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ABSTRACT The study aimed to compare the effects of combined action observation and motor imagery
(AOMI) and motor imagery (MI)-based brain-computer interface (BCI) training on upper limb recovery,
cortical excitation, and cognitive task performance in chronic stroke patients. 17 chronic stroke patients
were recruited and randomly assigned to AOMI-based BCI (n = 9) and MI-based BCI groups (n = 8).
The AOMI-based BCI group received AOMI-based BCI training via functional electrical stimulation (FES)
feedback, whereas the MI-based BCI group obtained MI-based BCI training via FES feedback. Both groups
participated in training for 12 sessions (3 days/week, consecutive four weeks). To evaluate upper limb
function recovery, the Fugl–Meyer Assessment for upper extremity (FMA-UE) was employed. Event-related
desynchronization (ERD) and online classification accuracy were utilized to measure cortical excitation of
the affected sensorimotor hand region and cognitive task performance, respectively. Both AOMI and MI-
based BCI training improved upper limb function in chronic stroke patients. However, the AOMI-based BCI
group showed significantly greater motor gain than the MI-based BCI group. In addition, the AOMI-based
BCI group demonstrated significantly greater cortical excitation of the affected sensorimotor hand region
and cognitive task performance. The correlation analysis revealed that higher cognitive task performance
during AOMI-based BCI training may promote greater cortical excitation of the affected sensorimotor hand
region, which contributes to greater upper limb function improvement compared to MI-based BCI training.

INDEX TERMS Brain-computer interface, motor imagery, action observation, stroke, rehabilitation.

I. INTRODUCTION
Stroke is a leading cause of death worldwide; moreover,
the majority of stroke survivors experience hemiparesis or
muscle weakness on one side of the body [1]. In particular,
weakness of the upper limb muscles is a common issue
among stroke patients that has a significant impact on their
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daily activities [2]. At present, constraint-induced movement
therapy [3] and task-specific training [4] are effective ther-
apeutic methods for enhancing the function of the upper
limb in stroke patients. Nevertheless, some stroke patients
with moderate to severe upper limb impairment may not be
able to take benefits of these techniques effectively due to
limited voluntary movement. Consequently, approximately
65% of patients are unable to use the affected upper limb
for daily activities six months after the stroke. [5]. Therefore,

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 4931

https://orcid.org/0000-0001-8695-7345
https://orcid.org/0000-0003-2647-3116
https://orcid.org/0000-0003-0982-5917
https://orcid.org/0000-0002-6541-0305
https://orcid.org/0000-0003-4149-0096


N. Rungsirisilp et al.: Applying Action Observation During a BCI on Upper Limb Recovery in Chronic Stroke Patients

there should be alternative therapeutic methods to assist these
patients in regaining function in their upper limbs [6], [7].

Motor imagery (MI) training is a type of mental practice
applied in stroke rehabilitation. MI is the mental rehearsal
of an action that engages brain regions involved in move-
ment planning and execution without actually performing the
action [8], [9]. Consequently, MI can be employed in con-
junctionwith conventional physical therapy to promotemotor
recovery in stroke patients with severe motor impairment
[10], [11], [12]. However, the primary issue with MI training
in stroke patients is a lack of feedback during the training.
Therefore, stroke patients do not know whether they perform
MI effectively.

To overcome this issue, an electroencephalography
(EEG)-based brain-computer interface (BCI) system is used
to improve the efficacy of MI training in stroke rehabilitation.
BCI is a system that can acquire and interpret ongoing
EEG signals while a stroke patient is performing MI. The
system will subsequently provide stroke patients with useful
feedback (e.g., neuromuscular electrical stimulation, robotic
hand exoskeleton, and visual feedback) if they perform MI
successfully [6]. Event-related desynchronization or syn-
chronization (ERD/ERS) is a well-known EEG feature that
emerges during MI and is commonly implemented in BCI
systems based on MI. ERD is a decrease in EEG power in
a specific frequency band (i.e., alpha (8–13 Hz) and beta
bands (14–30 Hz)), whereas ERS is an increase in this power
relative to the baseline reference or a moment before per-
forming MI. ERD appears in the contralateral sensorimotor
hand region during a hand MI. However, ERS occurs in the
ipsilateral sensorimotor hand region and afterMI termination.
ERD refers to activated cortical neurons involved in sen-
sory, motor, and cognitive processing, whereas ERS denotes
neural activity inhibition [13], [14]. Thus, a BCI system
based on MI can assist stroke patients in performing MI
effectively through trial-and-error learning to generate ERD
in the affected sensorimotor hand region. Moreover, ERD
occurring in response to MI coincident with neurofeedback is
a key strategy for promoting neural plasticity [6], [15], [16].
Thus, multiple studies have reported that MI-based BCI with
neurofeedback training could restore upper limb function in
stroke patients [17], [18], [19], [20], [21].

In addition to MI, action observation (AO) is another
method for accessing motor-related brain regions without
executing physical movement. AO is the careful observa-
tion of an action performed by another person. Through the
mirror neuron system, it is possible to activate the same
neural structures as if the individual actually performed the
observed action [22], [23]. Moreover, previous EEG studies
have reported that AO could also generate ERD in addition to
MI [24], [25]. Therefore, combining AOwith the BCI system
is an alternative strategy to promote motor recovery in stroke
patients with severe motor impairment [26], [27].

In addition, there is a proposal to combine MI and
AO. Multimodal brain imaging studies have revealed that

combined action observation and motor imagery (AOMI)
activates motor execution-related brain regions more effec-
tively than either technique alone [28], [29], [30], [31], [32],
[33], [34]. AOMI involves imagining a movement while
watching the imagined action shown on a computer dis-
play. [35], [36]. Previous studies with healthy participants
have shown that AOMI is superior to MI for improving bal-
ance, muscle force, and aiming performance [37], [38], [39].
Nevertheless, few studies have examined the effect of AOMI
training on motor recovery in stroke patients. Sun et al. [40]
were the first to investigate the effect of AOMI training on
upper limb function in subacute stroke patients. In Sun’s
study, the participants were randomly assigned to the exper-
imental and control groups. In the experimental group,
the participants received AOMI training together with con-
ventional therapy, whereas the participants in the control
group received asynchronous AOMI and conventional ther-
apy. After completing four weeks of training, the participants
in the experimental group demonstrated significantly greater
improvements in upper limb function than the control group.
Moreover, the participants in the experimental group also
exhibited a significantly greater ERD in the affected sensori-
motor hand region. In addition to Sun’s study,Wang et al. [41]
evaluated the effect of AOMI-based BCI training in chronic
stroke patients. In Wang’s study, participants were randomly
assigned to intervention and sham groups. The intervention
group received an AOMI-based BCI with robotic hand feed-
back, while the sham groups received an MI-based BCI with
random robotic hand feedback. After completing 20 sessions
of training, only the participants in the intervention group
showed significant improvement in upper limb function.

Even though AOMI is not a novel technique, there is cur-
rently insufficient evidence of its application in BCI systems
for motor recovery in stroke patients. Moreover, there is no
research comparing the effects of AOMI and MI-based BCI
training onmotor recovery in chronic stroke patients. In Sun’s
study [40], the effects of AOMI and MI training on upper
limb recovery in subacute stroke patients were compared;
however, the BCI system was not incorporated into the train-
ing. InWang’s study [41], the BCI system was integrated into
AOMI training for chronic stroke patients, but the researchers
did not directly compare the effects of AOMI and MI-based
BCI training.

To address the gaps in the literature, this study aimed to
investigate the effects of AOMI and MI-based BCI training
on upper limb recovery, cortical excitation, and cognitive task
performance in chronic stroke patients.

II. MATERIALS AND METHODS
A. PARTICIPANTS
The current study enrolled seventeen chronic stroke patients
who were outpatients from the Physical Therapy Center of
Mahidol University (3 females; 4 right hemiparesis). The
participants were randomly assigned to AOMI-based BCI
(experiment group, n= 9) and MI-based BCI groups (control
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TABLE 1. Participant details.

group, n= 8). The Fugl–MeyerAssessment for upper extrem-
ity (FMA-UE) was used to evaluate the severity of upper limb
impairment in each participant before receiving the BCI train-
ing from blinded physical therapists. The FMA-UE scores of
the participants ranged from 10–45 (mean = 28.53, standard
deviation (SD) = 11.48), indicating severe to moderate-mild
upper limb impairment [42]. The other inclusion criteria were
as follows: 1) first-ever stroke caused by ischemia or hemor-
rhage; 2) more than six months since stroke; 3) age between
40–80 years; 4) no eyesight problems; 5) Mini-Mental State
Exam (MMSE) score ≥ 25, indicating that the participant
has normal cognitive status; and 6) no prior experience with
AOMI and MI-based BCI training. All participants were
right-handed before a stroke. Exclusion criteria included the
presence of aphasia, apraxia, neglect syndrome or epilepsy
history, and contraindication for neuromuscular electrical
stimulation. All participants provided written informed con-
sent to participate in this study, which was approved by the
Mahidol University Central Institutional ReviewBoard (COA
No. MU-CIRB 2020/097.3107), and the Thai Clinical Trial
Registry identification number was TCTR20200821002. The
participant details are presented in Table 1.

B. BCI SYSTEM CALIBRATION
In this study, both groups received BCI training three times
per week for four consecutive weeks (total of 12 training
days). Additionally, each participant continued to receive
one to two days of conventional physical therapy per week.
Participants were required to engage in two phases per train-
ing day: BCI system calibration and BCI training with the
neurofeedback. During the BCI system calibration phase,
EEG data were collected while participants performed AOMI

or MI task without neurofeedback in order to develop a
classification model. The classification model was then
implemented in the BCI training with neurofeedback phase.
To calibrate the BCI system, the participants were seated in a
comfortable chair and placed their paretic hands in the prone
position on a table. Sixteen-channel EEG (FP1, FP2, FC3,
FC4, C5, C6, C3, C4, C1, C2, CP3, CP4, P3, P4, O1, and O2
following the international 10–20 system) and a g. tec biosig-
nal amplifier (g. USBamp, Graz, Austria) were employed
to record the EEG data at a sampling rate of 512 Hz. The
ground and reference electrodes were electrodes on the AFz
and the left earlobe, respectively. A 14-inch laptop computer
was used to provide a graphical user interface for participants
engaged in the AOMI or MI task. It was placed in front of
them, and the appropriate viewing distance was maintained.
The graphical user interface was created using the tkinter,
OpenCV, and Pillow python packages.

The participants in the AOMI-based BCI group were asked
to perform the AOMI task, whereas the participants in the
MI-based BCI group were requested to execute the MI task.
The AOMI and MI paradigms were derived from our previ-
ous work [34]. Before participants performed the AOMI or
MI task; the researcher instructed them on how to perform
kinesthetic MI. The researcher would passively extend the
participant’s paretic wrist and hand, and ask them to feel
and memorize the sensation of movement (such as skin con-
traction and proprioception) that they had to imagine while
performing the AOMI or MI task.

The participants began the AOMI or MI task by observing
a blank screen for 5 seconds. Next, a black cross appeared
in the center of the screen for 3 seconds to alert the par-
ticipant to begin preparing for the upcoming AOMI or MI
task. During this period, participants were instructed to avoid
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FIGURE 1. Paradigm of a trial in the AOMI and MI tasks. (a) AOMI task. (b) MI task.

any physical movements, including eye blinking and saliva
swallowing. Then, for the AOMI task, the participants were
instructed to simultaneously perform kinesthetic MI of wrist
and hand extensions for 5 seconds while watching video-
guidedmovement on the screen. The video-guidedmovement
demonstrated how to perform wrist and hand extensions and
appeared on the same side as the paretic hand from the first-
person perspective. For the MI task, the participants were
instructed to simultaneously perform kinesthetic MI of wrist
and hand extensions while they were gazing at the red arrow
pointing in the direction of the paretic hand for 5 seconds.
During executing kinesthetic MI of wrist and hand exten-
sions, the participants in both groups were not permitted to
generate any movement with either the paretic or nonparetic
hands, including eye blinking and saliva swallowing. After-
ward, the blank screen then reappeared to inform the partici-
pants to relax. The relaxation time was randomly set between
5 and 8 seconds before the next trial started to prevent adap-
tation. The paradigm of a trial in the AOMI and MI tasks is
depicted in (Fig 1a, b). During the BCI system calibration
phase, participants were required to perform the AOMI or
MI task for two sets, of 20 trials each, with 4-minute breaks
between each set. Consequently, the EEG data resulting from
the AOMI or MI task for a total of 40 trials were used to
construct the classification model.

After receiving the EEG data from the 40-trial AOMI or
MI task, the EEG data were bandpass filtered from 8–30 Hz
by a 4th-order Butterworth filter. Then, we selected the EEG
data from five channels placed over the affected sensorimotor
region (FC3, C5, C3, C1, CP3 for right-sided hemiparesis and
FC4, C6, C4, C2, CP4 for left-sided hemiparesis). Next, the

EEG data were chunked into 2-second epochs to establish
the data for a 2-class condition. The 6–8 and 9–11 second
periods (Fig 1a, b) were represented as 2-second epochs for
class 1 (baseline class) and class 2 (imagery class), respec-
tively. Then, a common spatial pattern (CSP) filter was uti-
lized to expand the difference between the two classes. The
CSP filter matrix was projected into the original datasets
to simultaneously maximize the variance for one class and
minimize the variance for another class [43]. Afterward, the
CSP-filtered data were squared and averaged to extract band
power features. The vectors of band power features for the
2-class condition were subsequently inserted into the linear
discriminant analysis (LDA) to generate the classification
model [44]. If the model accuracy was less than 60%, the
participants were requested to repeatedly calibrate the BCI
system until the model accuracy was greater than 60%. The
entire processes of building the classification model were
carried out with OpenVibe software (v2.2.0) [45].

C. BCI TRAINING WITH NEUROFEEDBACK
In this phase, the participants performed the AOMI or MI
task using functional electrical stimulation (FES) as neu-
rofeedback. We selected FES as neurofeedback because it
can improve muscle mass and endurance in the paretic arm.
Moreover, it can provide somatosensory information and is
commonly applied in BCI systems for stroke rehabilitation
[46], [47]. The FES device was custom-made, and the param-
eters for muscle stimulation were as follows: 1) biphasic
square waveform; 2) pulse width at 250 µs; 3) stimulation
frequency at 50 Hz; 4) the FES electrodes were placed
on the extensor digitorum muscle of the paretic arm; and
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5) voltage intensities of approximately 60–80 volts, which
were sufficient to produce painless wrist and hand extensions.

On each training day, participants were required to com-
plete four sets of the AOMI or MI task with FES feedback,
with 20 trials per set and 4-minute breaks between each set.
Therefore, the participants performed 80 trials of the AOMI
or MI task with FES feedback. The procedure of the AOMI
or MI task in each trial was identical to the BCI system
calibration phase, with the addition of FES feedback. The
FES would be activated at seconds 11 to 13 (Fig 1a, b) if the
participants could execute the AOMI or MI task effectively.

To evaluate the AOMI or MI task performance, the
2-second EEG data from five channels placed over the
affected sensorimotor region during the AOMI or MI task
(i.e., seconds 9 to 11 (Fig 1a, b)) were selected. Next, the
EEG data were transformed into feature vectors using the
procedures described in the section on BCI system calibration
(i.e., 4th order Butterworth filter at 8–30 Hz, CSP filter, and
band power features). Then, the feature vectors were classi-
fied by the LDA model. The FES was activated if the feature
vectors were classified as class 2 (imagery class). In contrast,
the FESwas not activated if the feature vectors were classified
as class 1 (baseline class). The whole process of BCI training
with neurofeedback was conducted by OpenVibe software
(v2.2.0) [45] and a Python script. (Fig 2a, b) depicts partic-
ipants receiving AOMI and MI-based BCI training with FES
feedback.

D. OUTCOME MEASURES
The purpose of the present study was to examine the effects
of AOMI and MI-based BCI training on upper limb recovery,
cortical excitation, and cognitive task performance in chronic
stroke patients. The change in FMA-UE scores (1 FMA-UE
scores) was decided as the primary outcome. The blinded
physical therapists measured the FMA-UE score in each
participant before receiving and after completing the inter-
vention within seven days. Cortical excitation and cognitive
task performance constituted the secondary outcomes.

To compare the cortical excitation between AOMI and
MI-based BCI training, ERD/ERS analysis of C3 (for right-
sided hemiparesis participants) or C4 (for left-sided hemi-
paresis participants) channels was applied. We focused on
analyzing % ERD/ERS values of C3 or C4 because they
were located over the affected sensorimotor hand region, and
the equation (1) for obtaining % ERD/ERS values was as
follows [14].

% ERD/ERS =
(A − R)

R
× 100 (1)

A is the power spectrum value during the AOMI or MI
task. R is the power spectrum value before executing the
AOMI or MI task. The EEG data during AOMI or MI-based
BCI training with FES feedback (80 trials) were used to
calculate % ERD/ERS values. To obtain A and R values, the
EEG data were first bandpass filtered between 8 and 30 Hz.
Next, an independent component analysis (ICA) [48] was

applied to eliminate muscle and electrical artifacts resulting
from FES. Then, the EEG data from seconds 9 to 13 and
from seconds 7 to 8 (Fig 1a, b) were employed to compute
A and R, respectively. The power spectrum values of the
alpha (8–13 Hz) and beta (14–30 Hz) bands of A and R
in each trial were estimated using Welch’s method with a
Hamming window (with 50% overlap). After averaging A
and R across 80 trials, these values were plugged into the
above equation to obtain the % ERD/ERS values of the alpha
(8–13 Hz) and beta (14–30 Hz) frequency bands. We calcu-
lated % ERD/ERS values on each training day and averaged
them across 12 training days to obtain the mean % ERD/ERS
values. If the value of % ERD/ERS was a negative number,
it referred to activated neural activity. However, if the value
of % ERD/ERS was a positive number, it indicated inhibited
neural activity [13], [14]. The whole process of calculating
% ERD/ERS was facilitated by MATLAB (R2020a) and the
EEGLAB (v2020.0) toolbox.

To compare the cognitive task performance between the
AOMI and MI-based BCI groups, online classification accu-
racy was utilized. On each training day, we counted the
number of times participants were able to activate FES in
response to the AOMI or MI task and converted that number
to a percentage using the following equation (2) [49], [50].

% online classification accuracy =
i × 100

N
(2)

N is the total number of AOMI orMI tasks in total (80 times).
i represents the number of times that the FES was activated
due to the AOMI orMI task. They were then averaged over 12
training days to determine the mean % online classification
accuracy. A greater mean % of online classification accuracy
indicated superior cognitive task performance.

E. STATISTICAL ANALYSIS
Due to the small sample size (n = 17), nonparametric tests
were used for statistical analysis. The Mann Whitney U test
was employed to compare age, time since stroke, MMSE
scores, baseline FMA-UE scores, 1 FMA-UE scores, mean
% ERD/ERS values of C3/C4 (alpha and beta bands), and
mean % online classification accuracy between groups. The
Wilcoxon signed-rank test was applied to compare FMA-UE
scores between pre- and post-intervention within groups. Sta-
tistical significance was determined when p values were less
than 0.05 (two-sided test). The statistical analysis was con-
ducted by PASW Statistics software version 18.0 (formerly
SPSS Statistics, Chicago).

III. RESULTS
At the beginning of the intervention, there were no significant
differences between the AOMI and MI-based BCI groups in
terms of age (p = 0.735), time since stroke (p = 0.210),
MMSE scores (p = 1), or baseline FMA-UE scores (p =

0.962). Thus, the severity of upper limb impairment at base-
line was comparable between the AOMI and MI-based BCI
groups. When comparing FMA-UE scores between pre- and
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FIGURE 2. AOMI AND MI-based BCI training with FES feedback. (a) AOMI-based BCI group. (b) MI-based BCI group.

TABLE 2. FMA-UE scores between pre- and post-intervention of all participants.

post-intervention, significant differences in FMA-UE scores
in both AOMI and MI-based BCI groups (p = 0.012 and
0.018, respectively) were found. The results of FMA-UE
scores between pre-and post-intervention of all participants
are presented in Table 2.

For comparison of 1 FMA-UE scores between groups,
we found that the AOMI-based BCI group had significantly
higher 1 FMA-UE scores than the MI-based BCI group
(p = 0.022). Furthermore, the mean % ERD/ERS values
of C3/C4 in the alpha and beta bands and the mean %
online classification accuracy were also found to be signif-
icantly higher in the AOMI-based BCI than in the MI-based
BCI group (p = 0.034, 0.021, and 0.038, respectively). The
results of 1 FMA-UE scores, mean % ERD/ERS values
of C3/C4, and the mean % online classification accuracy

of all participants are presented in Table 3. The results of
% ERD/ERS values of C3/C4 and % online classification
accuracy of each participant are depicted in (Fig 3).

In addition, we investigated the time-course of changes
in % ERD/ERS values of C3/C4 and % online classifica-
tion accuracy between the AOMI and MI-based BCI groups.
Spearman’s correlation was performed between the grand
average of % ERD/ERS values of C3/C4 and % online classi-
fication accuracy and training session. The AOMI-based BCI
group demonstrated a greater increase in % ERD/ERS values
of C3/C4 in the alpha and beta bands over time compared
to the MI-based BCI group. However, the time-course of
changes in % online classification accuracy between AOMI
and MI-based BCI groups were not different. Both AOMI
and MI-based BCI groups presented increasing % online
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TABLE 3. 1 FMA-UE scores, mean % ERD/ERS values, and mean % online classification accuracy of all participants.

FIGURE 3. % ERD/ERS values of C3/C4 and % online classification accuracy of each participant.

classification accuracy as time passed. The results of the
time-course of changes in % ERD/ERS values of C3/C4 and
% online classification accuracy are shown in (Fig 4).
To explore whether greater mean % ERD/ERS values of

C3/C4 andmean% online classification accuracy contributed
to higher1 FMA-UE scores, the correlation analysis was per-
formed by using Spearman’s correlation. Only a significant
negative correlation between 1 FMA-UE scores and mean
% ERD/ERS values of C3/C4 in the beta band (r = −0.571,

p= 0.017) was observed. Therewas no significant correlation
between 1 FMA-UE scores and mean % ERD/ERS values
of C3/C4 in the alpha band (r = −0.291, p = 0.257) or
between1 FMA-UE scores and mean% online classification
accuracy (r= 0.459, p= 0.064). The results of the correlation
analysis between 1 FMA-UE scores and the other variables
are shown in (Fig 5a, b, and c).

In addition, a significant negative correlation between the
mean % online classification and mean % ERD/ERS values
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FIGURE 4. Time-course of changes in the grand average of % ERD/ERS values of C3/C4 and % online classification accuracy between AOMI and MI-based
BCI training. ∗ represents significance in Spearman’s correlation (p values < 0.05).

of C3/C4 in both the alpha and beta bands (r = −0.742,
p = 0.001 and r = −0.553, p = 0.021, respectively)
were observed. These results indicated a correlation between
higher online classical accuracy and greater cortical excita-
tion of the affected sensorimotor hand region. The results of
the correlation analysis between the mean % online classifi-
cation accuracy and mean % ERD/ERS values of C3/C4 in
both the alpha and beta bands are depicted in (Fig 6a, b).

IV. DISCUSSION
The purpose of this study was to compare the effects of
AOMI and MI-based BCI training on upper limb recov-
ery, cortical excitation, and cognitive task performance in
chronic stroke patients. Both AOMI and MI-based BCI train-
ing with FES feedback was found to be effective in restoring
upper limb function in chronic stroke patients. Nevertheless,
AOMI-based BCI training resulted in significantly higher
motor improvement than MI-based BCI training. Addition-
ally, AOMI-based BCI training demonstrated significantly
greater cortical excitation of the affected sensorimotor hand
region. (% ERD/ERS values of C3/C4 in the alpha and beta
bands) and cognitive task performance (% online classifica-
tion accuracy). Moreover, the AOMI-based BCI training was
found to be better than MI-based BCI in terms of facilitating
greater cortical excitation of the affected sensorimotor hand
region over the course of time. To discover whether the
greater cortical excitation of the affected sensorimotor hand
region and the higher cognitive task performance induced
the increased upper limb recovery, a correlation analysis was
conducted. We discovered a significant correlation between

higher upper limb function improvement and greater ERD
values of C3/C4 in the beta band. In addition, we discov-
ered a significant correlation between cognitive task perfor-
mance and cortical excitation in the affected sensorimotor
hand region. These results indicated that the higher cogni-
tive task performance during AOMI-based BCI training may
have promoted the greater cortical excitation of the affected
sensorimotor hand region, which contributed to the greater
improvement in upper limb function compared to MI-based
BCI training.

MI-based BCI training with neurofeedback has been
shown to improve upper limb function in stroke patients, and
our results are consistent with previous research [17], [18],
[19], [20], [21], [51], [52], [53], [54], [55]. The therapeutic
effect of BCI training may be involved in promoting Hebbian
plasticity, the mechanism that strengthens the synaptic con-
nections between neurons [56], [57]. Although, both AOMI
and MI-based BCI training with FES feedback improved
upper limb recovery, the AOMI-based BCI group demon-
strated a significantly greater motor improvement. Even
though there were differences in the stroke phase (suba-
cute or chronic phase) and training method (pure AOMI
or AOMI-based BCI training with FES feedback), these
results were congruent with Sun’s study [40]. In addition,
we found that the mean improvement in the FMA-UE score
in the AOMI-based BCI group was 5.67, which reached the
threshold of the minimum clinically important difference
(4.24 to 7.25 points) [58]. However, the mean improvement
in the FMA-UE score for the MI-based BCI group was only
2.75. The greater improvement in upper limb function in the
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FIGURE 5. Results of the correlation analysis between 1 FMA-UE scores and the other outcomes. (a) 1 FMA-UE scores and
mean % ERD/ERS values of C3/C4 in the alpha band. (b) 1 FMA-UE scores and mean % ERD/ERS values of C3/C4 in the beta
band. (c) 1 FMA-UE scores and mean % online classification accuracy. ∗ represents significance in Spearman’s correlation
(p values < 0.05).

FIGURE 6. Results of the correlation analysis between mean % online classification accuracy and mean % ERD/ERS values of C3/C4 in both the
alpha and beta bands. (a) Mean % online classification accuracy and mean % ERD/ERS values of C3/C4 in the alpha band. (b) Mean % online
classification accuracy and mean % ERD/ERS values of C3/C4 in the beta band. ∗ represents significance in Spearman’s correlation
(p values < 0.05).

AOMI-based BCI groupmay be attributed to the greater corti-
cal excitation of the affected sensorimotor hand region during
the AOMI task with FES feedback. Increasing neural excita-
tion in the affected sensorimotor hand region is essential for
enhancing motor recovery in stroke patients [52], [59], [60].

To compare the cortical excitation of the affected sensori-
motor hand region during the BCI training in this study, ERD
analysis was conducted. ERD typically refers to activated

cortical neurons involved in sensory, motor, and cognitive
processing [13], [14]. In the current study, we showed that the
AOMI-based BCI training produced a higher ERD compared
to MI-based BCI training, which was similar to a previous
study [40]. Additionally, we also found that AOMI-based
BCI training was more effective than MI-based BCI training
in terms of encouraging the participants to produce more
ERD over time. The increased ERD during AOMI-based
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BCI training may be caused by the automatic activation of
the mirror neuron system, which is spontaneously excited
by observation of body movement [24], [25], [33], [34].
Furthermore, the use of video-guided movement during the
MI task may boost task attention and guide participants to
execute MI more easily, resulting in a significant increase
in ERD [14], [34]. Moreover, our previous study involving
chronic stroke patients revealed that AOMI was superior to
MI in terms of enhancing ERD, resulting in improved offline
classification performance [34]. Similarly, the classification
model in this study was based on ERD features. Therefore,
the greater ERD during the AOMI task may advocate that
the AOMI-based BCI group manifested higher online classi-
fication accuracy than the MI-based BCI group. The greater
online classification accuracy indicated a higher number of
activated FES that could further augment ERD [61]. Con-
sequently, the greater ERD during the AOMI task coincided
with the higher number of activated FES may promoted more
activated neurons in the affected sensorimotor hand region,
which contributed to the greater improvement of upper limb
function.

Notwithstanding, AOMI-based BCI training seemed to
be more effective than MI-based BCI training in terms of
promoting motor recovery. The FMA-UE score of one par-
ticipant (AOMI9) in the AOMI-based BCI group did not
improve following the intervention. Nonetheless, this did
not imply that she received no therapeutic benefit from the
training. At the onset of the intervention, she was com-
pletely incapable of wrist extension. After completing the
training, she could perform wrist extension with a small
degree of range of motion. However, the degree of movement
(less than 15 degrees) did not meet the FMA-UE evalua-
tion threshold to obtain a point. In addition, she was the
only participant in this study who had sleepless symptoms
prior to stroke onset that continued until now. A previous
meta-analysis revealed that sleep disorders negatively impact
stroke rehabilitation [62]. Therefore, it is hypothesized that
this factor might have negatively impacted her upper limb
recovery in the present study. Further research is required
to determine whether sleepless symptoms influence the ther-
apeutic effect of BCI training on motor recovery in stroke
patients.

Moreover, we compared 1 FMA-UE scores due to
AOMI-based BCI training to a similar study in which chronic
stroke patients received MI-based BCI training. We discov-
ered that the 1 FMA-UE scores in our study were lower. The
mean 1 FMA-UE score caused by MI-based BCI training
with FES feedback was 6.6 in the study by Biasiucci et al.
[51], whereas our score was 5.67. The differences in the
score could be due to the substantial difference in online
classification accuracy between the two studies. The online
classification accuracy in Biasiucci et al. [51] was 85.95 ±

8.40%, whereas our outcome was 74.67 ± 8.60%. In the
present study, the classification model was based on EEG
data from five channels and band power features in the

frequency range of 8–30 Hz, whereas the classificationmodel
in Biasiucci et al. [51] was built on EEG data from 16 chan-
nels and specific band power features for each participant.
Consequently, these variables may explain why their online
classification accuracy was higher. As stated previously, the
higher online classification performance was correlated with,
the higher number of patients receiving FES feedback, which
led to the expansion of more activated neurons and greater
improvements in motor function. In addition, the number of
participants in Biasiucci et al. [51] (n = 14) was greater than
that in our study (n = 9); consequently, these variables may
have influenced to the inconsistency of the results. To confirm
our findings and reduce the bias due to the classification
model, future studies should compare the effect of AOMI and
MI-based BCI training on motor recovery in a larger sample
size and use a classification model based on specific band
power for each participant.

In summary, the current study showed that AOMI-based
BCI training was superior to MI-based BCI training with
respect to improving upper limb function, cortical excitation
of the affected sensorimotor hand region, and cognitive task
performance in chronic stroke patients. Implementing AO
(video-guided movement) during the MI task is inexpensive
and straightforward in BCI systems. Our hope is that these
results will promote the widespread use of AOMI in BCI
systems for stroke rehabilitation. For instance, AOMI-based
BCI training can be applied to promote lower limb recovery
in stroke patients. As mentioned previously, the small sample
size was a limitation of this study. Additionally, in the current
study, we did not have a sham group to ensure that the
improvement in upper limb function in the participants was
not by chance. In addition, this study was conducted as a
clinical trial in parallel. To reduce the variation in MI ability
among participants, additional research should verify our
findings using a clinical crossover trial. In addition, we did
not monitor how long the therapeutic effect lasted, and we
evaluated upper limb function using only FMA-UE, which
may not be sensitive enough to detect a small motor gain.
Therefore, future research should address these issues and
reexamine our findings.

V. CONCLUSION
Both AOMI and MI-based BCI training could improve
upper limb function in chronic stroke patients. However,
AOMI-based BCI training presented significantly greater
therapeutic effect than MI-based BCI training. Moreover,
AOMI-based BCI training also encouraged greater cortical
excitation of the affected sensorimotor hand region and cog-
nitive task performance than MI-based BCI training. Higher
cognitive task performance during AOMI-based BCI training
may promote greater cortical excitation of the affected sen-
sorimotor hand region, which contributes to greater motor
improvement compared to MI-based BCI training, as indi-
cated by the correlation analysis.
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