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ABSTRACT Automatic audio captioning (AAC) is an important area of research aimed at generating
meaningful descriptions for audio clips. Most existing methods use relevant semantic information to improve
AAC performance and have demonstrated the feasibility of semantic information extraction. Audio events
and keywords are commonly used for this purpose. Unlike previous studies, this study proposes a framework
that uses topic modeling to obtain relevant semantic content since topic models explore the main themes of
the documents. To this end, we present a framework that integrates audio embeddings with audio topics in
a transformer-based encoder-decoder architecture. First, we represent each audio clip with a set of topics
using a pre-trained topic model, BERTopic. Then, we design a multilayer perceptron (MLP)-based multi-
label classifier to predict the topics of audio clips in the testing phase. Finally, in the proposed framework,
we input audio embedding and extracted topics into the transformer model to generate captions. The results
show that the proposed model improves performance and competes with the most advanced methods that
utilize additional external data for training.We believe that the topic modeling can be used to extract semantic
content in the AAC task.

INDEX TERMS Audio captioning, audio event detection, PANNs, topic modeling, BERTopic.

I. INTRODUCTION
Automated audio captioning (AAC) has attracted increasing
interest in recent years. The AAC task combines audio and
natural language processing to create meaningful natural
language sentences [1]. The purpose of audio captioning is
different from earlier audio processing tasks such as audio
event/scene detection and tagging. Those earlier tasks do
not aim to create descriptive natural language sentences,
whereas audio captioning aims to capture relations between
events, scenes, and objects to generate meaningful sentences.
Audio captioning is a challenging audio processing task and
has a significant impact on enabling several services, such
as helping hard-of-hearing people and building intelligent
systems by understanding environmental sounds.

Most existing methods use encoder-decoder models in the
early stage of the AAC problem [1], [2]. Then, researchers
explored transformer models in AAC task to improve perfor-
mance with multi-head attention mechanism [3]. However,
predicted captions do not include rich semantic information
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by using only acoustic features. To overcome this problem,
the researchers extract semantic information from audio clips
and captions by using audio events and keywords from the
captions [4], [5], [6], [7].

Recently, researchers have adapted the topic modeling
in image captioning task [8], [9] to extract rich semantic
information from the images. Inspired by the success-
ful application of topic modeling in image captioning,
we propose a new AAC model with topic representations.
Alternatively to the audio event and keyword extraction
method, we aim to show that topic modeling can also be used
as relevant semantic content for AAC task. The difference in
extracting topics from previous keyword extraction methods,
the keyword extraction process mainly focuses on the words
in the captions, but topic models produce more generalized
words across the captions by clustering approaches. Themain
contributions of this article are given as follows:

• To the best of our knowledge, this is the first paper that
introduces topic modeling in AAC task.

• We compare the results of event, keyword, and topic
inclusion to show the applicability of topic modeling in
AAC task.
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• Extensive experiments are conducted on a base trans-
former model and BART model, a denoising autoen-
coder for pretraining sequence-to-sequence models,
to demonstrate the effectiveness of topic representations.
We chose the BARTmodel since it is a recent conditional
language model that is based on multi-head self-
attention architecture and improves AAC performance.

• The results show that the proposed model improves
performance and competes with the most advanced
methods that utilize additional external data for training,
and the topic modeling can be used to extract semantic
content in the AAC task.

The remainder of this article is organized as follows.
First, we introduce our proposed method in Section II.
Next, experiments and ablations are shown in Section III.
Then, section IV presents the results and discussion. Finally,
we conclude our paper in Section V.

II. RELATED WORK
This section describes related work in semantic information
usage in image and video captioning tasks, AAC task, and
topic modeling.

A. CAPTIONING WITH SEMANTIC INFORMATION
Semantic information extraction has been previously
explored in image and video captioning tasks to obtain high-
level attributes from images and video clips. Reference [10]
uses a semantic attentionmethod by detecting visual concepts
in the images to improve image captioning performance.
The extracted regions, objects, and attributes are obtained as
visual concepts and given to the Recurrent Neural Network
(RNN). A Long Short-TermMemorywith Attributes (LSTM-
A) model is presented in [11] to integrate attributes with
deep learning models. First, they detect attributes observed
in images with rich semantic information. Then, these
attributes are integrated into Convolutional Neural Networks
(CNNs) plus RNNs framework to improve image captioning
performance.

Researchers also handle semantic information usage in
video captioning task. In [12], a novel deep architecture
with transferred semantic attributes is presented. They
detect high-level semantic attributes from video frames
and inject them into Long Short-Term Memory (LSTM)
model. Reference [13] addresses the semantic information
usage using LSTM with two semantic guiding layers.
These layers are global, object, and verb semantic attributes
to guide the language model. The results show that the
inclusion of semantic information improves video captioning
performance.

B. AUDIO CAPTIONING
AAC is first proposed in [1]. The ProSound Effects [14]
is used for their experiments due to the lack of publicly
available audio captioning datasets. The Clotho [15] and the
AudioCaps [16] datasets are published to fill this gap. The
growing presence of publicly available datasets has led to
increasing research in the AAC task. Several studies have
addressed audio captioning on the Clotho [17], [18], [19] and
AudioCaps [18], [20] datasets.

Existing audio captioning models use encoder-decoder
and transformer-based encoder-decoder models to handle
the sequence-to-sequence nature of the problem. An early
attempt based on the encoder-decodermodel with an attention
mechanism is proposed in [1]. A different encoder-decoder
model is presented with gated recurrent units (GRU) using
a new Chinese audio captioning dataset [2]. An encoder-
decoder model with caption decoder and content word
decoder is presented in [19] to solve infrequent class prob-
lems in the captions. A transformer model is presented in [3]
using temporal and time-frequency information in audio
clips. Another transformer-based architecture is proposed
in [21] to learn information with a continuously adapting
approach.

Due to the data scarcity problem, the use of relevant
semantic information has been widely adopted in the task
of audio captioning. Recent studies extract audio events
from the audio input or keywords from the captions to
obtain semantic content. In [22], pre-trained embeddings
are used in the encoder stage, and a transformer decoder
is used in the decoding stage. They extract audio event
tags from similar audio clips by using pre-trained models.
Reference [7] uses YAMNet [23] to extract audio event tags
with audio embeddings in BART autoencoder and improves
audio captioning performance. Narisetty et al. propose a
system with audio events based on a conformer encoder and a
transformer decoder [24]. A transformer model with keyword
estimation is proposed in [4]. Reference [18] improves audio
captioning performance by extracting subject-verb keywords
from the captions.

C. TOPIC MODELING
Topic models are used to discover the main themes of
large documents and organize the documents according to
discovered themes [25]. Topic modeling is mainly used to
cluster documents in natural language processing (NLP)
applications [26]. There exist different topic models in the
literature, such as Latent Dirichlet Allocation (LDA) [27],
top2vec [28], and BERTopic [29].

LDA is a Bayesian model that describes each collection
item with a set of topics and uses a Dirichlet prior
distribution. Top2vec is another popular topic model. Unlike
LDA, it uses the semantic similarity between documents
and word semantic embedding. The BERTopic model is
recently introduced. It uses BERT [30] as an embedder
and a sentence transformers model. Uniform manifold
approximation and projection (UMAP) [31] and hierarchical
density-based clustering (HDBSCAN) [32] methods are also
used for dimension reduction and clustering documents in the
BERTopic model.

III. TOPIC-BASED AUDIO CAPTION MODEL
We present the overall structure of our system in Fig. 1. The
caption generation pipeline is given in the following sections.

A. FEATURE EXTRACTOR
Previous studies have shown the performance of the pre-
trained acoustic embeddings such as VGGish [33] and
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FIGURE 1. Illustration of the proposed audio captioning model. The entire training and testing procedures are presented. It comprises
four main components: Feature Extractor, Topic modeling with BERTopic, Language Model, and Topic Predictor. The training and
Inference phases are described separately. In the training phase, we input audio features and obtained topics from the topic model to
the BART encoder. A linear layer is applied to PANNs features to convert audio features to 768-dimensional BART encoder inputs. In the
inference phase, the Topic Predictor component is used to predict a given test audio clip’s topics, and the predicted topics and audio
features are given to the model to predict the caption. X is the audio feature vector, T is the topic vector from the topic modeling, and P
is the predicted topic vector by the Topic Predictor component.

FIGURE 2. Topic extraction process.

pre-trained Audio Neural Networks (PANNs) [34] than
other representations such as spectrograms, log Mel energies
[18], [22]. Thus, we use PANNs as feature extractor. The
PANNs are pre-trained features on the AudioSet dataset [35].
Wavegram-Logmel-CNN14 model is used to extract the
PANNs features. In this case, we present PANNs features as
X = [x1, . . . , xi], i = 2048.

B. TOPIC MODELING WITH BERTopic
We extract topics from the Clotho dataset using the
BERTopic [29] since it performs better by embeddingmethod
[36] than other standard topic models as LDA and top2vec.
BERTopic is a neural topic modeling with a class-based
TF-IDF (Term Frequency-Inverse Document Frequency)
procedure. Mathematically, it is given by:

Wt,c = tft,c.log(1 +
A
tft
) (1)

where tf is the frequency of term t in a class c,A is the average
number of words for each class. Here, inversed document
frequency is replaced by inversed class frequency, where class
c is obtained by concatenating documents in each cluster.

BERTopic extracts topics with topic probabilities from
the ground truth captions on the Clotho development split.

Fig. 2 shows the topic extraction process. The extracted topics
are used in two phases: (1) the Caption generator training
phase and (2) the Topic prediction phase.

In the training phase, we use DistilBERT base multilingual
(cased-v2) [37] for sentence transformer and embedding
models for topic modeling with BERTopic. The BERTopic
model predicts ten topics for each caption at most. Since the
Clotho dataset has five captions for each audio clip, we can
obtain up to 50 topics for an audio clip.We have experimented
with different numbers of topics (2, 3, 10) for an audio caption
using the BERTopic to explore how many topics we should
use in the model for each caption. Let k be the number
of topics obtained from the topic model for five captions,
T = [t1, . . . , tk ] is the topic vector with the length of k . When
we experiment with two topics for each caption, we obtain
k = 10. We obtain k = 50 for an audio clip when we
experiment with ten topics for each caption. Since some
captions are similar for a given audio clip, some topics
are identical; in this case, we remove the duplicated topics
while producing the topic vector. For example, when we
experiment with ten topics for each caption, k is between
10 and 50 because of the duplicated topics for an audio clip.
In our experiments, the best result is obtained using ten topics
for each caption.

Some examples of extracted topics by BERTopic are given
in Table 1. We present ten topics for the first ground truth
captions. For instance, the first example in Table 1 has
different topic words with different probabilities representing
the captions. ‘‘singing’’ is the most probable topic word for
the first example.Whenwe analyze the ground truth captions,
four captions include the word ‘‘sing’’, and it seems to be the
most frequent word in the captions. For the second example
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in 1, themost probable topic word is ‘‘train’’ by the BERTopic
model, and all of the ground truth captions include the word
‘‘train’’. We can see that the other topic words that have lower
probabilities are also related to the given captions.

The BERTopic model first generates the main topics on
the Clotho dataset, and each of them includes a set of words.
However, the representation probabilities of these words are
different. Fig. 3 presents the illustration of example topics,
a set of words under these topics, and the probabilities of
these words. The columns are set of the most probable words
that represent a topic. For example, ‘‘truck’’, ‘‘road’’, and
‘‘driving’’ are the set of words that represents a topic in Fig. 3.
The most probable word for this topic is ‘‘truck’’.
Also, we present the illustration of the similarity between

topics in Fig. 4. A heatmap is created based on the cosine
similarity matrix between topic embeddings. In the heatmap,
the topics are grouped into three words, and the similarity
matrix shows these words’ similarity scores with another
group of words. Fig. 4 (a) presents the similarity between the
topic, includes the words ‘‘boat, engine, water’’ and ‘‘rain,
cars, car’’, and (b) shows the similarity between the topic
includes the words ‘‘boat, engine, water’’ and ‘‘bell, ringing,
rung’’. The similarity in (a) is higher than (b) since ‘‘boat,
engine, water’’ and ‘‘rain, cars, car’’ are more similar than
the words in (b).

We use the extracted topics to train the language model and
to create a dataset for the Topic Predictor module.

C. TOPIC PREDICTOR
Since we don’t have the topic of the input audio clip during
the testing phase, for inference, we predict topics for each
audio clip by using a topic predictor module. We implement
an explicit module for topic prediction, not in an end-to-
end manner. For this module, we create a dataset with the
audio clips and the topics predicted by topic modeling in the
previous section.

Each audio clip aj has captions S = [s1, s2, .., sz] where
s represents an arbitrary caption in the dataset and the z is
set to 5 for the Clotho dataset. Hence, the number of topics
extracted for an audio clip is zMULTIPLY k . However, some
of the captions for a given audio clip are similar, and the
BERTopic predicts similar topics for some captions. Thus,
duplicate topics are removed from the topic list. In order to
create our audio-topic dataset, we give audio clips’ features
as input and the obtained topic words as output.

The problem is a multi-label classification task. To solve
this problem, we designed a multilayer perceptron (MLP).
Let Pj = [pj1, . . . , pjM ] ∈ {0,1}M is topic vector where
M = 1695, j is the jth audio clip. M = 1695 is the
number of topics obtained by the BERTopic model from the
development caption dataset. Each topic vector is obtained as:

pjm =

{
1, if pjm in jth audio clip;
0, otherwise.

(2)

After this operation, we obtain the topic vector Pj of audio
clip j.
The MLP module contains three hidden layers with

512 dimensions, and we train the MLP module for
100 epochs. We use a Sigmoid function.

Let pj = [pj1, . . . , pjM ] be the probabilities of topics for
jth test audio clip. We determine:

Pj = MLP(xj) (3)

where xj is the input features and Pj is the predicted topic
vector for jth audio clip.

D. LANGUAGE MODEL
In language modeling, our goal is to maximize the probability
given by:

θ⋆
= argmax

θ

∑
X ,T ,C

log p(C|X ,T ; θ ) (4)

where C is the caption, X represents the audio features, T
represents the topics for a given audio clip. θ is the model
parameters.

Recent approaches have shown that BART autoen-
coder [38] improves the performance in AAC task [7]. It is
a transformer model that has a bidirectional encoder and
autoregressive decoder. We use the BART-base model with
six encoder and six decoder layers. Each encoder and decoder
layer is composed of a multi-head self-attention layer with
12 heads. Each layer of the transformations has 768 features
and 50265 sub-words in the tokenizer.

Concatenated audio features and topics are used as input
to the BART encoder to similarly [7]. Before concatenation,
the BART tokenizer is applied to the obtained topics, and a
linear layer is applied to PANNs features in order to convert
audio embeddings to 768-dimensional BART encoder inputs.
After this process, the BART autoencoder generates words
autoregressively for given audio features and topics.

IV. EXPERIMENTAL SETTINGS
This section describes the details of the dataset, evaluation
metrics, and implementation details.

A. DATASET
We conduct our experiments on the Clotho dataset [15].
Clotho has development, evaluation, validation, and test
splits. Test splits can not be obtained since the publishers
of Clotho use these splits for scientific challenges. The
number of records in the splits is 3839, 1045, and 1045,
respectively. All splits have five captions for each audio clip.
Each audio file is used five times for these experiments with
their corresponding captions similar to [15]. The vocabulary
of Clotho contains 4366 different words.

B. EVALUATION METRICS
For evaluations, BLEU-n [39],METEOR [40], ROUGEL [41],
CIDEr [42], SPICE [43], and SPIDEr [44] metrics are used.
The matching words in the actual and predicted captions
are calculated for BLEU-n. It calculates the precision for
n-grams. Recall and precision are calculated for METEOR.
ROUGEL calculates Longest Common Subsequence. CIDEr
presents more semantic results by calculating cosine
similarity between the actual and predicted captions. SPICE
computes semantic similarity instead of n-gram similarity.
SPIDEr calculates the average of CIDEr and SPICE.
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TABLE 1. Illustration of extracted topics with BERTopic.

FIGURE 3. Illustration of a set of words under some topics generated by BERTopic on the Clotho dataset.

C. IMPLEMENTATION DETAILS
The system is implemented using Pytorch HuggingFace
framework [45], and the experiments are run on a computer

with aGTX1660TiGPU, LinuxUbuntu 18.04 system.We use
Python 3.7 for implementation. We run all experiments for
20 epochs and choose the model with the lowest validation
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FIGURE 4. Illustration of the similarity between topics generated by BERTopic on the Clotho dataset.

TABLE 2. Ablation study: Comparison of the results with our transformer and baseline models on the Clotho Dataset.

error for the inference. We use the BART-base model with six
encoder and six decoder layers for the experiments. We use
AdamW [46] for the parameter optimization. The gradient
accumulation step is four, and the batch size is 8. The learning
rate is 10−5. GeLUs activation function is used [47] similarly
to [38]. The number of parameters in our proposed model is
approximately 141 million. Training takes about 4 hours on
the given configuration. The loss function categorical-cross-
entropy is used and given by:

L(2) = −

n∑
t=1

log(p2(ct |c1, . . . , ct−1,X ,T ) (5)

where ct is the predictedword based on previous words, audio
features, and topics,X is the audio features, and T is the topics
for a given audio clip.

D. ABLATION STUDIES
In order to show the applicability and contribution of topic
modeling in AAC task, we have also conducted experiments
with audio events and keywords. In addition, we implement a
base-transformer model [49] to show the contribution of topic
modeling. We present the following ablations:

• Extracting events and keywords experiments
• Base-Transformer model experiments

1) EXTRACTING EVENTS AND KEYWORDS EXPERIMENTS
In order to extract audio event labels, we use the PANNs
features. The last layer of the PANNs gives probability scores
of each audio event on the AudioSet dataset. For the event
extractionmethod in Table 2, we obtain the events from audio
clips similar to our previous study in [6] since it improves
performance. Let E = [e1, . . . , eY ], ey ∈ R527, where ey is
the probability of each sound class on the AudioSet dataset.
We concatenate E and X as inputs to the transformer model
and generate captions.

For keyword extraction, we use our previous keyword
extraction method in [18]. We extract subjects and verbs from
the dataset captions. We use lemmas of the subjects and verbs
and remove duplicates to create a keyword corpus. We create
V = [v1, . . . , vR] for each audio clip. If jth audio clip’s
caption contains vjr , then vjr = 1, otherwise vjr = 0. Then
similar to our event extraction method, we concatenate V and
X to input the transformer model.

2) BASE-TRANSFORMER MODEL EXPERIMENTS
To explore the contribution of topic modeling to the different
architectures in the AAC task, we conduct topic modeling
with a base-transformer model introduced in [49] and the
BART model. The base-transformer model has six identical
layers in the encoder and decoder. Also, the output dimension
is used as dmodel = 512, similar to [49]. The results show
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TABLE 3. Comparison of the results with the literature on the clotho dataset.

TABLE 4. Illustration of predicted and actual captions on clotho dataset.

that topic modeling improves AAC performance in the base-
transformer and BART models.

Table 2 shows that using the topics performs better than
theDCASE 2021 baseline encoder-decodermodel, event, and

keywords results. Firstly, we compare the results of our base
transformer model with a recent base encoder-decoder model
in [48]. Our base transformer model improves the recent
baseline encoder-decoder model results. Then, we add events,
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keywords, and topics to the transformer model separately.
Again, the results in Table 2 show that the inclusion of topics
from the topic model has better results than event inclusion.

V. RESULTS AND DISCUSSION
In this section, we present our results and comparisons with
the literature.

We compare our proposed method with the recent studies
that use event and keyword extraction methods in Table 3.
We divide Table 3 into two parts. The first part presents
the results of studies that use semantic information in the
literature, and the second part presents our proposed method
with different types of semantic information inclusion.

When we analyze different types of semantic information
in the literature, the study with event keyword extraction [22]
performs best in Table 3. Note that, the studies [22], [24]
use external data in addition to the Clotho dataset during the
training. Our proposed method with topic modeling performs
competitive results in the SPIDEr metric, which is known
as the most crucial metric in AAC challenges [48], with the
studies that use event or keyword extraction methods and data
augmentation techniques.

When we compare event, keyword, and topic extraction in
our deep architecture, the results show that the model with the
ground truth topics performs best. The results with predicted
topics with our MLP topic predictor are lower than ground
truth results but competitive with event inclusion. When we
analyze the topic and keyword inclusion in the model, topic
inclusion performs better than keyword inclusion because the
topic model groups similar words to create topics, producing
more generalized semantic information than keywords. For
example, in Example 2 in Table 4, we can see that the
extracted keywords are part of the sentences, but the topic
model can also extract similar words like ‘‘talking’’ and
‘‘speaking’’.
We further investigate topic and event inclusion, and they

produce similar results, but extracted topics seem more
successful than events in Table 4. For example, Example
1 in Table 4 shows that the extracted events mainly focus
on different animal types, but the topic model can capture
more related words to the ground truth captions. On the other
hand, if we analyze the extracted events, keywords, and topics
in Table 4, we can see that events are generally based on
some types as animal or vehicle varieties. Also, the keywords
depend on the ground truth captions and only includewords in
the caption corpus. Nevertheless, topics are more generalized
words related to the ground truth sentences using different
words except for the caption corpus. As a result, the predicted
captions by different semantic information types in Table 4,
the proposedmethodwith topics producesmore relatedwords
in the examples.

Topic models can produce related semantic content from
audio clips by performing better results than baseline
methods. These examples demonstrate that topic models can
help to create meaningful captions in AAC task.

VI. CONCLUSION
This paper presents a new audio captioning method with
topic modeling. Unlike other works, our method uses topic

modeling that can be used alternatively for events and
keywords that are widely used in AAC task. The results show
that the topic model improves the performance of the baseline
models. Also, it demonstrates better SPIDEr performance,
which ismore important than othermetrics while using events
or keywords compared to the literature. For future work,
we will further investigate the possible improvements in topic
modeling and prediction models to generate better captions.
Since extracting semantic information from audio clips and
captions is very important, we believe this article opens new
directions for future research in AAC task.
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