret of decision makers
for the property of power generation psychological activities
to minimize the degree of regret. Although some researchers
have employed the prospect and regret theories, only a few
studies investigated the empty laser cutting problem with
the comprehensive prospect-regret theory that integrated the
two theories. This is important as the integrated theory can
better reflect the decision-making behavior and consider the
decision-makers’ attitudes.

A. LASER CUTTING IN CURRENT RESEARCH
Currently, most works focus on the influence of laser cutting
materials by considering the processing heat and various pro-
cessing parameters on the cutting quality process. Few works
focus on reducing the empty laser cutting path, especially the
processing path containing multiple complex closed loops.
Moreover, the prospect-regret theory is seldom applied to
laser cutting path optimization algorithm studies.
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B. PURPOSE OF THE RESEARCH
This paper develops an improved proximity method to estab-
lish the starting point set in the closed graphic, focusing
on the long empty cutting path problem during the laser
cutting process. To avoid the disadvantages of the standard
particle swarm optimization (PSO) algorithm, such as the
slow convergence speed, the poor optimization stability, and
ease of falling into a local optimumprematurely, we introduce
an improved particle swarm optimization algorithm entitled
the Levy Flight, power function, and Singer map employed
in particle swarm optimization (LPSPSO). Although some
researchers have employed the prospect and regret theo-
ries, limited research integrated these two theories, with the
comprehensive prospect-regret theory not only considering
the risk attitude of decision-makers when facing gains and
losses but also other possible outcomes, such as the regret
avoidance psychology of the decision-makers. Our method
uses the comprehensive prospect-regret theory model eval-
uation value as the fitness value to guide the algorithm’s
evolution and adaptively adjust its parameters, including the
inertia weight power function, the learning factors, and the
chaotic random number that uses the Singer chaotic map to
balance the global and local search ability. Moreover, the
Levy flight is introduced to disturb the particles and prevent
local optimization. Given that as the number of iterations
increases, the distance between the particles decreases, the
Levy flight threshold is set based on the distance between the
particles to prevent the Levy flight from starting prematurely
and increasing the calculation burden. The improved proxim-
ity method and the LPSPSO reduce the empty length of laser
cutting and improve the laser cutting efficiency.

II. MATHEMATICAL MODEL
After analyzing the laser-cutting process characteristics, this
section establishes the laser-cutting model and uses the
improved proximity method to determine the shortest empty
path as the objective function.

A. PROBLEMS DESCRIPTION
After analyzing the characteristics, the laser cutting process-
ing problem is described as follows: The graphics of laser
cutting are generally drawn on CAM and CAD software and
imported into the laser cutting system. The basic graphics are
generally closed outlines, including starting points, ending
points, straight lines, and arcs.

When starting to cut, the disadvantage is that a completely
closed graphic has not been cut over, and the laser moves
to another graphic to start cutting. However, the irregular
cutting lines significantly increase the empty cutting length
and reduce the cutting speed. Therefore, it is important to
reduce the empty cutting path length of the laser cutting head
and improve the proximity method between the graphics to
improve the overall cutting efficiency.

B. MATHEMATICAL DESCRIPTION
Themathematical cutting process is as follows: A set of loops
of all closed outlines is defined as {S| S1, S2, S3, · · · , Sn}, the

TABLE 1. Indices, sets, and parameters.

points of any set are defined as
{
Si| Si1, Si2, Si3, · · · , Simn

}
,

and the total number of all points is p = m1+m2+m3+· · ·+

mn. The starting point of each loop is defined as the endpoint
to ensure that all paths of each loop are processed only
once. The corresponding indices, sets, and parameters [25]
are listed in Table 1.

The feature points of the cutting pattern are defined as
follows: The endpoints of each polygon are defined as feature
points, the circular closed pattern adopts the approximate
fitting method, defined as 9 central points, and the edge
line as the feature points (the ellipse is consistent with the
mathematical description of the circle). If the arc angle is less
than 45◦, it defines the center of the arc, a point in the middle
of the arc, and two points at both ends, a total of four points
as the feature points. If a closed loop is inside another closed
loop, the inner closed loop is numbered separately, and the
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overlapping center is only numbered once. The outer loop is
presented with a thick solid line to distinguish the inner and
outer closed loops, and the inner contour is a thin solid line.

According to themathematical model, the steps to establish
the starting point set of the closed graphics by the improved
proximity method are:

Step 1:Define any graphic as a set S1 containingm1 points,
and define any point as S11 in S1 to be the starting point of the
processing at coordinates (x11, y11). Then delete S1 from the
point set S, and define the rest of the sets in a set S as the first
point set Sn−1. The number of set points Sn−1 is p− m1.

Step 2:Calculate the distances d1, d2, d3, · · · , dp−m1 from
the point S11 to the p − m1 points in the first point set Sn−1,
select the point Sij corresponding to the minimum distance
dp−a(0 ≤ a ≤ m1), and then delete set Si where Sij is located
from the first point set Sn−1. After that, define the rest of
the sets in Sn−1 as the second point set Sn−2. The number
of points in set Sn−2 is p − m1 − mi. The distance between
point S11 and any one point Sij can be expressed as:

d
(
S11, Sij

)
=

√(
x11 − xij

)2
+

(
y11 − yij

)2 (1)

Step 3: Calculate the distances d1, d2, d3, · · · ,

dp−m1−m2−···−mi between point Sij and the p−m1−m2−· · ·mi
points in the ith point set Sn−i. Then find the minimum
distance corresponding to the point Sij among all points,
delete the closed loop Li where Sij is located, and calculate
the distance between the point S(i+1)j and each point in the
S(i+1)j of the remaining closed graphics. Calculate the total
distance of all minimum values and define it as D1:

D1 = d1 + d2 + d3 + · · · + dp−ma (2)

Step 4: According to Steps (1)-(3), sequentially calcu-
late the starting points in the set S, and establish the
starting point set,

{
ST | S11, S31, S64, · · · , Sij

}
, 1 ≤ i ≤

n, 1 ≤ j ≤ p. The corresponding minimum distance set is
{D|D1,D2,D3, · · · ,Dr } , 1 ≤ r ≤ p.

Step 5: Compare the values in set D and define its min-
imum value as a starting point set sequentially. If there are
t equal minimum values in set D simultaneously, the cor-
responding point set is a collection of multipoint sets. The
total minimum distance is defined as the sum of the minimum
value in set D and the empty distance from the origin of the
coordinate to the first processing point S11. Therefore, the
objective function in the laser cutting empty path planning
problem is:

G
(
Sij, ST

)
= minD+ d0 = min

n−1∑
i=1

di + d0 (3)

C. LASER CUTTING PROCESSING WITH IMPROVED
PROXIMITY METHOD
Fig. 1 illustrates the complete laser cutting process, where the
coordinates of each point are reported in Table 2. If O is the
origin of the coordinates, the processing sequence is O ➜ L1
(S12 ➜ S13 ➜ S14 ➜ S11 ➜ S12) ➜ L2 (S22 ➜ S23 ➜ S21 ➜ S22)

TABLE 2. The coordinates of each point.

FIGURE 1. Laser cutting part processing.

➜ L3 (S31 ➜ S35 ➜ S34 ➜ S33 ➜ S32 ➜ S31) ➜ L4 (S48 ➜ S49
➜ S42 ➜ S43 ➜ S44 ➜ S45 ➜ S46 ➜ S47 ➜ S48) ➜ L6 (S62 ➜

S63 ➜ S64 ➜ S65 ➜ S66 ➜ S67 ➜ S68 ➜ S69 ➜ S62) ➜ L7 (S71
➜ S72 ➜ S73 ➜ S74 ➜ S75 ➜ S76 ➜ S77 ➜ S78 ➜ S71) ➜ L5
(S51 ➜ S54 ➜ S53 ➜ S52 ➜ S51).
According to formula (1), the distance between O and

S12 is d0 = 101.1 (mm), between S12 and S22 is
d1 = 65.5 (mm), and between the other starting points it is
d2 = 131.2 (mm) , d3 = 56.6(mm), d4 = 151.6(mm), d5 =

39(mm), d6 = 164.1(mm).
According to formula (3), the total empty cutting path is

calculated as follows:

G
(
Sij, ST

)
= d0 + d1 + d2 + d3 + d4 + d5 = 709.1(mm)

III. COMPREHENSIVE PROSPECT-REGRET THEORY
The comprehensive prospect-regret theory not only con-
siders the risk attitude of decision-makers when facing
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gains and losses but also considers other possible outcomes
and the regret avoidance psychology of the decision-
makers. The comprehensive prospect-regret theory can better
reflect the decision-making behavior of the decision-makers
by comprehensively considering the decision-maker’s
decision-making attitude.

The comprehensive prospect-regret value, calculated
according to the comprehensive prospect-regret theory,
is used to guide the LPSPSO algorithm evolution. Then this
value is utilized as the algorithm’s fitness value to evaluate the
quality of the solution according to the fitness size. It should
be noted that the solution quality and the comprehensive
prospect-regret value are positively correlated.

A. PROSPECT THEORY DESCRIPTION
Prospect theory presupposes the bounded rationality of
decision-makers, better describing the psychological behav-
ior characteristics of decision-makers [26]. Prospect theory
uses the geometric distance between satisfactions to measure
the degree of the indicators’ deviation.

For any two intervals Xij =

[
xLij , x

U
ij

]
and Ej =

[
ELj ,EUj

]
,

the Euclidean distance between the two interval numbers is
defined as:

d (X ,E) =

√
1
2

[(
xLij − ELj

)2
+

(
xUij − EUj

)2]
(4)

The most important parts of prospect theory are the value
function and decision weights. The former is defined as:

υij =

{
(d(xij,Ej))α, xij > Ej;
−γ (d(xij,Ej))β , xij < Ej;

(5)

where α, β(0 ≤ α, β ≤ 1) is the risk coefficient proportional
to the risk, γ > 1 is the risk aversion willingness coefficient,
where the larger the value, the stronger the decision-maker’s
awareness of risk avoidance. Typically, α = β = 0.85 and
γ = 2.25 [27].

According to Tversky et al. [27], the decision weight is
defined as:

π+
(
pj

)
=

pδ
j(

pδ
j +

(
1 − pj

)δ
) 1

δ

(6)

π−
(
pj

)
=

pϕ
j(

pϕ
j + (1 − pj)ϕ

) 1
ϕ

(7)

Formula (6) represents the gain expectation, and formula (7)
is the loss risk. Typically, δ = 0.61 and ϕ = 0.69 [28].
The prospect value function is defined as follows:

V+

i =

n∑
i=1

π+ (pi)υ
(
xij

)
(8)

V−

i =

n∑
i=1

π− (pi)υ
(
xij

)
(9)

Formula (8) represents a positive prospect value, and
formula (9) is a negative prospect value.

B. REGRET THEORY DESCRIPTION
Regret theory is another decision theory proposed by
Bell [29] in 1982 based on prospect theory. The regret theory
pays attention to the results of the decision maker’s current
plan and the impact of other feasible plans, emphasizing the
decision maker’s avoidance behavior of regret to reduce his
degree of regret for his decision [30]. Therefore, decision-
makers based on regret theory directly relate to decision
gains and regret-pleasure expectations. The regret-happiness
expectation value [31] in regret theory is formulated as
follows:

Zi(x) =

m∑
i

(Gi(x) + Ri(x)) (10)

where Zi(x) represents the regret-happiness value, Gi(x)
denotes the regret value, and Ri(x) is the joy value.

C. COMPREHENSIVE PROSPECT-REGRET THEORY VALUE
MODEL CONSTRUCTION
The prospect theory and the regret theory establish the com-
prehensive prospect-regret theory. The positive and negative
prospect values calculated by prospect theory are imported
into the regret theory formula to establish the comprehensive
prospect-regret theory value. The corresponding steps are:

Step 1:Calculate the positive prospect value V+

i and nega-
tive prospect value V−

i of each decision based on the prospect
theory (formulas (8) and (9)).

Step 2: Establish the maximum positive prospect value
V+

i (max) and the minimum negative foreground value
V−

i (min) as the point of reference.
Step 3: Import values V+

i ,V−

i , V+

i (max) and V−

i (min)
into the Hamming distance formula to calculate the regret
value Gi(x) and the joy value Ri(x) [32], respectively.
Step4: The formulas are established as follows:

Gi(x) = 1 − e

[
−ϕ

∣∣∣∣ V+

i (x)−V−

i (min)

V+

i (max)−V−

i (min)

∣∣∣∣]
(11)

Ri(x) = 1 − e

[
ϕ

∣∣∣∣ V+

i (x)−V+

i (max)

V+

i (max)−V−

i (min)

∣∣∣∣]
(12)

where ϕ represents the avoidance coefficient [33] ranging
[0, 1], which is inversely proportional to the decision-makers
degree of regret [34].

Import formulas (11) and (12) into formula (10), and the
comprehensive prospect-regret theory value is:

Zi(x) =

m∑
i

(Gi(x) + Ri(x))

=

m∑
i

1 − e

[
−ϕ

∣∣∣∣ V+

i (x)−V−

i (min)

V+

i (max)−V−

i (min)

∣∣∣∣]

+1 − e

[
ϕ

∣∣∣∣ V+

i (x)−V+

i (max)

V+

i (max)−V−

i (min)

∣∣∣∣]
 (13)
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where Zi (x) denotes the theoretical value of the determined
decision combining prospect and regret theory. The theoret-
ical value of the comprehensive prospect regret is positively
correlated with the quality of the solution, which is used to
guide the algorithm’s evolution.

IV. OPTIMIZATION TECHNIQUES
To improve the optimization performance of the standard
PSO algorithm, the inertia weight, social learning factor,
individual learning factor, and random number are improved.
Moreover, the Levy flight is introduced into the algorithm’s
optimization process to avoid premature particle swarm opti-
mization. Additionally, we set a Levy flight threshold to
avoid the premature start of the Levy flight and increase the
algorithm’s calculation burden.

A. STANDARD PARTICLE SWARM ALGORITHM
PSO is a typical swarm intelligence optimization algorithm
widely used in many fields due to its simple programming,
few parameters, and low time complexity. The standard par-
ticle swarm optimization algorithm position and velocity state
attributes are:

υ t+1
is = ωυ t+1

is + c1r1
(
ptis − x tis

)
+ c2r2

(
ptis − x tis

)
(14)

x tis = x tis + υ t+1
is (15)

where r1 and r2 are uniformly distributed random num-
bers in the interval (0, 1), c1 and c2 are the individual
learning factor and the group learning factor, respectively,
which are usually non-negative constants, and ω is the iner-
tia weight factor that directly determines the convergence
speed. i = 1, 2, 3, · · · n is the number of particle swarms,
X ti =

[
x ti1, x

t
i2, x

t
i3, · · · , x tiS

]
, x tiS ∈ [LS ,HS ] ,LS ,HS are

the upper and lower limits of the s dimension of the search
space respectively, υ ti =

[
υ ti1, υ

t
i2, υ

t
i3, · · · , υ tiS

]T
, υ tiS ∈[

υmin,S , υmax,S
]
, and υmin,S and υmax,S are the minimum

and maximum velocities of the particles on the S dimension
respectively. pti is the individual optimal position with pti =[
pti1, p

t
i2, p

t
i3, · · · , ptiS

]T and ptg is the optimal global position

with ptg =

[
ptg1, p

t
g2, p

t
g3, · · · , ptgS

]
, 1 ≤ s ≤ S, 1 ≤ i ≤ N .

B. INERTIA WEIGHT IMPROVEMENT OF PSO
Since the inertia weight is an important factor affecting
the convergence speed of the particle swarm optimization,
to solve the shortcomings of slow convergence, low stability,
and easily falling into local optimum in the solution process,
we introduce an adaptive adjustment method for the inertia
weight power function:

ω (t) =
(ωmax + ωmin)

2
+ x

(
−

t
tmax

)
(ωmax − ωmin)

2
(16)

where ωmax and ωmin are the maximum and minimum values
of the inertia weight. According to experience for ωmax =

0.95 and ωmin = 0.40, the algorithm’s performance signif-
icantly improves. tmax is the maximum number of iterations
and t is the current number of iterations.

C. LEARNING FACTORS IMPROVEMENT
According to the characteristics of the algorithm’s learning
factors, which determine the moving direction of the particle,
when c1 > c2 the individual learning ability of the particle
motion is greater than the social learning ability. For the
opposite case c1 < c2, the social learning ability is stronger.
The initial value of c1 is larger, which helps to expand the
search range. As the number of iterations increases, the value
of c1 decreases nonlinearly, and the value of c2 also increases
nonlinearly, which is beneficial to local search [35]. Based
on the adaptive adjustment method of the learning factor
accompanying the inertia weight [36], the new learning factor
function is formulated as follows:{

c1 (t) = a+ e

(
−

t
tmax

)
c2 (t) = b− c1 (t)

(17)

where a = 1.25 and b = 2.50. When the number of iterations
is infinite, we set c1max = 2.25, c1min = 1.25, c2max = 1.75,
and c2min = 0.75.

D. RANDOM NUMBERS IMPROVEMENT
In the standard particle swarm algorithm, r1 and r2 are ran-
dom numbers uniformly distributed in the range of (0, 1).
Integrating the chaos theory into the swarm-based algorithm
is a method to balance the global detection of the algorithm,
which is the minimum computational cost [37]. Therefore,
adding chaotic behavior to random numbers can make the
search have better dynamic and statistical characteristics [38],
expand the search range, enhance the escape ability of the
particles from the optimal local solution, and prevent the
algorithm from falling into the local optimal prematurely.
In [39], the authors experimentally proved that replacing
random parameters r2 with chaotic parameters is the opti-
mum choice, with the Singer map being the best choice for
this algorithm. The Singer map parameter value fluctuates
between (0,1) with great chaotic randomness, and the Singer
mapping formula is defined as:

r2 = xk+1 = µ(7.86xk − 23.3x2k + 28.75x3k − 13.3x4k )

(18)

where µ is a parameter between 0.9 and 1.08. For µ = 1.04,
xk = x0 = 0.18, and up to 600 iterations, Fig. 2 illustrates the
Singer map of the initial value and the number of iterations.

Therefore, the formulas of the improved particle swarm
algorithm after parameter adaptive adjustment are:

υ t+1
is = ω (t) υ t+1

is + c1 (t) u1
(
ptis − x tis

)
+ c2 (t) u2

(
ptis − x tis

)
(19)

x tis = x tis + υ t+1
is (20)

E. INTRODUCE LEVY FLIGHT
The Levy distribution applied in many research fields is a
probability distribution proposed by the French mathemati-
cian Levy and is a random walk process combining action
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FIGURE 2. Singer map iterations graph.

trajectory with large-small steps [40] and a non-Gaussian
stochastic process [41].

Given that the PSO solution process suffers from slow
convergence speed, poor optimization stability, and easily
falling into the local optimum prematurely, the introduction
of the Levy flight into the PSO can increase the search range,
jump out of the local optimum, and enhance optimization
ability.

The updated position formula of the Levy Flight is as
follows:

x t+1
i = x ti + α ⊕ Levy(λ) (21)

where x ti is the position of iteration t , ⊕ is the point-to-point
multiplication, α is the control parameter of step size, and
Levy(λ) is the random search path, formulated as:

Levy ∼ u = t−λ, 1 < λ ≤ 3 (22)

The random search step size of Levy’s flight is as follows:

s =
µ

|υ|
1
β

(23)

 σµ =

{
0(1+β) sin(πβ/2)

0[(1+β)/2]β2
(β−1)

2

}
συ = 1

1
β

(24)

where s is the flight search step length, the value range of β

is (1, 2], with a typical value being β = 1.5, and µ, υ obey
the normal distribution with µ ∼ N (0, σ 2

µ), υ ∼ N (0, σ 2
υ ).

The algorithm’s optimization process is divided into global
and local search, with the Levy flight aiming to overcome
the problem that particle swarm optimization falls into a local
optimum too early during the local search process. If the Levy
flight starts too early, the algorithm’s calculation burden is
large, and the global convergence speed is reduced. There-
fore, it is necessary to set the Levy start threshold to control
the start time of the Levy flight.

The convergence process of LPSPSO aims to search for a
large range of particles until the range and distance between
the particles gradually reduce. Therefore, the Levy flight
threshold is established according to the average relative
distance between particles.

Let i denote any particle in LPSPSO, at a current position
of xi, with velocity vi, and the distance between the particle i
and the other particles is:

d =
1

N − 1

N∑
j=1,j̸=i

√√√√ M∑
k=1

(xik − xjk )2 (25)

After calculating the maximum distance dmax, the min-
imum distance dmin,and the average distance davg, respec-
tively, the formula for the Levy flight threshold is:

κ =
davg−dmin

dmax−dmin
(26)

τ = e(−
t

tmax
) (27)

where τ is the startup judgment value ranging from 1 →

0.632, t is the current number of iterations, which is related
to τ , and tmax is the maximum number of iterations. As the
number of iterations increases, the distance between the par-
ticles changes, the value of κ increases, and the value of τ

reduces. When κ > τ , the distance between the particles is
small enough, and Levy flight starts. For κ < τ , the algorithm
conducts a global search.

F. THE PROCESS OF LPSPSO
The process of LPSPSO is presented below and illustrated in
Fig. 3.

Step 1: According to the mathematical description of
steps (1)-(3) of the improved proximity method for the laser
cutting model, the starting point set ST of the cutting process
is established.

Step 2: According to the solution ideas of the TSP in
the laser cutting process, all points are not repeatedly cut
(except for the starting point), and each starting point of the
closed loop to be processed is set as the particle of LPSPSO.
The optimum global value is evaluated and recorded, and the
number of starting point set ST is defined. Moreover, the
algorithm’s parameters are defined: the initial iteration time is
t = 1, the particle number N , maximum iteration times tmax,
initial particle position xi, initial particle velocity νi, velocity
boundary value νmax and νmin, position boundary value xmax
and xmin.

Step 3: Calculate the comprehensive prospect-regret value
according to formulas (4)-(13), and use it as the fitness eval-
uation value of LPSPSO to update the particle and guide the
algorithm’s evolution.

Step 4: According to the inertia weight power function
adjustment (formula (16)), the learning factor (formula (17)),
and the chaotic random number (formula (18)), adaptively
change the parameters ω(t), c1(t), c2(t), and r2, and input
these parameters to the velocity formula (19) and the position
formula (20) to calculate the fitness of the particle and record
the current optimal solution gbest .
Step 5: Calculates the Levy flight threshold κ and

the distance between the current particles. According to
formula (25) calculate dxi−max, dxi−min and dxi−avg, calculate
the Levy flight threshold κ according to formula (26), and
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FIGURE 3. Flow chat of LPSPSO.

calculate the starting probability judgment value τ according
to formula (27).

Step 6:Levy flight threshold judgment. Compare the size
between κ and τ . If κ > τ , the Levy flight has started and
the particles are updated according to formulas (21)-(24).
If κ < τ , LPSPSO conducts global optimization according
to formulas (19)-(20).

Step 7: Set the evolution time threshold to k = 10.
If κ < τ the fitness value of 10 consecutive iterations does not
change. Then judge the algorithm’s prematurity and compare
the current iteration time t with the maximum number of
iterations tmax. If t < tmax, perform step 4 to continue the
iteration.

Step 8: Judge whether the maximum iteration number of
iterations tmax has been reached. If t = tmax, record the global
optimal and output it. If t < tmax, return to step 4 and continue
the iteration.

V. SIMULATIONS AND EXAMPLES
This section challenges LPSPSO against PSO, the ant colony
improved particle swarm optimization (ACO-PSO) [42], and
the K-means clustering improved algorithm (K-PSO) [43].
The performance of various tests is discussed and analyzed,
and according to the corresponding theoretical research, all
methods are implemented in C++ and VC.

Since the empty laser cutting path planning optimization
is a TSP, 22 TSP test examples are selected to evaluate

FIGURE 4. Blanket laser cutting pattern.

the competitor methods’ performance. Then the fixed and
random starting points are selected for laser cutting.

A. SIMULATION VERIFICATION OF LPSPSO
The laser cutting planning problem is classified as TSP, and
therefore, to verify the performance of LPSPSO, 22 bench-
mark instances of TSP are solved by LPSPSO and the state-
of-the-art competitor algorithms. The verification results of
the TSP-lib instances are reported in Table 3, which high-
lights that PSO finds 1 optimal solution, 4 by ACO-PSO, 5 by
K-PSO, and 6 by LPSPSO. Compared with the competitor
algorithms, LPSPSO finds the most optimal solutions.

Considering the deviation rate, the highest deviation rate
of PSO is 8.087% (3.767% average), of ACO-PSO is 5.198%
(1.231% average), of K-PSO is 3.873% (average 1.040%),
and LPSPSO is 2.306% (average 0.622%).

Compared with the competitor algorithms, LPSPSO
obtains the most optimal solutions and presents the lowest
deviation rates, highlighting the advantages of the proposed
LPSPSO algorithm.

B. VERIFICATION EXAMPLES
To verify the performance of LPSPSO, a processing file in
the.dxf format is drawn in AutoCAD.We cut from a fixed and
random starting point in the same cutting pattern to calculate
the laser cutting head with the shortest empty path distance.
The laser cutting pattern contains 43 closed graphics and is
illustrated in Fig. 4. The distance from the origin to the first
starting point is defined from formula (3). The coordinates of
all closed graphics and the corresponding feature points to be
processed are reported in Table 4. Moreover, the algorithms’
parameters are as follows: the number of particles in the
particle swarm is N = 50, and the maximum number of
iterations is tmax = 600.

1) VERIFICATION AND ANALYSIS OF LASER CUTTING FROM
A FIXED STARTING POINT
For the fixed starting point case, we select the point S11 as
the fixed starting point. The empty laser head path moves
between the cutting graphics as calculated by the evaluated
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TABLE 3. Verification results of the TSP-lib instances.

FIGURE 5. Empty Laser cutting processing for a fixed starting point (a)PSO path, (b) ACO-PSO path,
(c)K-PSO path, and (d) LPSPSO path.

algorithms (Fig. 5) and the empty laser head path track
illustrated in Fig. 6. Through the path comparison analysis,
we conclude that all back-shaped cutting paths can reduce
the cutting path. However, the PSO algorithm has a relatively
large displacement between the starting points, the path is
chaotic, and it does not find the best starting point increas-
ing the total cutting path (Fig. 5(a)). ACO-PSO and K-PSO
perform better (Fig. 5(b) and 5(c)), with the total cutting

paths of both decreasing. The LPSPSO algorithm employs the
improved proximity method and other optimization parame-
ters, affording a better solution (Fig. 5(d)).
The empty laser cutting path length calculated by LPSPSO

is 91928.79mm, which is the shortest, while the length
of PSO is 95752.04mm, which is longer than LPSPSO
by 3823.25mm(3.99%). Moreover, the cutting length of
ACO-PSO is 93123.41mm, which is 1194.62mm longer
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TABLE 4. The coordinates of closed graphics and feature points.
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FIGURE 6. Empty Laser cutting path track for a fixed starting point (a) PSO path track, (b) ACO-PSO
path track, (c) K-PSO path track, and (d) LPSPSO path track.

FIGURE 7. Evolution curve comparison.

and 1.28% more than LPSPSO, and the length of K-PSO
is 92476.35mm, 547.56mm longer and 0.64% more than
LPSPSO. The complete results are reported in Table 5.

Among the total cutting time, LPSPSO requires the least
time (622.07s), with PSO presenting the longest total cut-
ting time of 696.31s(74.24s longer and 10.66% more than
LPSPSO). Accordingly, the total cutting time for ACO-PSO
is 628.06s (5.99s longer and 0.96 %more than LPSPSO), and
for K-PSO, it is 632.53s (10.46s longer and 1.65% more than
LPSPSO).

Fig. 7 reveals that as the number of iterations increases,
the empty path length gradually reduces. LPSPSO first finds
the optimal value, followed by K-PSO and ACO-PSO, while
PSO is the last. According to the evolution curve, the optimal
solution is found by LPSPSO after 397 iterations, while
ACO-PSO requires 483 iterations, K-PSO 462 iterations, and
PSO 589 iterations. These results prove that LPSPSO has

a better performance than the competitor algorithms. The
cutting starting point sequence from a fixed starting point of
these algorithms is reported in Table 6.

2) VERIFICATION AND ANALYSIS OF LASER CUTTING FROM
RANDOM STARTING POINT
This experiment considers a random starting point, and the
complete empty laser head path moves between the cutting
graphics as calculated by each competitor algorithm (Fig. 8).
The pure path of the laser head empty cutting path is depicted
in Fig. 9.

The path comparison analysis reveals that PSO has a sig-
nificant displacement between the starting points, its path
is chaotic, and it does not find the best starting point
increasing the total cutting path significantly (Fig. 8(a)). The
ACO-PSO and K-PSO algorithms attain a better performance
(Fig. 8(b) and 8(c)) compared with PSO, with their total
cutting paths decreasing and becoming less chaotic. Never-
theless, LPSPSO affords a better solution (Fig. 8(d)).
Table 7 infers that the empty laser cutting path length

calculated by LPSPSO is 88437.51mm, which is the shortest.
The length of PSO is 121785.97mm (33348.46mm longer
and 27.38% more than LPSPSO), the length of ACO-PSO
is 102261.38mm (13823.87mm longer and 13.51% more
than LPSPSO), and the length of K-PSO is 97198.48mm
(8760.97mm longer and 9.01% more than LPSPSO).

Considering the total cutting time, LPSPSO is the fastest,
requiring 619.19s, with PSO being the slowest requiring
746.15s (126.96s longer and 17.02% more than LPSPSO),
ACO-PSO requires 664.45s (45.16s longer and 6.80% more
than LPSPSO), and K-PSO needs 669.96s (50.77s longer and
7.58% more than LPSPSO).
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TABLE 5. Processing information from a fixed starting point of each algorithm.

TABLE 6. Starting points sequence from a fixed starting point.

FIGURE 8. Empty Laser cutting processing from a random starting point path. (a) PSO path,
(b) ACO-PSO path, (c) K-PSO path, and (d) LPSPSO path.

According to the evolution curve illustrated in Fig. 10,
the empty path length gradually reduces as the number of
iterations increases. LPSPSO first finds the optimal value,
followed by K-PSO and ACO-PSO, and PSO is the last. The
optimal solution is found by LPSPSO after 406 iterations,

while ACO-PSO requires 501 iterations, K-PSO 488 itera-
tions, and PSO 598 iterations. These results highlight that
LPSPSO is better than the competitor algorithms. The starting
point sequence from a random point of each algorithm is
presented in Table 8.
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TABLE 7. Processing information of each algorithm considering a random starting point.

FIGURE 9. Empty Laser cutting path track from a random starting point. (a) PSO path track,
(b) ACO-PSO path track, (c) K-PSO path track, and (d) LPSPSO path track.

TABLE 8. Starting points sequence from a random starting point.

3) COMPARISON
Figs. 5 and 7 compare the two types of laser head empty path
data under a fixed and a random starting point. These figures

highlight that the PSO algorithm has the longest cutting
path and cutting time, while the LPSPSO has the shortest
path and time. Compared with the fixed starting point, the
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FIGURE 10. Evolution curve comparison from a random starting point.

competitor algorithms increase the empty path distance cal-
culated from the random starting point. The PSO algorithm
increases the most from 3.99% to 27.38%, while the LPSPSO
algorithm decreases the path distance from 91928.79 mm
to 88437.51 mm (reduction of 3491.28 mm, i.e., 3.80%).
Regarding the fixed starting point, the total cutting time of
the competitor algorithms increases compared to the random
starting point, while the cutting time of LPSPSO cost reduces
due to the reduction of the laser head empty cutting path
length. The PSO algorithm processing time increases the
most, with an increase of 49.84s(6.68%), and the LPSPSO
algorithm reduces by 2.88s (0.46%). Comparedwith the fixed
starting point, the number of iterations increases because of
the increased calculations due to the random starting point.
Compared with the other algorithms, LPSPSO presents bet-
ter performance and applicability in solving path-planning
problems.

VI. CONCLUSION
This work investigates the empty laser cutting head path
length and proposes the LPSPSO algorithm. Three state-of-
the-art algorithms challenge our algorithm’s performance on
22 benchmark test instances and a practical problem. From
the experiments, we conclude the following:

(1) The improved proximity method is used to calculate
the minimum distance between different feature points of the
graphics, and the coordinates are established for each feature
point, which is beneficial to the path optimization problem.

(2) The comprehensive prospect-regret theory is intro-
duced into the LPSPSO to guide the algorithm’s evolution.
The comprehensive prospect-regret theory not only considers
the risk attitude of the decision-makers when facing gains
and losses but also considers other possible outcomes and
the regret avoidance psychology of the decision-makers. The
comprehensive prospect-regret theory can better reflect the
decision-making behavior of the decision-makers by con-
sidering the decision-maker’s decision-making attitude. The
comprehensive prospect-regret value is used to guide the
LPSPSO evolution, calculate its value according to the com-
prehensive prospect-regret theory, and utilize this value as
the algorithm’s fitness value. Then, evaluate the solution’s

quality according to the fitness size, expanding the theoretical
application fields.

(3) The LPSPSO is improved by adaptively adjusting the
inertia weight power function, learning factor, and the chaotic
random number, to solve the shortcomings of the standard
PSO. Additionally, the Levy flight is introduced to disturb
the particles and prevent local optimization. The Levy flight
threshold is set based on the distance between the particles to
prevent the Levy flight from starting prematurely and increase
the number of calculations, thus accelerating the optimal
solution.

(4) The laser head empty path problem can be considered a
TSP problem. In the 22 TSP test cases, the LPSPSO algorithm
finds the most optimal solutions, demonstrating LPSPSO’s
superiority in solving the TSP problem.

(5) In analyzing and verifying the laser head cutting empty
path under a fixed and a random starting point, we compare
our method against three algorithms. The proposed LPSPSO
algorithm presents the shortest cutting path, and the results
prove that LPSPSO can effectively reduce the cutting path
and improve processing efficiency.

(6) In addition to applying our scheme to the laser cutting
path optimization problem, the improved approach method
involving the comprehensive prospect regret theory and
the LPSPSO algorithm can also be applied to 3D print-
ing path optimization, AUV car path optimization, agricul-
tural machinery tillage process path optimization, and other
problems.

In future studies, the mathematical model will be estab-
lished in more detail, and more indexes will be set. Addition-
ally, other operational research theories will be used, such
as a more complex algorithm PFPSO will be investigated,
introducing the Probabilistic Hesitant Fuzzy Set into the
algorithm.
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