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ABSTRACT Encryption algorithms based on block ciphers are among the most widely adopted solutions
for providing information security. Over the years, a variety of methods have been proposed to evaluate
the robustness of these algorithms to different types of security attacks. One of the most effective analysis
techniques is differential cryptanalysis, whose aim is to study how variations in the input propagate on the
output. In this work we address the modeling of differential attacks to block cipher algorithms by defining a
Bayesian framework that allows a probabilistic estimation of the secret key. In order to prove the validity of
the proposed approach, we present as case study a differential attack to the Data Encryption Standard (DES)
which, despite being one of the methods that has been most thoroughly analyzed, is still of great interest to
the scientific community since its vulnerabilities may have implications on other ciphers.

INDEX TERMS Differential cryptanalysis, Bayesian networks, probabilistic inference, DES.

I. INTRODUCTION
Among the many different encryption methods adopted by
the modern systems, algorithms operating on fixed-length
blocks of bits are still one of the most popular. The strength
of these methods is constantly being studied by means of
approaches that aim to assess their robustness to specific
attacks, or the presence of vulnerabilities to generic threats.
In this context, differential cryptanalysis is one of the most
effective and relevant approaches. The idea at the basis of
differential cyrptanalysis is to evaluate how any change in
the plaintext impacts the ciphertext. Then, the results of the
analysis can be used to estimate the set of the most probable
keys.

In this paper we present a Bayesian framework for mod-
elling differential attacks to block cipher algorithms; in par-
ticular, given the importance of the Data Encryption Standard
(DES) in the design of many block cipher algorithms, a case
study focused on the cyrptanalysis of DES is addressed.

The Data Encryption Standard (DES) [1] was the first
symmetric cipher heavily adopted all over the world and it
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was the most used cipher up to the beginning of 2000s. Deep
analyses of DES led to the definition of several cryptanalysis
techniques, and many results achieved for DES are also valid
for the wider class of block ciphers.

Today, the limited size of the secret key adopted by DES
(56 bit) and the computational power of modern comput-
ers entail that DES is not considered secure for ciphering
sensitive data. Nevertheless, DES is still widely adopted in
various scenarios, such as those characterized by low security
requirements, if resource-constrained devices are required
to implement security mechanisms, or when huge amount of
data have to be protected. The authors of [2], for instance,
propose the adoption of DES to ensure privacy in a graduate
project management system. Similarly, the need to protect
a large amount of data while keeping the computational
costs low moved the authors of [3] to choose DES for data
encryption in an ERP. DES is often exploited to protect data
exchanged between Internet of Things devices, which are
characterized by severe resource requirements [4], [5], [6].
DES could also be employed as a tool for providing compa-
nies with proper data protection policies that represent a fair
trade-off between security goals and computational costs [7].
Moreover, DES is a building block of Triple DES [8], [9],
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a solution adopted to overcome the limitations imposed by
the DES key size. Thus, it is interesting to investigate the
vulnerabilities of DES also for possible implications on other
block ciphers.

Several works in the scientific literature identified and
analyzed some of the main vulnerabilities of DES, through
the definition of new cryptanalysis techniques. One of these
approaches is the differential cryptanalysis [10], a chosen
plaintext attack designed for iterated cryptosystems, which
analyzes how the difference between two plaintexts propa-
gates in the resulting ciphered texts when using the same
key. The differential cryptanalysis focuses on the S-Box,
the unique non-linear component of DES, and allows to
reduce the computational cost in comparison with an exhaus-
tive key search. Differential Cryptanalysis has been adopted
also to perform attacks to other symmetric cyphers, such as
AES [11]. Moreover, several machine learning approaches
have been adopted in recent years to improve differential
cryptanalysis, or to provide a new perspective on it. The
authors of [12], for instance, proposed the adoption of neural
networks to attack DES, and evaluated the performance by
using different network structures. In [13], several meta-
heuristics, such as genetic algorithms and simulated anneal-
ing, are exploited to formulate a differential attack on DES.
The experiments performed on a DES reduced to six rounds
demonstrates the suitability of the approach. The authors
of [14] and [15] relied on deep neural networks to design
a differential distinguisher to attack different block ciphers
based on the Feistel network.

We propose an original formalization of the differen-
tial cryptanalysis based on the adoption of Bayesian Net-
works (BN), a probabilistic graph model framework that
uses Bayesian inference to perform probability computations.
We aim to describe the statistical behavior of S-Boxes when
a pair of plaintexts, with a given difference, is provided for
ciphering. The diagnostic inference enabled by BNs, allows
a probabilistic estimation of the secret key, by considering the
difference between plaintexts and the difference between the
corresponding ciphered texts.

Such formalization, preliminary described in [16], eases
the definition of an algorithm for attacking the DES, based
on the differential cryptanalysis.

The paper is organized as follows. In Section II, a brief
description of DES is provided, in order to introduce the
adopted notation. Section III describes some related works
presented in the literature. In Section IV, the original formula-
tion of the differential cryptanalysis is introduced. Section V
describes the proposed Bayesian model of the DES differen-
tial cryptanalysis. Finally, Section VII states our conclusions.

II. THE ADOPTED DES NOTATION
DES is a symmetric cipher which transforms a 64-bit plain-
textP in a 64-bit ciphertext T . Suchmapping is parameterized
by a 64-bit key, reduced to a 56-bit key because of the
use of 8 parity bits. It is an iterated cipher based on the

FIGURE 1. DES general block scheme.

FIGURE 2. Block scheme of the round processing.

Feistel scheme, which processes plaintext through a series
of transformations named rounds, as showed in Fig. 1. The
encryption process consists of 16 rounds, which are preceded
by an initial permutation and followed by the corresponding
inverse permutation. Each round is parameterized by a 48-bit
subkey SKX ∈ Z48

2 , depending on the round X and the initial
key K .
At each round X , the 64-bit input is divided into two

parts, left and right, which are processed separately. The right
part becomes the left one of the next round without any
further processing. Both halves are processed according to
the Feistel scheme, in order to produce the right part of the
next round, as showed in Fig. 2. In particular, for each round
X = 2, . . . , 16, the following equations hold;{

LX = RX−1,
RX = LX−1 ⊕ F(RX−1, SKX ),

(1)

where F , named Feistel function, determines the non-linear
behavior of DES.
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FIGURE 3. Detailed block scheme of DES Feistel function.

The Feistel function implemented by DES (see Fig. 3) is
defined as follows:

F(RX−1, SKX ) = P(S(E(RX−1)⊕ SKX )), (2)

where E , S and P represent respectively the expansion func-
tion, the substitution performed by the S-box and the permu-
tation function.

Since the only non-linear component of the DES
F-function is the S-box, it constitutes the main contributor to
DES security. One of the properties of S-Box is the uniform
distribution of the probability of producing a given output.
Nevertheless, authors of [10] have shown that, taken two
different inputs for a given S-Box characterized by some
known difference, then the probability distribution of the
difference between the corresponding outputs is not uniform.
Differential cryptanalysis [10] exploits such a vulnerability in
order to reduce the computational effort for determining the
secret key, and the same idea underlies the approach described
in the present work.

III. RELATED WORK
As previously mentioned, a deeper comprehension of S-Box
behavior could make the whole cipher more vulnerable.
Many works in the literature analyze properties of S-Boxes in
order to find DES vulnerabilities and to define design criteria
for strong block ciphers. Authors of [17] analyze properties
of S-Boxes with respect to the statistical distributions of
produced output and the statistical dependence of output bits
given the knowledge of one or more input bits. In [18] some
general criteria to design S-Boxes are discussed. Authors
analyzed both static and dynamic properties. Static properties
impose that partial information about input and output does
not reduce the uncertainty of unknown input or output, and

guarantee the maximum output uncertainty. Dynamic prop-
erties impose that partial information about changes in input
and output does not reduce the uncertainty of unknown inputs
or outputs. Authors stated that the uncertainty should not be
reduced when the attacker has information about the past
history of S-Boxes processing. Other studies indicate that
the latest approaches [19], [20], [21], also known as strong
S-Boxes, are vulnerable due to the adoption of fixed point
or reverse fixed point, which can be an exploitable weakness
in cryptography. Authors of [22], for example, address the
exploitable weakness of fixed point and reverse fixed point
contained in many S-Boxes. Then, they designed a S-Box
construction algorithm based on ICQM that eliminates the
weakness through backtracking.

On the basis of the properties discussed so far, many crypt-
analysis methods were proposed in the literature to violate
S-Boxes. An algebraic approach is proposed in [23], which
defines the set of criteria to determine the set of non-linear
algebraic constraints which describes the I/O relationship of
S-Boxes. Exploiting this set of constraints, the whole cipher
is described as a system of multivariate non-linear equations,
that can be solved through the algorithm proposed in [24].
It should be noted that the equations representing S-Boxes
are exact, i.e. not approximated. On the contrary, the author
of [25] proposed a linear approximation of S-boxes and DES,
which is valid with some probability. This method is an
example of stochastic attack.

Instead of focusing on the behavior of a single S-Box,
authors of [26] focus on the probabilistic behavior of pairs of
adjacent S-Boxes. They found that input bits of two adjacent
S-Boxes are strictly related by some bits of the key, due to
the expansion phase. Thus, the probability distribution of
the output of these two adjacent S-Boxes, conditioned on
key bits is not uniform. On the basis of such vulnerability,
authors proposed an attack with computational complexity
comparable to the exhaustive key search.

Authors of [10], which propose the differential cryptanal-
ysis, studied how input differences affect the resulting out-
put difference. Their attack traces differences through the
transformations, discovers where the cipher exhibits non-
random behavior, and exploits such properties to recover the
secret key. Another interesting work discussing the differ-
ential cryptoanalysis is presented in [27]. Here, the authors
study the propagation of differences from round to round
to find specific differences which propagate with relatively
high probability. The cryptanalysis technique is applied to
DES reduced to i-rounds, with i ∈ [3, 8] and, for each, the
differentiation between wrong and right pairs is made to get
relevant key bits and retrieve the secret key.

IV. ORIGINAL FORMULATION OF DIFFERENTIAL
CRYPTANALYSIS
The vulnerability at the basis of the differential cryptanaly-
sis [10] originates from the non-uniform distribution of the
difference between two outputs, given the difference between
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FIGURE 4. Notation adopted for describing differential cryptanalysis.

two inputs, for different keys. Nowadays, it is a technique
adopted to breach many reduced-round block cyphers, such
as SPECK [28], LEA [29], GIFT [30], and Midori64 [31].

This section summarizes the original formulation of the
differential attack, with the notation showed in Fig. 4.
Let SEX and S∗EX be two outputs from the expansion func-

tion at round X , SIX and S∗IX the following two inputs to
the S-Box S(·), and SOX = S(SIX ) and S∗OX = S(S∗IX ) the
resulting outputs from the S-Box. The differences between
S-Box inputs and outputs are obtained through the bitwise
xor and are indicated as follows:{

S ′IX = SIX ⊕ S∗IX ,

S ′OX = SOX ⊕ S∗OX .
(3)

The vulnerability exploited by the differential attack is that
the probability distribution of the difference between two
outputs, conditioned by the difference of the two correspond-
ing input, i.e., p(S ′OX |S

′
IX ), is not uniform. This characteristic

makes S-Boxes weak from a dynamic point of view, accord-
ing to analysis proposed in [18].

Let’s consider N pairs of output from the expansion func-
tion characterized by the same difference. As showed in
Fig. 4, the relationship between each pair of outputs from
the expansion function, the subkey, and the S-Box inputs is
expressed by the following equations:{

SIX = SEX ⊕ SKX ,

S∗IX = S∗EX ⊕ SKX .
(4)

Consequently, the difference between SIX and S∗IX is equal
to the difference between SEX and S∗EX :

S ′IX = SIX ⊕ S∗IX = SEX ⊕ S∗EX . (5)

Thus, given the knowledge of the expanded pairs
(SEX , S∗EX ), it is also known the difference between S-Box
inputs, i.e., S ′IX , without knowing separate values. This
knowledge does not allow to foresee the difference between
S-Box outputs. Indeed, due to the non-linear behavior of
S-Boxes is not obvious that two input pairs with the same dif-
ference produce the same output difference; on the contrary
many values for the output difference are possible.

The critical point is that only some output differences are
possible starting from a given input difference, and the proba-
bility distribution of these values is not uniform. For each pair
(SEX , S∗EX ), it is possible to observe the following output pair

(SOX , S∗OX ), and to compute the differences between inputs
and between outputs, i.e., S ′IX and S ′OX , according to Eq. 3
and 4.Moreover, it is possible to select the set of possible keys
which can produce the observed differences, by exploiting
the equation SKX = SEX ⊕ SIX . Thus, each pair (SEX , S∗EX )
produces a set of candidate keys, and the true secret key
belongs to the intersection of these sets. Consequently, it is
necessary to repeat this evaluation until such intersection is a
singleton.

The logic behind the differential cryptanalysis attack can
be described through the following simplified pseudocode:

K ← {k : k ∈ Z56
2 }

forEach (SEX , S∗EX ) ∈ Z48
2 × Z48

2
Produce the corresponding pair (SOX , S∗OX )
K ′ ← ∅
forEach (SIX , S∗IX ) ∈ Z48

2 × Z48
2 , such that

SIX ⊕ S∗IX = SEX ⊕ S∗EX
If S(SIX )⊕ S(S∗IX ) = SOX ⊕ S∗OX
SKX = SIX ⊕ SEX
S∗KX = S∗IX ⊕ S

∗
EX

K ′ = K ′ ∪
{
SKX , S∗KX

}
K = K ∩ K ′

If |K | = 1 then return k ∈ K

V. BAYESIAN NETWORKS MODELS
Bayesian networks (BN) [32] are a graph-based formal-
ism capable of expressing probabilistic cause/effect relation-
ships between random variables. Such framework is adopted
in machine learning for performing probabilistic inference.
In this work, we model through BNs the statistical depen-
dence driven by the secret key between input differences and
output differences, as found in [10], and we exploited it to
determine the secret key.

In the graphic model adopted by BNs, nodes represent
random variables and directed links represent the cause/effect
dependence between two nodes. BNs allow to represent the
joint probability distribution of several variables through a set
of conditioned probability distributions, each associated to a
link, and a set of a priori probability distributions, for nodes
without antecedents.

In this section, we will present the BNs which model
a single S-Box, the Feistel function and the whole DES,
and then we will present the algorithms for attacking such
elements through exact inference, and analyze their com-
putation complexity. We will prove that the exact inference
for attacking the whole DES has a high computation cost,
and consequently we will propose an algorithm based on
approximate inference.

A. SINGLE S-BOX ATTACK
For the construction of the BN for attacking the S-Box, the
original notation reported in [10] is adopted.

It is useful to recall that the S-Box consists in a set of
eight S-Boxes, indicated as Si(·) with (i = 1, . . . , 8), each
of which accepts 6 bits as input and produces 4 bits as output.
So, the input to a S-Box can be considered divided into eight
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FIGURE 5. Bayesian network for the inference on a single S-Box
(SBox-BN).

6-bit blocks. According to the adopted notation, (SiEX , Si∗EX )
indicate the two i-th 6-bit blocks of two different outputs
from the expansion function, SiKX indicates the i-th 6-bit
block of the subkey, (SiIX , Si∗IX ) represent the two inputs
to the i-th S-Box Si(·), Si′IX represents the difference between
the two inputs to the i-th S-Box, and finally Si′OX indicates the
difference between the two 4-bit outputs from the i-th S-Box.
The probabilistic inference exploits the known value of

some random variables, named evidence, and infer the prob-
ability distribution of a set of unknown random variables,
named target nodes.

Since the differential cryptanalysis exploits a chosen plain-
text attack, i.e. a circumstance where the adversary is capa-
ble to trigger the encryption of arbitrary messages and to
observe the corresponding plaintext-ciphertext pair, the set
(SiEX , Si∗EX , Si′IX , Si′OX ) constitutes the evidence and the key
blocks SiKX represent the target nodes.
In order to build the BN we complied with the following

assumptions:

• The SiKX , SiEX and Si∗EX variables are not influenced
by other random variables, thus they are represented
as nodes without antecedents; their a priori probability
distribution is considered as uniform.

• The input to the i-th S-Box, SiIX , depends only on SiEX
and SiKX , according to Eq. 4, which are the sole parents
of the SiIX node (analogously for Si∗IX ).

• The input difference for the i-th S-Box, Si′IX , depends
only on these two inputs, according to the first part of
Eq. 3, thus the only two parents of the Si′IX node are the
SiIX and Si∗IX nodes.

• Since the outputs of the S-Box are relevant only when
considered in their difference, it is not necessary to
represent them explicitly as separated nodes; instead,
it is convenient to adopt a single node for representing
their difference, Si′OX .

• The output difference Si′OX depends on the two S-
Box inputs SiIX and Si∗IX , according to the following
equation:

Si′OX = SiOX ⊕ Si∗OX = S(SiIX )⊕ S(Si∗IX ), (6)

FIGURE 6. Flow of the probability distributions through the SBox-BN. The
three most representative plots are highlighted.

thus the SiIX and Si∗IX nodes are the only parents of the
Si′OX node.

The resulting BN, named SBox-BN, is showed in Fig. 5.
The full definition of the BN requires the formalization of
(i) the a priori probability distributions for nodes without
parents and (ii) the conditioned probability distributions for
other nodes.

Let us represent as δn(X ) the Kronecker delta applied to
a n-bit string, taking value one if and only if all bits of its
argument are equal to zero. Then, the probability distributions
of the SBox-BN are expressed as follows:

• p(SiEX = siex) = p(Si∗EX = si∗ex) =
= p(SiKX = sikx) = 1

26
, ∀siex , si∗ex , sikx ∈ Z6

2,

because of the hypothesis of uniform distribution;
• p(SiIX = siix |SiEX = siex , SiKX = sikx) =
= δ6(siix ⊕ siex ⊕ sikx), ∀siix , siex , sikx ∈ Z6

2,
because of Eq. 4;

• p(Si∗IX = si∗ix |Si
∗
EX = si∗ex , SiKX = sikx) =

= δ6(si∗ix ⊕ si
∗
ex ⊕ sikx), ∀si

∗
ix , si

∗
ex , sikx ∈ Z6

2,
because of Eq. 4;

• p(Si′IX = si′ix |SiIX = siix , Si∗IX = si∗ix) =
= δ6(si′ix ⊕ siix ⊕ si

∗
ix), ∀si

′
ix , siix , si

∗
ix ∈ Z6

2,
because of Eq. 3;

• p(Si′OX = si′ox |SiIX = siix , Si∗IX = si∗ix) =
= δ4(si′ox ⊕ Si(siix)⊕ Si(si

∗
ix)),

∀si′ox ∈ Z4
2 and siix , si

∗
ix ∈ Z6

2, because of Eq. 3.

The flow of the probability distributions through the
Bayesian Network depicted in Fig. 5 is summarized in Fig. 6,
where the three plots show the most significant distribu-
tions within the SBox-BN. The probabilities of all nodes at
level 0, e.g., SiEX , are uniformly distributed (see the plot
in the upper left corner); that is all outcomes are equally
likely with a probability of 1/26. The two nodes at level 1,
as well as their child Si′IX , are characterized by a distribution
in which the probability of most configurations is zero, while
the remaining possible hypotheses have constant probability
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values. The 3D-plots in Fig. 6 represent this probability;
the axes refer to the variables involved in the probability
distribution equation, while the points indicate where the
probability assumes nonzero values. By observing the plot for
Si′IX , it can be noticed that only a subset of keys, characterized
by an extremely regular pattern, is retained over all possible
combinations. The bottom right plot shows the probability
distribution of the node Si′OX , which is characterized by the
lack of a regular patterns because of the non-linearity intro-
duced by the S-Box.

Under such BN model, given the two outputs siex and si∗ex
from the expansion function and the corresponding output
difference si′ox from the S-Box at the round X , the most
probable secret key corresponds to the greatest conditioned
probability among keys that produce si′ix = siex ⊕ si∗ex as
input difference and si′ox as output difference, as follows:

k̂x = argmax
kx∈Z6

2

p(SiKX = kx |SiEX = siex , Si∗EX = si∗ex ,

Si′IX = si′ix , Si
′
OX = si′ox). (7)

By applying rules for manipulating probability expressions
in BNs, it is possible to obtain the explicit formulation of such
conditioned probability:

p(SiKX |SiEX , Si∗EX , Si′IX , Si′OX )

= η1
∑
σ1

p(Si′IX |SiIX , Si∗IX )p(Si
′
OX |SiIX , Si∗IX ), (8)

where η1 is a normalization factor which makes 1 the sum
of all terms of the probability distribution, and σ1 is the set of
all (SiIX , Si∗IX ) pairs obtained through the XOR of the possible
secret key with the given input evidence:

σ1 = {(SiIX , Si∗IX ) : SiIX = SiEX ⊕ SiKX and

Si∗IX = Si∗EX ⊕ SiKX }. (9)

It is worth noting that, since SiIX and Si∗IX are restricted to
a single value, the sum in Eq. 8 corresponds to a single value,
as expressed by the following equation:

p(SiKX |SiEX , Si∗EX , Si′IX , Si′OX ) =

= η1p(Si′IX |SiIX = SiEX ⊕ SiKX ,

Si∗IX = Si∗EX ⊕ SiKX )×

p(Si′OX |SiIX = SiEX ⊕ SiKX ,

Si∗IX = Si∗EX ⊕ SiKX ).

(10)

For the sake of brevity, we omitted the detailed proof, that
nevertheless can be found in [33].

In order to narrow down the set of possible keys, it is
possible to evaluate a non-normalized version of Eq. 10,
by ignoring the normalizing factor η1. Indeed, the probability
distributions describing the SBox-BN are expressed through
the Kronecker delta; thus, Eq. 10 can provide only two values:
0 for all keys that have been excluded, and a constant value
η1 for all keys that are still possible. Such a value can be

Algorithm 1 - prob_key_SBox_attack - Algo-
rithm for Computing the Probability That a Key Block
Is Correct by Attacking the i-Th S-Box
Data: i: the index of the selected S-Box 9: a set of multiple

evidences 2 =
{
siex , si∗ex , si

′
ix , si

′
ox

}
;

Result: p: the array of 26 values, representing the
non-normalized probability distribution over the set
of possible key blocks.

begin
p← new array [26];
for kix = 0 : (26 − 1) do

p[kix ] = 1;
for all 2 =

{
siex , si∗ex , si

′
ix , si

′
ox

}
∈ 9 do

for kix = 0 : (26 − 1) do
siix = siex ⊕ kix ;
si∗ix = si∗ex ⊕ kix ;
p[kix ] = p[kix ] ×δ4(si′ox ⊕ Si(siix )⊕ Si(si

∗
ix ))×

×δ6(si′ix ⊕ siix ⊕ si
∗
ix );

return p;

determined by imposing that the sum of all the residual prob-
abilities is equal to 1. However, since the purpose of Eq. 10
is merely to identify the residual set of keys, the computing
of a specific value for η1 is irrelevant.
The sets of possible keys obtained by attacking a S-Box

with two different evidence sets may be different. Since the
true secret key belongs to each of these sets, their intersection
is never void. With a sufficient quantity of data, by perform-
ing multiple attacks with different evidences, the repeated
intersection of the obtained key sets produces the singleton
containing only the secret key.

The assumption of the independence of the evidence sets
allows to express the probability distribution of the secret key
conditioned by all the evidence sets as the product of the
probability conditioned by each single evidence set:

p(SiKX |9) = η2

n∏
j=1

p(SiKX |2j), (11)

where η2 is a normalization factor and9 is the set of multiple
evidences:

9 = {21, . . . ,2n}

=
{{
SiEX , Si∗EX , Si′IX , Si′OX

}
1 ,

. . . ,
{
SiEX , Si∗EX , Si′IX , Si′OX

}
n

}
. (12)

In order to find the most probable key, it is possible to
evaluate the not normalized version of Eq. 11 and Eq. 8 as
described by the Algorithm 1.

B. FEISTEL FUNCTION ATTACK
The same approach of the previous section can be generalized
in order to attack a single instance of the Feistel function,
by analyzing its output (named YX in Fig. 3). Under the
hypothesis of chosen plaintext attack, it is possible to select a
pair of inputs to the Feistel function, ZX ,Z∗X ∈ Z32

2 , and then
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FIGURE 7. Bayesian network for the inference on the Feistel function
(Feistel-BN).

observe the difference between the corresponding outputs,
Y ′X , obtained according to the following equation:

Y ′X = P(S(E(ZX )⊕ SKX ))⊕ P(S(E(Z∗X )⊕ SKX )), (13)

where P, S and E are respectively the permutation function,
the substitution performed by the S-box, and the expansion
function. By observing that SIX = E(ZX ) ⊕ SKX and S∗IX =
E(Z∗X )⊕ SKX , and by exploiting the linearity property of the
permutation function, it is possible to obtain the following
system of equations:

Z ′X = ZX ⊕ Z∗X ,

SIX = E(ZX )⊕ SKX ,

S∗IX = E(Z∗X )⊕ SKX ,

Y ′X = P(S(SIX )⊕ S(S∗IX )).

(14)

Each variable in such system can be considered as a
random variable, and their relationships can be represented
through the BN showed in Fig. 7, named Feistel-BN. Its
probability distributions are expressed as follows:
• p(ZX = zx) = p(Z∗X = z∗x ) =

1
232

, ∀zx , z∗x ∈ Z32
2 ,

because of the hypothesis of uniform distribution;
• p(SKX = skx) = 1

248
, ∀skx ∈ Z48

2 , because of the
hypothesis of uniform distribution;

• p(Z ′X = z′x |ZX = zx ,Z∗X = z∗x ) = δ32(z′x ⊕ zx ⊕ z∗x ),
∀z′x , zx , z

∗
x ∈ Z32

2 , because of the first part of Eq. 14;
• p(SIX = six |ZX = zx , SKX = skx) =
= δ48(six⊕E(zx)⊕ skx), ∀zx ∈ Z32

2 and ∀six , skx ∈ Z48
2 ,

because of the second part of Eq. 14;
• p(S∗IX = s∗ix |Z

∗
X = z∗x , SKX = skx) =

= δ48(s∗ix⊕E(z
∗
x )⊕ skx), ∀z

∗
x ∈ Z32

2 and ∀s∗ix , skx ∈ Z48
2 ,

because of the third part of Eq. 14;
• p(Y ′X = y′x |SIX = six , S∗IX = s∗ix) =
= δ32(y′x ⊕P(S(six)⊕S(s

∗
ix)), ∀six , s

∗
ix ∈ Z48

2 and ∀y′x ∈
Z32
2 , because of the fourth part of Eq. 14;

The goal of the attack on the Feistel function is to find
the most probable set of keys, given the known evidence,
obtained by maximizing the following likelihood:

p(SKX |ZX ,Z∗X ,Y ′X ). (15)

Albeit the construction of the probability distribution over
a 48-bit key, by expanding Eq. 15, requires 248 steps,
it is possible to reduce the computational complexity by

Algorithm 2 - prob_key_attack_Feistel -
Algorithm for Computing the Not Normalized Prob-
ability Distribution Over Possible Keys by Attacking
the Feistel Function
Data: �: a set of multiple evidences 8 =

{
zx , z∗x , y

′
x
}

Result: p: the array of 248 values, representing the
non-normalized probability distribution over the set
of possible keys.

begin
//separate all the evidences in blocks for each S-Boxes
for all 8 =

{
zx , z∗x , y

′
x
}
∈ � do

split 8 in 2[i] =
{
siex , si∗ex , si

′
ix , si

′
ox

}
, with

i = 1 : 8;
for i = 1 : 8 do

Let 9[i] the set of all the evidences 2[i];

//compute the probability distribution for key blocks
pSBox ← new array [8][26];
for i = 1 : 8 do

pSBox [i][∗] = prob_key_SBox_attack
(i, 9[i]);

//compute the probability distribution for keys
p← new array [248];
for kx = 0 : (248 − 1) do

p[kx ] = 1;
for i = 1 : 8 do

//select the probability of the i-th 6-bit
//key block
keyBlock = selectBits(kx , (i ∗ 6), (i ∗ 6+ 5));
p[kx ] = p[kx ]× pSBox [i][keyBlock];

return p;

exploiting the linearity of the P(·) and E(·) functions. Let
us recall that the XOR between the output of the expan-
sion function, E(·), and the secret key, is the concatenation
of the inputs to eight S-boxes, and that the input to the
permutation function P(·) is the concatenation of the out-
puts from the eight S-boxes, as expressed by the following
equations: 

E(ZX )⊕ SKX = S1IX || . . . ||S8IX ,

E(Z∗X )⊕ SKX = S1∗IX || . . . ||S8
∗
IX ,

P−1(YX ) = S1OX || . . . ||S8OX ,

P−1(Y ∗X ) = S1∗OX || . . . ||S8
∗
OX .

(16)

Then, the Feistel function can be violated by attacking each
single S-Box and then by obtaining the full 48-bit key by
concatenating the partial results:

SKX = S1KX || . . . ||S8KX . (17)

Thus, the actual computational cost for attacking the whole
Feistel function is eight times the cost for attacking a single
S-Box, since the following equation holds:

p
(
SKX | ZX ,Z∗X ,Y ′X

)
=

∏8

i=1
p

(
SiKX | SiEX , Si∗EX , Si′OX

)
.

(18)

The Algorithm 2 describes how to perform the attack. Its
computational cost is dominated by the evaluation of the
probability distribution for key blocks. Namely, the other
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components, i.e., the separation of the evidences in blocks
and the composition of the whole probability distribution,
may be easily optimized, although in the pseudocode they are
described in an extended form for the sake of readability.

C. DES ATTACK
In the following we describe the BN which models the
attack on the whole DES. We show that, differently from
the attack on the Feistel function, it is not affordable to
attack the complete DES through exact inference since
the computational cost grows exponentially. We propose,
hence, an algorithm for attacking DES through approximate
inference.

In the following description we neglect the initial and
final permutations, since they do not affect the probabilistic
analysis. Let P and P∗ be two plain texts input to DES, P′ be
their difference, and (L ′,R′) the left and right parts of P′, each
constituted by 32 bits. Let us indicate the difference between
the two outputs from DES as T ′, and (l ′, r ′) its left and right
parts. Moreover, let us assume that the two plain texts are
independently chosen.

The relationships among variables involved in the
first round of DES are described by the following
equations:{

Z ′1 = Z1 ⊕ Z∗1 ,

Y ′1 = F(Z1, SK1)⊕ F(Z1 ⊕ Z ′1, SK1).
(19)

The difference between the inputs to the second round can
be obtained by considering the variables involved in the first
round, as follows:

Z ′2 = (Y1 ⊕ L)⊕ (Y ∗1 ⊕ L
∗) = (Y1 ⊕ Y ∗1 )⊕ (L ⊕ L∗)

= Y ′1 ⊕ L
′. (20)

The iteration of such procedure leads to the formulation
of the following system of equations, that expresses relation-
ships among the variables involved in all the rounds of DES:

R′ = R⊕ R∗,
L ′ = L ⊕ L∗,
Z ′1 = R′,
Y ′1 = F(Z1, SK1)⊕ F(Z1 ⊕ Z ′1, SK1),
Z ′2 = L ′ ⊕ Y ′1,
...

Z ′X = Y ′X−1 ⊕ Z
′

X−2,

Y ′X = F(ZX , SKX )⊕ F(ZX ⊕ Z ′X , SKX ),
...

l ′ = Z ′n,
Y ′n = F(Zn, SKn)⊕ F(Zn ⊕ Z ′n, SKn),
r ′ = Y ′n ⊕ Z

′

n−1.

(21)

These relationships are graphically represented by the
Bayesian Network, named DES-BN, showed in Fig. 8. It is
worth noting that the structure of theDES-BN is based on the
simplifying assumption that subkeys are mutually indepen-
dent, as also proposed in [10], since such assumption allows
to simplify the evaluation of the BN conditioned probabilities.

FIGURE 8. Bayesian network for inference over DES composed by N
rounds (DES-BN).

The goal of the attack on the whole DES, given a single
evidence set 0 = (P,P∗,T ,T ∗), is to find the set of keys that
maximizes the following likelihood:

p(SK1, SK2, . . . , SKN |0), (22)

where N = 16 is the number of rounds.
It is possible to prove that such likelihood can be expressed

as follows:

p (SK1, . . . , SKN | 0) = η6p (R) p
(
R∗

)
p (L) p

(
L∗

)
× p

(
R′ | R,R∗

)
p

(
L ′ | L,L∗

)
×

∏N

X=1
p (SKX )

×

∑{
Z ′1,...,Z

′
N

Y ′1,...,Y
′
N

[
p

(
Z ′1 | R

′
)
× p

(
Z ′2 | Y

′

1,L
′
)

×

∏N

X=3
p

(
Z ′X | Y

′

X−1,Z
′

X−2
)

× p
(
l ′ | Z ′N

)
p

(
r ′ | Z ′N−1,Y

′
N
)

×

∏N

X=1
p

(
Y ′X | Z

′
X , SKX

)]
. (23)
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Algorithm 3 - prob_key_attack_DES - Algo-
rithm for Computing the Approximate Probability
Distribution Over Possible Subkeys by Attacking
DES With Multiple Evidences
Data: N : the number of rounds composing DES (N=16);

ϒ : a set of multiple evidence 0 = (P,P∗,T ,T ∗); M :
the number of samples used by the sampling
algorithm;

Result: SK : the N -size set of subkeys;
begin

SK ← new array [N ]; // Subkeys set;

// For each round from N down to 3rd round
for X = N : 3 do

� = ∅ // Set of multiple evidences for attacking the
Feistel function;

// For each evidence set, build data to attack the
Feistel function:

for all 0 = (P,P∗,T ,T ∗) ∈ ϒ do
(l, r) = left and right parts of T ;
(l∗, r∗) = left and right parts of T ∗;
(l′, r ′) = left and right parts of

T ′ = T ⊕ T ∗;
ZX = l;
Z∗X = l∗;
Z ′X−1 = argmax (histogram

(samples_Z ′X (P,P∗, M, X-1)));
Y ′X = r ′ ⊕ Z ′X−1;
� = � ∪ (ZX ,Z∗X ,Y ′X );

// Attack the Feistel function:
p =prob_key_attack_Feistel(�);
SK [X ] = argmax (p);

// Update the evidence sets:
for all 0i = (P,P∗,T ,T ∗) ∈ ϒ do

templ = l;
templ∗ = l∗;
l = r ⊕ F(l, SK [X ]);
l∗ = r ⊕ F(l∗, SK [X ]);
r = templ ;
r∗ = templ∗ ;
udpate 0← (P,P∗, (l, r), (l∗, r∗));

Break 3-round DES through exact inference;

return SK ;

The research of the optimal key by exploiting the Eq. 23,
through a backward exact inference process requires an high
computational cost, that makes infeasible such an approach.

Instead, it is possible to exploit the forward inference in
order to estimate the most probable difference propagation
through different rounds, and then exploit a statistical
sampling technique, as described in [32], to estimate the
subkey for each round.

In particular, for the last round N , the following relation-
ships among variables hold:{

l ′ = Z ′N ,

r ′ = Y ′N ⊕ Z
′

N−1,
⇒

{
l ′ = Z ′N ,

Y ′N = r ′ ⊕ Z ′N−1.
(24)

Algorithm 4 - sample_Z ′X - Algorithm for Drawing
a Set of Samples for the Z ′X Variables of All DES
Rounds, Given a Single Evidence
Data: (P,P∗): the evidence of a pair of plaintext; M : the

number of samples used by the sampling algorithm;
X : the round containing the Z ′X to be sampled;

Result: Z ′X : the set of samples for the Z ′X variable;
begin

Z ← new array [X + 1][M ];
Z ′ ←new array [X + 1][M ];

// Round 1 variables are part of the given evidence
(L,R) = left and right parts of P;
(L∗,R∗) = left and right parts of P∗;
(L ′,R′) = left and right parts of P′ = P⊕ P∗;
set all values Z [1][*] with R;
set all values Z ′[1][*] with R′;
set all values Z [0][*] with L;
set all values Z ′[0][*] with L ′;

// For each round from 2 to X-1
for x= 2 : X-1 do

for m = 1 : M do
// draw M samples
SK (x−1) = random(0: 248 − 1);
Y ′(x−1) = F(Z [x − 1][m], SK (x−1))⊕
F(Z [x − 1][m]⊕ Z ′[x − 1][m], SK (x−1));

Z ′[x][m] = Y ′(x−1) ⊕ Z
′[x − 2][m];

return Z ′[X ];

If Z ′N−1 were known, the best way to obtain the subkey
SKN should be to compute the value of Y ′N through Eq. 24,
and then use the attack on the Feistel function of the last
round, by using Z ′N and Y ′N as input. Unfortunately, such
piece of information is not available, and its exact inference
through the BN would be computationally too expensive.
We propose to sample the DES-BN in order to estimate the
most probable value of Z ′N−1 by exploiting the structure of
the DES-BN and the only exact information available, i.e.,
the given evidence. Given the estimated value of Z ′N−1 it
is possible to backwards iterate the same procedure for the
remainingN−1 rounds until the construction of a probability
distribution for all subkeys. Such attack is described by Algo-
rithm 3. At each round, multiple evidences are exploited to
attack the Feistel function, in order to find the most probable
subkey.

The algorithm to sample an objective node consists in
sorting all nodes of the Bayesian Network according to its
topology, and then sampling the probability distribution of all
nodes that precede the objective node and finally sampling
the objective node. In order to estimate the most probable
value of Z ′X , in a given round X , our algorithm starts from
the exact knowledge of P and P∗ and follows all causal
links in the path to the Z ′X , drawing a random value for
each unknown parent node. This procedure allows to obtain
a possible value for Z ′X . The iteration of such procedure
produces a set of samples of Z ′X , and by analyzing the
resulting histogram it is possible to select the most frequent
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TABLE 1. Number of plaintext-ciphertex pairs (Texts) and time-to-succeed (TTS) required to attack 8 S-Boxes with different random keys by means of the
algorithm prob_key_SBox_attack.

sample. With an adequate number of samples the histogram
approximates the probability distribution of Z ′X , thus the most
frequent sample can be considered an approximation of the
most probable value. This sampling strategy is described in
Algorithm 4.

VI. PERFORMANCE EVALUATION
A first assessment of the performance of the proposed
approach concerned the evaluation of the complexity of the
four algorithms it consists of.

The computational complexity of the algorithm to attack a
single SBox (Algorithm 1) is OSBox = O(2b|9|), where |9|
is the number of exploited evidences, and b is the number of
bits composing the key block accepted as input by one of the
eight S-Boxes, i.e., b = 6.
The evaluation of the probability distribution during the

attack to the Feistel Function, according to Algorithm 2, has a
complexityOFeistel =O(ns∗2b∗|9|), where |9| is the number
of exploited evidences in the attack on a single S-Box, ns is
the number of S-Boxes, and b is the number of bits of the
key block used by one of the eight S-Boxes, i.e., ns = 8 and
b = 6.

The complexity of the sampling procedure (Algorithm 4)
depends on the number of samples required to obtain the
convergence of the probability distribution, i.e, M , and on
the round to be sampled, i.e., X . The upper bound of such
complexity is determined by considering the last round, i.e.,
X = N , as in the following equation:Osampling = O(X∗M ) <

O(N ∗M ).
It is worth noting that the samples generated during the

graph descent can be reused during the backtracking, thus

obtaining a more efficient procedure than the expanded Algo-
rithm 4.
The computational cost for attacking the whole DES

(Algorithm 3) is expressed by the following equation:

ODES = O(N (|ϒ |Osampling + OFeistel + |ϒ |)) <

= O(N |ϒ |(N ∗M + 2b)), (25)

where |ϒ | is the number of elements constituting the evidence
set, M is the number of samples required by the sampling
algorithm, N is the number of round of DES, and b si the
number of input bits to a single S-Box. Since b = 6 and
N = 16, it follows that 2b and N 2 can be considered as
constant. Consequently, the computational complexity can be
expressed as follows:

ODES = O(|ϒ |M ). (26)

Such result is coherent with the expected complexity of a cho-
sen plaintext attack, which directly depends on the number of
plaintext-ciphertext pairs.
Another set of experiments was run in order to find the

number of plaintext-ciphertext pairs needed to attack each
of the 8 S-boxes by means of the Algorithm 1. Tests were
executed on a multi-core server equipped with 4 Intel Xeon
2.00 GHz by reporting the time-to-succeed (in milliseconds)
when using 10 different random keys. Results, shown in
Table 1, indicate that on average 3 plaintext-ciphertext pairs
are needed to accomplish the attack on every S-box. It can
be observed that the time-to-succeed (TTS) are in general
very low, and no noticeable variations are evident as the
random keys and the S-boxes vary. This aspect was further
inspected by evaluating the average TTS (see Fig. 9) and the
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FIGURE 9. Average time-to-succeed (ms) for each S-box attack with the
prob_key_SBox_attack.

TABLE 2. Results of the attacks conducted against four variations of DES
reduced to three, four, five and six rounds.

corresponding variance values, which are about 10−3 ms for
each experiment.

Finally, we extended the experimental evaluation to four
distinct versions of DES reduced to three, four, five, and six
rounds, respectively. Results we obtained (see Table 2) are
comparable with the performance of the original differential
crypyanalysis [10], [34]. In particular, for each variation of
DES, we considered the average execution time (Time), the
number of chosen plaintext-ciphertext pairs (Texts), and the
number of required samples obtained by the sample_Z ′X
algorithm (Samples). It is worth noticing that changing the
number of available plaintext-ciphertext pairs significantly
impacts on the number of samples required to accom-
plish the attack. The values reported in Table 2 are those
that minimize the computational complexity of the whole
attack (Eq. 25).

This preliminary assessment leads us to conclude that the
number of plaintext-ciphertext pairs required to attack a full
16-roundDES is not lower than the threshold of 247 that exists
for the standard differential attack approach.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new formulation of differ-
ential cryptanalysis through Bayesian networks, a frame-
work for performing probabilistic inference that is widely
adopted in the field of machine learning. Exploiting such
model we designed an algorithm for attacking DES through
approximate inference on such Bayesian Network model.
Our preliminary experimental evaluation, performed on a
version of DES with a reduced number of rounds, showed
that the proposed method is equivalent to the original dif-
ferential cryptanalysis, with respect to required input data
and convergence time. Beyond its effectiveness, the compu-
tational aspect represents the main limitation of the approach.
Indeed, the Bayesian framework, in its current form, does not

perform significantly better than other traditional cryptanaly-
sis approaches. However, the formulation of the attack using
Bayesian Networks gives several insights for improvement.
To be more specific, we plan to evaluate more advanced
forward sampling techniques, such as importance sampling,
in order to verify the possibility to reduce the convergence
time and to minimize the sample inputs. Furthermore, since
multiple evidences are mutually independent, the reduction
of the convergence time can be achieved by exploiting a
massive parallel architecture. Finally, although the hypothesis
of mutual independence of subkeys allows to reduce the com-
putational cost, it introduces many contradictory hypothesis
about subkeys of different rounds. In a future work we will
investigate the introduction of a new BN model modeling the
linear relationship among subkeys.
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