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ABSTRACT The Electrocardiogram (ECG) is a low-cost exam commonly used to diagnose abnormalities
in the cardiac cycle. Over the years, the scientific community has investigated the automatic classification
of ECG signals driven by advanced Machine Learning (ML) techniques. Despite recent scientific advances,
annotating large and diverse datasets to support the training of ML techniques is still very time-consuming
and error-prone. Indeed, ML techniques whose training does not require extensive and well-annotated
datasets are becoming even more prominent. Therefore, it is possible to correctly identify and classify
abnormalities in the cardiac cycle (e.g., rare cardiologic disturbs) using limited data available in ECG
datasets. However, the classification of heartbeats from digital tracings of ECG signals containing 12 leads
from imbalanced datasets is challenging due to many existing heart diseases. This study investigates the
few-shot learning paradigm based on Siamese Convolutional Neural Networks (SCNN), popular in imaging
classification problems, to classify 12-Lead ECG heartbeats using a few training samples with supervised
information. The proposed SCNN model presented an accuracy of up to 95% in a public dataset based on
the hold-out validation method, implemented for different combinations of similarity and loss functions.
Besides, using the 7-fold cross-validation method, the model presented a mean area under the curve of 89%.
We also compared the class-by-class classification results with those of similar methods available in the
literature, obtaining the same or better results based on performance metrics such as accuracy, precision,
recall, and specificity.

INDEX TERMS Electrocardiogram, machine learning, few-shot learning, siamese neural networks, heart-
beat classification.

I. INTRODUCTION ritory. However, the northeastern region has a balance of

The healthcare systems of low-middle-income countries have
many deficiencies due to low investment and poor distribu-
tion of doctors among the country’s regions. For instance,
Brazil, a continental-size middle-income country, according
to the latest medical, demographic survey [1], has a ratio
of 2.18 doctors per 1,000 inhabitants in the national ter-
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only 1.42 doctors per 1,000 inhabitants. Besides, consid-
ering developed countries, according to a 2019 study con-
ducted by the Association of American Medical Colleges,
there is a ratio of 353 people per physician in the United
States. However, only 2.4% are specialists in the field of
cardiology [2]. Indeed, low investment and poor distribu-
tion of doctors may negatively impact developing and devel-
oped countries’ diagnosis and treatment of diseases (e.g.,
cardiovascular diseases).
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Cardiovascular diseases are the most common cause of
death in the world [3]. For instance, in Brazil, they represent
the leading cause of disability retirement and hospitalization
expenses. However, only 4.1% of medical specialists in Brazil
are cardiologists, and this scarcity compromises the analysis
of simple tests such as the Electrocardiogram (ECG) [1].
Thus, higher investment and better distribution of doctors
among the country’s regions can result in more regular visits
to a cardiologist, improving diagnosis and treatment. Indeed,
it is possible to diagnose cardiovascular diseases prematurely
using ECG tracings, preventing stroke and heart attack com-
plications due to early interventions.

The ECG at rest is a simple, non-invasive, and inexpensive
test that records the heart’s electrical activity over a short
period (approximately 10 seconds). The recording can be
done by 12 leads, combining the position of electrodes on
the limb region and the front of the chest. The differences
in shapes and frequency of the ECG waves allow the identi-
fication of different cardiovascular diseases, such as cardiac
arrhythmias or heart muscle problems.

To speed up the triage process in medical centers that per-
form remote ECG reports, researchers have been developing
a set of computational algorithms to automatically classify
ECG signals as to the state of normality or abnormality in
cardiac electrical activity. Deep learning is an example of a
Machine Learning (ML) approach widely adopted to classify
ECG signals automatically.

Considered an open problem in the context of deep learning
with ECG signals [4], the academy and industry recognize
the class imbalance as an obstacle in developing effective
deep learning models with a high amount of parameters by
making the training phase harder. ML practitioners can avoid
this problem using data augmentation techniques such as the
Synthetic Minority Oversampling Technique (SMOTE) [5].
Recently, a new approach called few-shot learning [6] has
been popularized and stands out in imaging processing prob-
lems. This approach tries to circumvent the necessity of large
and diverse datasets by using prior knowledge to improve the
models’ convergence to an acceptable solution. A solution
can use the previous knowledge in three main ways: augment-
ing the training dataset, restricting the solution search space,
and modifying a similar task solution to fit the new problem.

Given the challenge in addressing imbalanced multi-class
problems [7], this study investigates the usage of few-shot
learning based on a Siamese Convolutional Neural Network
(SCNN) model [8], [9] for the classification of heartbeats
from digital tracings of ECG signals containing 12 leads
from imbalanced datasets. The study presents an approach
to classify 12 lead ECG heartbeats automatically using an
SCNN model. We used an open ECG dataset and tested dif-
ferent model configurations, using a simple decision process
to classify the signals.

The article has the following structure. Section II discusses
related works. Section III presents preliminaries on the ECG
dataset, few-shot learning, SCNN, and similarity and loss
functions. Section IV describes the proposed SCNN model

5366

and experimental results. Finally, Section V discusses the
results reported in Section IV. Section VI presents threats to
validity, while Section VII concludes the article.

Il. RELATED WORK

Deep learning is a relevant topic addressed by many
researchers for biomedical applications. For instance,
Tng et al. [10] analyzed the performance of recurrent neural
network-based models for predicting histone lysine crotony-
lation. Le and Nguyen [11] proposed a deep learning model
to identify flavin mono-nucleotides interacting residues.

Besides, in the scientific literature, several papers explore
deep learning techniques to classify ECG signals from dig-
ital tracings. For example, Acharya et al. [12] trained two
eleven-layer Convolutional Neural Networks (CNN) to clas-
sify ECG signals as normal or with coronary artery dis-
ease. In one of the networks, for training, they used 95,300
2-second segments, 15,300 normal, and 80,000 altered; in
the other, 38,120 5-second segments, 6,120 normal, and
37,000 altered. All signals were obtained by lead II of 40 nor-
mal patients from the Fantasia [13] database. They also used
seven more records of patients with coronary artery disease
from the St. Petersburg Institute of Cardiology Technics
12-lead arrhythmia database [14]. Although having the same
structure, the authors trained the two networks with segments
of different lengths. In such a study, the accuracy obtained
was 95% with two-second samples and 95.1% with five-
second samples.

Using a 10-layer CNN, Baloglu et al. [15] could detect
ten different classes of myocardial infarction from 12-lead
signals found in the PTB Diagnostic ECG [14] database.
They used one hundred forty-eight signals with myocardial
infarction and 42 healthy signals. The signals went through
a wavelet transform-based pre-processing step for noise and
baseline wander removal and then through an R-wave detec-
tor to extract a stretch of the ECG signal corresponding to
only one heartbeat. The authors trained each lead separately
on the neural network in the proposed approach, resulting in
an average accuracy of 99.60%.

In another related work, Yildirim et al. [16] used a different
approach to detect 17 classes of cardiac arrhythmias. For
training, the authors used 1,000 10-second segments sampled
from signals of 45 individuals from the MIT-BIH Arrhythmia
database [14]. This work follows the hypothesis that there is
only one type of arrhythmia in each 10-second segment and
uses longer traces to capture changes in signal characteris-
tics over time. The CNN classifier developed in this work
obtained an average accuracy of 91.33%.

Ribeiro et al. [17] used a residual neural network model
with 12-lead ECG signals to identify six types of cardiac
disorders: first-degree atrioventricular block, right bundle
branch block, left bundle branch block, sinus bradycardia,
atrial fibrillation, and sinus tachycardia. In such a work,
the authors used a private database obtained through the
Telehealth Network of Minas Gerais (RTMG), containing
more than 2 million and 300 thousand 10-second segments of
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ECG signals. The authors used natural language processing
techniques to reuse the signal classes from medical reports.
In the study, they compared the trained network’s diagnosis
with those given by pairs formed: two cardiology residents,
two emergency department residents, and two medical stu-
dents. The network obtained a more consistent result than the
results provided by all the pairs, with the F1 score being 80%
and specificity above 99%.

Besides, few-shot learning recently found its way into clas-
sifying ECG signals. For example, Liu et al. [21] developed a
few-shot learning method to detect arrhythmia in ECG signals
by pre-training a model on an auxiliary dataset and using
a meta-transfer learning scheme to improve the learning of
the unseen classes. Yang et al. [22] used a Siamese Neural
Network (SNN) based on the ODENet to classify 10 seconds
segments of ECG signals into five classes. In another study,
Li et al. [23] published a paper proposing a similar approach.
The authors propose an SCNN to classify single lead ECG
heartbeats into four classes under a limited dataset constraint.

Other examples of related work based on different
approaches include models proposed by Llamedo and
Martinez [24], Llamedo and Martinez [25], Li et al. [26],
Romdhane et al. [27], Rajesh et al. [28], Aziz et al. [29],
Das et al. [30]. All these studies used the same dataset from
PhysioNet: the St. Petersburg Institute of Cardiological Tech-
nics 12-lead Arrhythmia (INCART).

Despite the high accuracy of implemented models, most of
the related work resorts to public datasets for classifier train-
ing, such as the MIT-BIH Arrhythmia [18] and the INCART,
available in the PhysioNet [14] repository. Public datasets
usually contain long signals from few patients, implying a
high dependency between observations. This fact is not con-
sidered in accuracy calculations and contributes negatively to
the fact that such measures tend to be too optimistic [19].
In addition, few datasets make available the resting ECG
signals in 12 leads, making it difficult to detect diseases
whose diagnosis depends on the evaluation of signals in
multiple leads, such as ventricular fibrillation and myocardial
infarction [20]. Another problem arises because more severe
diseases tend to occur less frequently, thus having little rep-
resentativeness in datasets with few patient ECG records.

IIl. PRELIMINARIES

A. ECG DATASET

We collected the ECG signals from the open-source St Peters-
burg INCART 12-lead Arrhythmia dataset [14] available on
the Physionet database. The dataset consists of 75 ECG
recordings extracted from 32 Holter records. Each recording
is 30 minutes long in this dataset, containing the 12 standard
leads sampled at 257 Hz. The heartbeat annotations were
produced automatically by an algorithm and manually cor-
rected later.

In this study, we selected all the annotated classes available
in the INCART dataset: 175,844 heartbeats from 7 clinical
conditions [14]. We split these beats as follows: 1943 pre-
mature atrial heartbeats (A), 219 fusion of ventricular and
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normal heartbeats (F), 92 nodal (junctional) escape heart-
beats (j), 150,393 regular heartbeats (N), 3,173 right bundle
branch block heartbeats (R), 16 supraventricular premature
or ectopic heartbeats (S) and 20,008 premature ventricular
contractions (V).

B. FEW-SHOT LEARNING

Few-shot learning is a machine learning paradigm that allows
supervised learning algorithms to learn from a limited num-
ber of examples. Among its main uses, this paradigm is
suitable when [6]:

1) the model needs to learn rare cases;

2) the cost of collecting and annotating a robust dataset

becomes too high; and

3) it is necessary to make the machine learn like a human

being.

Researchers usually categorize few-shot learning algo-
rithms according to the context in which prior knowledge
of the problem applies: data, model, and algorithm. Using
previous data knowledge seeks to improve the dataset of a
model to achieve a satisfactory generalization function. Thus,
it may be necessary to convert an existing dataset into a new
type of information to decrease the training complexity of
another model [31], [32]. It may also be necessary to classify
unlabeled or weakly labeled samples to increase the data for
training [33], [34] or generate data similar to the original
dataset artificially [35], [36].

In the model context, few-shot learning algorithms seek to
limit the solution search space, as this facilitates convergence
to a satisfiable function. Designers can combine models that
solve specific parts of a problem with parameter sharing
to solve a more generic problem (Multitask Learning) [37],
[38]. They can also simplify the search space by looking
for a function capable of mapping the samples to a feature
space in which it is easy to differentiate the dataset classes
using a similarity function (Embedded Learning or Metric
Learning) [39], [40]. Other techniques use generative models
and likelihood functions (Generative Modeling) [41].

Designers also use the few-shot learning methods to guide
model parameter development. Some approaches include:

« adapting a series of parameters 6y from a model perform-
ing one type of task to parameters 6 from another similar
task [42], [43];

« refining training parameters according to their perfor-
mance [44], [45]; and

o learning an optimization function to adjust model
parameters during training [46], [47].

C. SIAMESE CONVOLUTIONAL NEURAL NETWORK

A Siamese neural network, developed initially to verify
handwritten signatures in images [48], is composed of twin
networks with the same weights and architecture. Siamese
neural network uses concepts related to few-shot learning.
Each of these twin networks accepts a different set of inputs.
The intent is to produce an embedding function that maps
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those inputs into a d-dimensional space where the value of
a similarity function f is low for inputs of the same class and
high for inputs of different classes [6].

Traditionally, designers train neural networks in a fixed
number of classes. Adding or removing these classes is a
problem, requiring designers to retain the neural network
to accommodate those changes. A Siamese neural network
addresses this problem since it learns to compare the two
inputs and check whether they are similar. So, adding a class
becomes as simple as adding another scenario to compare
with the samples [49]. As an embedded learning algorithm,
the network maps inputs to a feature space where it is easier to
discriminate different classes. Because it is composed of a set
of networks with the same parameters, it is unlikely to map
similar data to very different locations in the feature space.
With this, for a coherent mapping function, the similarity
function should have low values for samples of the same class
and high values for samples of a different class.

The use of convolutional layers combined with Siamese
neural networks makes it even more interesting since convo-
lution is an operation that can filter the input and highlight
patterns contained in the data segments. In this way, it is
possible to train a convolutional layer to represent essential
features of its input in its output [49].

D. SIMILARITY AND LOSS FUNCTIONS

Concerning the similarity functions, we used the L1 distance,
L2 distance, Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE):

L1 =i|Ai—Bi| (1)
i=1

@

3

“

where A and B are the vectors and N is the size.

Regarding the loss functions, we tested the Binary Cross-
Entropy (Equation 5) and Contrastive Loss (Equation 6) [50].
We designed the two-loss functions with different objectives:
Binary Cross-Entropy for classification problems and Con-
trastive Loss for metric-based problems. We can reduce the
similarity problem to a binary classification problem with
“Same” or “Different” classes. Binary cross-entropy is a
commonly used loss function in this type of model, even with
specialized loss functions (L):

L = —(ylog(d) + (1 — y)log(1 — d)) (5
L= yd2 + (1 — y)ymax(margin — d, 0)2 (6)
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where y is the expected output, d is obtained output, margin
is a parameter defined as the constant 1 (given that d ranges
from 0 and 1), and max is a maximization function.

Previous studies applied these similarity functions, so we
experimented with them to analyze the models’ performance.
For instance, Koch et al. [49] used the weighted L1 dis-
tance and a variation of binary cross entropy as a loss func-
tion (Equation 5). Besides, Nandy et al. [51] highlighted
the L1 and L2 as examples of relevant similarity functions.
Chopra et al. [52] used the Euclidian distance (L2) and Con-
trastive Loss (Equation 6) as similarity functions.

IV. PROPOSED SCNN AND EXPERIMENTAL RESULTS

A. PROPOSED SCNN ARCHITECTURE

Up to 8 layers compose the proposed SCNN, as illustrated in
Fig. 1. We defined the number of layers and their disposition
through empiric experimentation. We tested four similarity
and two-loss functions, resulting in eight combinations. Thus,
we used the following similarity functions: L1 distance, L2
distance, MSE, and RMSE. Besides, we experimented with
the Binary Cross-Entropy (Equation 5) and Contrastive Loss
(Equation 6) [50].

We also experimented with many network architectures to
improve the performance of classifications. Thus, we tested
the number of layers, convolution filters, and the size of the
filters. Despite being the most popular activation function, the
rectified linear activation function (i.e., RELU) may suffer
from a problem called the dying RELU problem. When using
the RELU, neurons can, under certain conditions, enter a state
of perpetual inactivation where it gives no output for any
input and produces no gradient, making it essentially “‘dead,”
as it has no contribution to the neural network anymore.
To mitigate this problem, we used a variation of the RELU,
known as Leaky RELU (Equation 7):

LeakyReLU — [X’ forX'=0 %)
001xX, forX <O
where X is an arbitrary input.

There is a slight positive slope in this activation function
when the neuron is inactive, making recovery possible from
a dying state. This is a relevant solution to address the RELU
problem.

Besides, we used Max Pooling to return the maximum
value of each region. Table 1 summarizes the detailed param-
eters of each layer for the proposed SCNN architecture to
enable the reproduction of the model presented in this study.
We did not apply specific methods for tuning. However,
we defined the parameters through extensive experimentation
to achieve relevant results. Readers can access our source
code in our public repository.'

B. PRE-PROCESSING
We filtered each ECG signal using a Discrete Wavelet Trans-
form (DWT) approach with Daubechies 4 as the mother

1 https://github.com/dudummv/Siamese-Network-ECG
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2018 x 32
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FIGURE 1. Proposed model architecture for heartbeat classification.

TABLE 1. Network structure and layer parameters.

N° Layer Parameters Output

1 1D Convolution  16x7, Stride=1, Input = 2022x16
(2028, 1), Activation =
LeakyReLU

2 ID Convolution  32x5, Stride=1, Activa- 2018x32
tion = LeakyReLU

3 MaxPooling 1D  Pool size=2, Stride=2 1009x32

4 1D Convolution 32x13, Stride=1, Activa- 997x32
tion = LeakyReLU

5 1D Convolution 16x9, Stride=1, Activa- 989x16
tion = LeakyReLU

6  MaxPooling 1D  Pool size=2, Stride=2 496x16

7  Flatten - 7904

23 TN N N TN TN ENPIii?/i"alsmral NN N N TN VT

Amplitude

N B L L L B " [
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
Time (s)

Filtered Signal
NV TN TN N N TN VT

Amplitude
T
|

1 L H H 1 1
1786 1787 1788 1789 1790
Time (s)

i ' \ i L
1781 1782 1783 1784 1785

FIGURE 2. Original and filtered ECG signals.

wavelet. This approach works by applying a DWT to the
signal and discarding the resulting wavelet components rep-
resenting low and high-frequency noise. We employed a
second-order Butterworth bandstop filter with a 50 Hz cutoff
frequency as an additional step to reduce powerline noise.
Fig. 2 presents original and filtered ECG signals, illustrating
filtering results based on our approach.
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FIGURE 3. ECG signal with the 12 leads concatenated.

We collected heartbeats samples from the filtered signals
by extracting segments located around the pre-annotated R
waves. The extracted ECG segments contain 65 samples
before and 103 samples after the R wave, totaling 169 points
per heartbeat. We can recalculate this sample range for sig-
nals of other datasets by adjusting its values following the
dataset’s frequency and using a simple rule of three. We per-
form this procedure for all 12 standard leads and concatenate
the collected heartbeats of each R wave annotation into a
single signal with 2,028 samples. Fig. 3 presents an example
of an ECG signal with the 12 leads concatenated based on our
approach.

In this study, we selected seven kinds of heartbeats (i.e.,
seven classes) from the nine available types of heartbeats
in the INCART dataset [14]. We removed two types of
heartbeats due to unclassified or unspecified annotations.
We split the heartbeats according to Table 2. Therefore,
our description evidences the highly imbalanced nature of
the dataset, motivating the use of the few-short learning
approach, defined as an SCNN architecture.

C. EXPERIMENTAL SETUP
In the first evaluation step, the dataset was split into
a 75-15-10 ratio in a stratified form, as each split has nearly
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TABLE 2. Number of heartbeats for each class.

Heartbeat Class Number of Heartbeats
Atrial Premature 1,943

Fusion of Ventricular and Normal 219

Nodal (Junctional) Escape 92

Normal 150,393

Premature Ventricular Contraction 20,008

Right Bundle Branch Block 3,173

Supraventricular Premature 16

Total 175,844

the same proportion of samples of each class. Therefore, for
each epoch (a total of 50), we carefully split the data into
75%, 15%, and 10%, for training, validation, and testing,
respectively. During training, each instance in the division
would produce two pairs of signals, one formed by the piece
and another randomly selected example from the same class,
another created by the sample, and a randomly selected
sample from a different category. This way, the input to the
model is equally distributed between positive (same class)
and opposing (another type) pairs.

We implemented the models with the Python program-
ming language and Keras framework, running on an Nvidia
RTX 2060 GPU, an Intel(R) Core(TM) i7-10875H CPU, and
32GB of ram. In the training stage, the ADAM optimizer was
used with a learning rate of 0.001 and batch size of 128 sam-
ples, running for 50 epochs. We also obtained those values
after empirical experimentation. As described in the previous
section, we used binary cross-entropy and contrastive loss as
loss functions.

A sample of each class was manually selected to form
a reference set. The selection of this reference sample is
essential to the quality of the predictions, as it has to contain
the most significant characteristics of its class. We formed the
pairs by the target sample and each reference sample from
the reference set and associated with its class. We fed them
into the model, assigning the resulting class to pair with the
highest output similarity.

In the second evaluation step, we used the k-fold cross-
validation technique to improve confidence in the perfor-
mance of the proposed approach. The k-fold cross-validation
technique is relevant to evidence of a model’s performance
when using limited-size datasets.

D. EXPERIMENTAL RESULTS

We trained ten models of each combination of the loss
function and similarity functions to minimize the effect of
random outcomes on the results of the experiments. Then,
we employed error plots to show the accuracy and loss of
the models on the validation dataset. On those plots, the lines
on the graph are the average accuracy of the ten generated
models, while the error bar is its standard deviation.

Fig. 4 illustrates that the models that used Contrastive
Loss as their loss function have a lower standard deviation
value during the training process. In particular, this value is
the lowest when we pair the Contrastive Loss function with
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FIGURE 4. Error plot of each model accuracy after ten executions.

the MSE or RMSE similarity functions. Those models may
have achieved convergence to a similar accuracy value with
a relatively high frequency. However, the models that used
Binary Cross-Entropy showed a high accuracy variation. This
variation was exceptionally high when paired with MSE or
RMSE similarity functions, contrasting with what happened
when combined with Contrastive Loss.

Fig. 5 shows that the loss value of the models with Con-
trastive Loss tends to fluctuate less than those with Binary
Cross Entropy. All models’ loss stagnated after close to
45 epochs, denoting that improvement from adding more
training epochs could happen but is unlikely. However, fine-
tuning the training parameters can still be done to reach better
solutions. We conducted ten executions to reduce the random
factor of assembling the pairs and weights of the network.

Table 3 and Table 4 present the average metrics after ten
executions for the models with Contrastive Loss and Binary
Cross Entropy, respectively. In such a presented scenario,
the MSE and RMSE models coupled with Contrastive Loss
achieved overall better quality metrics when compared with
the other researched combinations, with metrics such as
95.6% and 95.9% of accuracy and 96.1% and 94.9% pre-
cision. The results obtained from the Binary Cross Entropy
models were very close to each other, with the model using
the L1 distance as a similarity function obtaining slightly
better results.

To improve confidence in the performance of our approach,
we applied the k-fold cross-validation with k = 7. Thus,
the proposed SCNN model presented a mean accuracy of
86%. Fig. 7 presents the Receiver Operating Characteristic
(ROC) curve plot for each of the seven folds during the
7-fold cross-validation. The ROC plot shows that the model

VOLUME 11, 2023



E. M. M. Vasconcellos et al.: SCNN for Heartbeat Classification Using Limited 12-Lead ECG Datasets

IEEE Access

Contrastive Loss

0.35
-4+ 11
0.30 )
0.25 -4-- MSE
0204 -4-- RMSE
0.15 I+ I
!i?' e lli] TTitt11744
0.10 his &'--‘ﬁ....k..‘ i T
..% é Y -.....s-neqa—q—...,-.._._.._.,g
0.05 i &%’S‘ﬁ*!ﬁt&*iiiﬁttf;*nmzmh
ao.oo 10 20 30 40 50
] 1.4 Binary Cross Entropy
-4 11
1.2 L2
1.0 -4-- MSE
o -4-- RMSE
o6 tdiiiiire |
o R SSRRRRRRES mm i
N TI! ‘ : : ¥ 1
0.2 St 1‘ j 1
0.0 10 50

Epochs

FIGURE 5. Error plot of the model loss after ten executions.

TABLE 3. Average metrics for models Contrastive Loss.

Function  Accuracy  Precision Recall  Specificity
L1 0.901 0.910 0.893 0.909
L2 0.910 0.912 0.909 0.911

MSE 0.956 0.961 0.950 0.962
RMSE 0.949 0.949 0.948 0.949

TABLE 4. Average metrics for models with Binary Cross Entropy.

Function  Accuracy  Precision  Recall — Specificity
L1 0.909 0.905 0.914 0.902
L2 0.896 0.889 0.906 0.885

MSE 0.890 0.878 0.905 0.874
RMSE 0.896 0.881 0.920 0.873

presents a high discriminatory capacity for classifications.
The proposed model achieved a mean Area Under the Curve
(AUC) of 89%, given the AUC of the fold 1 (75%), fold 2
(97%), fold 3 (86%), fold 4 (98%), fold 5 (98%), fold 6 (83%),
and fold 7 (86%).

In addition to the ROC plot, we analyzed the Precision-
Recall (PR) curve to understand how well our proposed
SCNN model deals with the minority classes. Fig. 6 presents
the PR curve plot for each of the seven folds during the 7-fold
cross-validation. The PR curve plot also shows that the model
can properly classify instances from the minority classes.

We also conducted a per-class analysis for the most accu-
rate model of each loss function: a model using Binary Cross
Entropy combined with the L1 similarity function; and a
model using Contrastive Loss with the MSE similarity func-
tion. For the remainder of this section, we refer to those
models as the “Binary Cross Entropy Model”” and the “Con-
trastive Loss Model.”
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FIGURE 6. ROC curve plot for our classification problem using the k-fold
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FIGURE 7. PR curve plot for our classification problem using the k-fold
cross-validation method with k = 7.

Fig. 8 shows a heatmap of the results obtained for each
class using the Binary Cross Entropy model. The values of
cells represent the proportions of predicted classes concern-
ing the number of elements of the actual class (each line sum
up to 1). According to the heatmap, this model achieved out-
standing results in the classes with a large number of samples
(N, R, and V) and, surprisingly, with the low sampled j class.
However, in classes with a small sample count, it was sub-
par. The model often mislabeled the “F” class, for example,
with either the “V”” or N label and the ““S” class as a normal
heartbeat.

The precision of the classification of the “S” class is
particularly intriguing, as most classifications were false pos-
itives far exceeding the number of samples of that class,
making its precision value plummet (Fig. 5). On the other
hand, the “A’ class classification achieved a low number of
false positives while having a not-so-high recall value.

For the Contrastive Loss model, the results are slightly
worse in comparison to the previous model when looking at
normal heartbeats (N) classification but are better everywhere
else (Fig. 9). Gains from using Contrastive Loss as the loss
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FIGURE 8. Heatmap of the results of the Binary Cross Entropy model.

function can be inferred to be smaller in classes with large
sample counts, like the “V,” “R,” and “N”’ classes. However,
the classification of those classes became more consistent
with reducing the number of false positives.

In general, the classification of classes with fewer samples
is considerably better. The classification of the “J” class
achieves a recall value of 100% but has many more false pos-
itives, especially with the misclassification of the “F’ class.
Still, the ““F”’ class classification recall rose sharply compared
to what we achieved using the Binary Cross Entropy Model,
with a value of 68.04% versus the 39.73% shown previously.
Similarly, metrics for the “S” class classification are better,
with a much higher recall and precision due to a reduced
number of false positives and an increased number of true
positives.

V. DISCUSSION

An SCNN model for heartbeat classification from ECG signal
tracings is relevant to support clinical practice. This neural
network learns to embed samples in feature space under a
similarity function instead of classifying them. Thus, it can
handle unknown classes and classes with low sample num-
bers better than traditional neural networks. Our model is rel-
evant for a clinical application scenario due to the evident lack
of large databases to define large training sets. For instance,
if there is little data related to a rare cardiovascular disease,
our SCNN model can still support clinical decision-making
in the context of medical diagnosis.

Therefore, we tested eight models of Siamese neural net-
works. The models were built with the same layer con-
figuration but with different loss and similarity functions.
The models that used Contrastive Loss as the loss function
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achieved overall better results than those using Binary Cross
Entropy. As a specialized loss function, the use of Contrastive
Loss seemed to improve the classification results of classes
containing a small number of samples like the “F *j,”
and “S” classes, going from 39.73%, 90.22% and 12.50%
recall to 68.04%, 100%, and 62.50% respectively. Besides,
we tested the overall proposed model using the k-fold cross-
validation method, showing that the model can perform well
when classifying unseen data.

Compared with similar literature models, this work pre-
sented great results, especially when classifying heartbeats of
the “F” class. This classification achieved values of 65.35%
precision and 68.04% recall that far exceed values found in
other works. The classification of the classes with a high
number of samples was in line with what was found in other
works, with precision and recall values well above the 95%
mark. The classification of the “A” class, while worse than
what was achieved with other methods, was still solid.

Therefore, we compared similar literature models with our
SCNN approach. We only considered solutions based on
the same database (i.e., INCART) and performance metrics
(i.e., precision and recall). Table 5 compares this work with
some of those shown in the literature. The class A represents
atrial premature beats, F' represents a fusion of ventricu-
lar and normal beats, j represents nodal (junctional) escape
beats, N represents normal beats, R represents right bundle
branch block beats, S represents supraventricular premature
or ectopic beats, and V represents premature ventricular con-
tractions.

Concerning the classification of the highly sampled classes
(“N,” “R,” and “V”), the proposed models achieved values
that are comparable to those of other authors. A pleasant
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TABLE 5. Comparison table between different heartbeat classification approaches. All the studies used the INCART database, and the same performance

metrics were reported.

Model A F N R S Vv j

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec
Llamedo and Martinez [24] - - - - 99.00% 92.00% | - - 11.00% 89.00% | 88.00% 82.00% | - -
Llamedo et al. [25] Imbalanced - - - - 99.00% 92.00% | - - 11.00%  85.00% | 88.00% 82.00% | - -
Llamedo et al. [25] Balanced - - - - 92.00% 92.00% | - - 80.00%  85.00% | 87.00%  82.00% | - -
Llamedo et al. [25] By Recording - - - - 90.00% 93.00% | - - 66.00% 64.00% | 86.00% 71.00% | - -
Li et al. [26] - - - - - - - - - - 66.50%  93.40% | - -
Romdhane et al. [27] W/O Focal Loss | - - 21.82%  09.64% | 97.96% 98.59% | - - 59.34%  53.47% | 91.96%  88.78% | - -
Romdhane et al. [27] W/ Focal Loss - - 23.58% 11.07% | 97.98% 98.78% | - - 64.32% 51.41% | 92.71% 89.16% | - -
Rajesh et al. [28] Linear 88.71%  86.90% | - - 98.79% 98.60% | 90.19% 96.60% - - 95.67%  90.710% | - -
Rajesh et al. [28] RBF 92.67%  91.00% | - - 99.79% 97.90% | 94.55% 97.10% - - 92.77%  93.710% | - -
Rajesh et al. [28] Cubic 91.78%  91.60% | - - 99.00% 99.20% | 94.64% 97.20% - - 95.16%  92.60% | - -
Aziz et al. [29] - - - - 100.00%  99.60% | 100.00%  100.00% | - - 99.50%  100% - -
Das et al. [30] - - 1530% 51.80% | 99.70% 93.30% | - - 19.30% 87.00% | 89.10% 94.30% | - -
Proposed Binary Cross Entropy 94.66%  72.16% | 55.41% 39.73% | 99.63% 98.85% | 95.16% 99.78% 0.13% 12.50% | 97.81% 97.99% | 60.58%  90.22%
Proposed Contrastive Loss 95.96%  77.06% | 65.35%  68.04% | 99.73% 99.62% | 99.21% 99.62% 25.00%  62.50% | 96.81% 98.81% | 49.72%  100.00%

surprise was the classification of heartbeats in the “F’* class,
with the Contrastive Loss model achieving better results than
the best model listed with 64.35% precision and 68.04%
recall in comparison with 23.58% precision and 11.07%
recall. While not good, the classification of the “S” class
heartbeats using the Contrastive Loss model is on par with
the values found in other works. During our research, we did
not identify related studies classifying the heartbeats of the
“3” class.

One issue identified with the use of SCNNs combined
with the proposed decision process is that its results are
susceptible to the quality of the reference set. A reference
set composed of miss-labeled, highly noisy, or ill-conditioned
signals negatively impacts the quality metrics of the proposed
models when trained in noisy datasets, as we can identify
similarities between the noised reference and noised target
sample.

However, further investigation on using this network archi-
tecture for ECG signal classification is encouraged, as it
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achieved this result with a relatively simple architecture.
A denser network architecture or well-known signal process-
ing model combined with a more thorough tuning of its hyper-
parameters may improve the results significantly. A more
robust preprocessing step and an automatic reference signal
selection could also be employed to reduce the influence of
noisy signals on the network results.

We also recommend the investigation of changes in the
input format. Using a vertical stack of the 12 ECG leads
instead of a horizontal concatenation would allow for the use
of 2D convolutions, rendering possible interactions between
the ECG leads during the convolution process that is not pos-
sible otherwise. It is also possible to employ a more complex
decision process by combining the output of a trained SCNN
with other machine learning algorithms. Finally, as this type
of neural network only learns the embedding, this training
process can be easily used to obtain a feature extractor module
that can be used for other kinds of neural networks, making
it readily reusable.
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VI. THREATS TO VALIDITY

This study presents threats to validity due to the use of
publicly available databases and the performance regarding
classification accuracy. The publicly available databases may
not cover some specific disease stages. For instance, the
beginning of myocardial infarction is tough to identify and
is scarce in the existing databases.

Besides, Siamese neural networks focus on allowing a
quick addition and removal of classes to the model since
this process consists of the insertion or removal of examples,
respectively. Given this, the model developed does not present
a classification accuracy as high as the conventional models
(training and validation cycles with pre-defined classes). Still,
Siamese neural networks add flexibility to insert new classes
without retraining the model. This flexibility is a relevant
feature to reduce the impacts of problems regarding scarce
available data in databases (e.g., related to specific disease
stages). Thus, if new data is available, the existing Siamese
neural network enables an easy path toward the scalability of
proposed diagnostic solutions.

VIi. CONCLUSION

This article discusses the use of SCNN with 12-Lead digital
ECG signals. The results are promising, with most models
achieving accuracy values over 90% and 86% using the
hold-out and k-fold cross-validation methods, respectively.
The models with the best performance used Contrastive Loss
as the loss function, which we expected, as it is a loss func-
tion specially designed for problems such as this one. The
positive results of the models that used the MSE and RMSE
functions are unexpected, as those are not widely identified
in the literature because of their higher computational cost.
An advantage of this model is that it’s possible to integrate
new classes into the dataset without retraining the model with
an especially designed decision process and an accurate pre-
diction. We also recommend a class-by-class analysis and a
more robust decision process, with the addition of fine-tuning
the models’ parameters.

The publicly available databases (e.g., Physionet) include
only a small amount of data regarding rare cardiovascular
diseases, limiting the use of conventional machine learning
approaches. Therefore, our proposed SCNN model is espe-
cially relevant for clinical decision support in diagnosing rare
cardiovascular diseases in which little data is available for
training.
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