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ABSTRACT This paper presents the development of an energy management system (EMS) for a renewable
energy community (REC) with the load-generation balancing objective. In this regard, rule-based and
optimization mechanisms are proposed for the REC management in line with the scope of a field trial and
considering the scarcity of the measurement and historical data. This typical data scarcity along with the
intermittent behaviour of renewable energy resources introduce an unavoidable level of uncertainty— not
being adequately addressed in the EMS literature— thatmight ultimately affect the proper RECmanagement.
Hence, a comprehensive performance analysis of the proposed EMShas been conducted via global sensitivity
analysis (GSA). Particularly, variance-based sensitivity analysis has been employed to investigate how the
variability of a set of selected indicators of the REC performance is apportioned to the different sources
of uncertainty specifically related to the forecast and flexibility availability. Results show that the EMS
performance is consistent with the EMS objective. The application of GSA reveals though interesting
findings that contradict antecedent misconceptions about how different uncertainty sources affect the EMS
performance. Although being related to the specific REC under study, the present work specializes GSA
method in novel ways that pave the path for its reusability in the context of other EMS applications with
different boundary conditions. By highlighting the necessity of GSA and showcasing its suitability to study
the EMS performance under an uncertainty framework, the present work offers a precious tool to support
system operators in their decision making process.

INDEX TERMS Battery energy storage system, energy management system, forecast, global sensitivity
analysis, optimization, uncertainty analysis, variance-based sensitivity analysis.

I. INTRODUCTION
A. RENEWABLE ENERGY COMMUNITIES: OPERATION
AND CHALLENGES
The conventional energy systems are experiencing a transi-
tion towards more decentralized and decarbonized solutions.

The associate editor coordinating the review of this manuscript and

approving it for publication was F. R. Islam .

On the path towards this changing paradigm, new business
models and energy infrastructure ownership configurations
are emerging [1]. In this regard, the concept of Renewable
Energy Community (REC) is gaining increasing attention,
both in literature and in the European Union (EU) regula-
tory framework which sets the path for the energy transition
policies for 2030 and 2050. In particular, the latter defines
RECs as legal entities with the primary purpose of proving
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environmental, economic or social community benefits for its
members, shareholders, or the local areas where they operate
(EU Article 2(16) Recast Renewable Energy Directive). For
the continuous provision of power supply within the future
power grids, the RECs consisting of storage elements and
Renewable Energy Sources (RES) could be exploited [2], [3],
[4], [5]. For the optimal resource exploitation, the operation
of an REC necessitates the implementation of an Energy
Management System (EMS) in its control architecture [6].
In this regard, EMSs can support the reliable operation of
the RECs and maximize the penetration of RES making
use of forecasting information and the real-time monitor-
ing of the grid together with the knowledge of operational
constraints and the available storage and production capac-
ities [7], [8]. Within an REC, many small-scale distributed
energy resources generate energy surplus at the resource
side which could be exchanged among different local con-
sumers [9]. This energy exchange can potentially lead to the
self-sufficiency and grid independence of the RECs which is
referred to as the ‘‘community self-consumption’’ concept in
the literature [10]. In the scope of an REC, amulti-perspective
win-win situation can arise for both system operators and end
customers with the help of energy management mechanisms
and the controlled energy trading among different prosumers.
From an environmental perspective, it expands the use of
RES in power generation, resulting in lower greenhouse
gas emissions. From a technical and economic viewpoint,
local generation and consumption cut down power losses
while postponing or eliminating the need of transmission
and distribution infrastructure reinforcement. Furthermore,
the self-consumption capability of RECs involves the use of
different resources and helps diversifying centralized energy
investments. From a socioeconomic viewpoint, distributed
generation units within RECs expand the number of actors
who are involved in the power generation chain, which
were formerly concentrated in a small number of major
corporations [11].

Apart from the benefits listed above, self-consuming RECs
could potentially face some challenges. For instance, in the
case of RECs with high Photovoltaic (PV) generation and
low power demand, the generation excess might lead to the
reverse power flow from the Low Voltage (LV) towards the
Medium Voltage (MV) grid. According to studies [12], [13],
a substantial volume of reverse power flow can affect the
distribution feeder’s voltage profile and increase distribution
feeder voltages beyond the technical limits. In this regard, PV
generation curtailment is a common solution in practice to
avoid voltage violations. However, this leads to loss of energy
generation possibly during the hours of a day with highest
PV generation. Another solution would be the use of voltage
regulation devices such as on-load tap changers and step volt-
age regulators. The main disadvantage associated with such
devices is the significant increase in the mechanical stress
and the consequent maintenance costs of such devices [14].
Alternatively, reactive power control mechanisms of the PV
inverters could be another solution but the present utility

practices (e.g., based on IEEE 1547 and UL 1741) pose a
limit to this solution and only allow PVs to operate at a
unity power factor [15], [16]. Additionally, the life time of
PV inverters could be negatively impacted by such reactive
power control mechanisms [17]. As an alternative to curtail-
ment strategies, voltage regulation devices and reactive power
control mechanisms, Battery Energy Storage System (BESS)
units have proven to show potential in reducing the voltage
rise issues in distribution networks with high shares of PV
generation [18], [19]. In particular, BESS can store the excess
of PV generation for either maximising self consumption or,
in the case of need, injecting power back to the grid. This
is the core concept behind the so-called ‘‘virtual islanding’’
mechanismwhichminimizes the power exchange through the
MV/LV feeder and helps RECs become less dependant on the
main power grid, ultimately reducing the burden on it. Fur-
thermore, virtual islanding can save a considerable amount
of renewable energy, shave the peak power exchanges on the
MV/LV feeder, reduce power losses associated with power
transportation along different feeders and ultimately improve
the operation of the grid [20], [21]. This paper focuses on
the EMS for the virtual islanding of an REC by resorting to
a Distribution System Operator (DSO)-operated BESS. It is
noteworthy that a virtually islanded REC is not intended to
be totally isolated from the rest of the grid, as ‘‘islanding’’
refers here to the possibility of operating the REC without
any additional power flow to and from the main grid.

B. RELATED WORK ON EMS DEVELOPMENTS
The majority of the existing EMS developments and the
corresponding algorithms explicitly focus on the operation
of community microgrids in grid-connected and islanding
modes with different objective functions, such as BESS siz-
ing, operational cost minimization, service restoration, power
quality improvement, etc., and their corresponding opera-
tional and economical constraints, as extensively reviewed
in [22], [23], [24], [25], [26], and [27]. There are alsomultiob-
jective EMS developments in literature within and outside the
community microgrids context. Reference [28] for instance
presents a combined optimization for the sizing of a hybrid
energy storage system and an adaptive real-time EMS for
electric vehicle applications.

In the literature, few works regarding EMS developments
which are close to the context of the virtual islanding of the
present paper can be found. For example, [29] presents a
model for the optimal energy sharing in an energy community
but with the objective function of minimizing the global
energy cost rather than minimizing the energy exchange
with the grid. Yet closer to the virtual islanding concept of
the present work, [30] presents a microgrid multi-objective
EMS for the minimization of energy exchange with the
main grid while minimizing the operational cost and resistive
power losses and maximizing the potential islanding time,
though under the assumption of perfect load and generation
forecasts. Moreover, [31] proposes an EMS in the context
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of the management of REC energy storage systems for
load-generation balancing schemes, although focusing on the
minimization of energy from the grid specifically during high
load peak conditions. In particular, the proposed EMS in [31]
aims at peak load shaving and load shifting, considering PV
forecast updates.

As similar attempts for load-generation EMS develop-
ments but specifically for the residential sector applica-
tions and not REC ones, PV self-consumption optimization
has also been investigated in the literature, e.g., in [32].
In this area, some research work has also been dedicated to
propose different rule-based self-consumption mechanisms,
such as [33] that provides a rule-based strategy for the
self-consumption maximization of the energy generated by a
building integrated PV system through the usage of a house-
hold BESS unit.

C. UNCERTAINTY AND SENSITIVITY ANALYSIS IN EMS
APPLICATIONS
The inherent unpredictability and randomness of RES and
the stochastic behavior of consumers make their prediction
and the consequent management systems of RECs challeng-
ing [34]. EMS developments dealing with controlling mech-
anisms in RECs must address one important aspect before
reaching the readiness for applicable real-world settings,
namely the uncertainty of different parameters of the EMS
algorithms which may potentially affect them and impact the
consequent decision making of the energy management prob-
lem. In this regard, underestimation and overestimation of the
effect of EMS uncertain parameters can enforce additional
unnecessary burden on possible revisions of the EMS algo-
rithm. Therefore, the consideration of uncertainty sources for
EMS applications is of critical importance.

In the context of balancingmechanisms of RECs, a number
of research works have considered the intermittent behavior
of renewable sources and loads. For instance, [35], [36],
[37] provide some insights for the robust optimization of
microgrids considering the uncertainty in renewable gen-
eration and/or load by means of data-driven approaches.
However, although the volatility of RES and/or power load
are considered into the implemented optimal management
schemes, these studies do not perform a quantitative assess-
ment of the contribution each uncertainty source(s) play
in the performance of the supply-demand mechanisms of
these microgrids. In [38] both weather and load uncertainties
are taken into account for the optimal operation of RESs.
However, the forecasting and optimization models are two
separate parts and the exploration of the dynamic mechanism
between these is not considered, with the focus being mainly
towards the reduction of the forecast uncertainty rather than
the interaction between these two above-mentioned parts.
Similarly, [39] presents a management strategy for an EMS
based on hourly forecast updating and a rescheduling mech-
anism. Although [39] tries to account for generation and
load forecast errors, it does not consider the impact of each
of them on the scheduling set-points and purely focuses on

the reduction of the forecast error without considering the
potential effect of the forecast uncertainty.

It is noteworthy that a crucial tool to properly quantify the
impact of uncertainty sources on the EMS operation is rep-
resented by Sensitivity Analysis (SA). In relation to EMS—
and, more broadly, to power systems—, SA is mainly con-
ducted via ‘‘perturb-and-observe’’ approaches [40], whereby
various uncertainty sources (referred to as ‘‘inputs’’) are
changedwith small perturbations and their effect on a specific
quantity of interest (referred to as ‘‘output’’) is recorded.
As discussed in Section III, these methods fall into the
category of the so-called Local Sensitivity Analysis (LSA),
according to which the impact of the uncertainty of the
inputs on the output of interest is evaluated by varying one
input at a time, while holding the others at their nomi-
nal values, hence studying the behavior of the system only
around a specific baseline and neglecting the effect of pos-
sible interactions among inputs. As opposed to LSA, Global
Sensitivity Analysis (GSA) encompasses a set of SA meth-
ods that accomplish an exploration of the whole variability
of the inputs, without focusing on a given neighborhood
around a specific baseline, hence revealing to be more effec-
tive to study the effects of large uncertainties and combi-
nations thereof in complex power systems. To the best of
authors’ knowledge, no comprehensive SA studies have
been performed for EMS algorithms under an uncertainty
framework.

D. MOTIVATIONS AND CONTRIBUTIONS OF THE WORK
The present work aims at the EMS development for the virtual
islanding of an REC, which can be considered as an essential
step towards enhancing sustainability without affecting the
whole system’s efficiency and reliability and assuring the
end user’s comfort. Unlike the EMS developments reported
in Subsection I-B (which do not directly address REC vir-
tual islanding and/or neglect load/generation uncertainty),
the balancing mechanism to be investigated in this work
intends to manage an REC, despite the data scarcity and the
uncertainty associated with it, to maximize the local energy
consumption while minimizing the power exchange with the
MV grid. In this work, the REC under study stems from the
demonstration field trial investigated in the context of the EU
Horizon 2020 Platone project [41], which is characterized
by a high penetration level of distributed energy resources,
is equipped with a BESS and has the major goal of under-
going virtual islanding despite the scarcity of measurement
and historical data which naturally introduce a not negligible
level of uncertainty.

As regards the analysis of EMS applications under an
uncertainty framework, some attempts have been done in the
literature to conduct SA to study the effect of the intermittent
behavior of RES and assess their impact on the EMS opera-
tion, though mainly adopting LSA approaches. For instance,
in [42], LSA is applied to a model predictive-based optimiza-
tion model for a DC-coupled PV-storage system to investi-
gate the performance of the system operation in response of
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variations in the start time, duration and value of the time-
of-use rate as well as fluctuations in the flat PV sell back
price. Reference [43] presents an optimal scheduling model
for a microgrid based on the temperature dependant thermal
load modelling taking into account economical and technical
constraints. Furthermore, aMonte Carlo based risk analysis is
performed in order to rank the uncertainties in the thermal and
electrical loads and outside temperature with respect to their
impacts on the proposed model. On the other hand, GSA has
been applied in very few cases in relationship with the EMSs.
For instance, GSA is proposed in [44] to rank different inputs’
uncertainties with respect to their impact on the loadability
of an islanded microgrid. In particular, the objective function
of this study is to maximise the system load margin, i.e.,
the distance between existing and critical operating points.
However, unlike the current study in which the focus lies
on the virtual islanding of an REC, [44] focuses on power
flow calculations and the identification of the most influential
inputs affecting the variability of selected outputs of interest,
i.e., grid nodal powers and voltage magnitudes.

In light of the above discussion, the contributions of this
paper are explained hereafter.

• An EMSwith the supply-generation balancing objective
is developed to enable the virtual islanding for the REC
under study. The developed EMS, which consists of a
balancer and a forecaster module, is capable of man-
aging the REC in both measurement-and-steering and
day-ahead scheduling modes by using the Rule-Based
Balancing (RBB) and the Optimization (OPT) control
mechanisms. In this regard and considering the limited
data availability, the (near) real-time measurement and
forecast values at the Point of Common Coupling (PCC)
are used to enable the REC to experience the virtual
islanding. The (near) real-time measurements are used
as input of themeasurement-and-steeringmode to calcu-
late the (near) real-time setpoints for steering the BESS
based on the RBB mechanism in the form of a ‘‘if (con-
dition met), then (trigger the necessary action)’’. The
forecast values are used for calculating the day-ahead
schedule of the BESS, using either RBB or OPT mecha-
nisms. It should be stressed that the term (near) real-time
in this work refers to the data communication or transfer
using the state of the art communication protocols with
small latency or delay for the whole system.

• A thorough analysis of the sensitivity behavior of the
EMS algorithm for virtual islanding is conducted by
GSA. To this aim, a set of outputs of interest is first
carefully chosen, which encompass selected Key Per-
formance Indicators (KPIs) to reflect different aspects
concerning the EMS performance as well as relevant
quantities for the REC operator within the scope of the
virtual islanding scheme. Then, GSA is applied to inves-
tigate the impact of different sources of uncertainty (i.e.,
the variability of RES generation, loads and flexibility-
related parameters) on the selected set of outputs of

interest. In this regard, the benefits of the proposed
multi-output GSA are manifold, as it (1) allows the iden-
tification of the combined effect of the influential model
inputs with respect to the REC operator specific outputs,
(2) helps in the potential reduction of the dimensionality
(i.e., number of inputs) of the EMS algorithm (a feature
which is especially useful for EMS models with a large
number of uncertainty sources) and (3) guides in the
consequent revision/refinement of the developed EMS
model by focusing only on the influential inputs.

• The proposed multi-output GSA paves the path for its
reusability in other EMS applications under an uncer-
tainty framework. In fact, although the bindings of this
research work with the field trial define the boundaries
for the REC operating condition and the implemented
EMS, the application of the proposed multi-output GSA
is not restricted to the specific case study, but differ-
ent replicates of the developed EMS (or, alternatively,
different versions of it in other applications) might
be similarly investigated, with proper modifications (if
required) regarding the inputs/outputs to consider for the
given application at hand.

E. STRUCTURE OF THE PAPER
This paper is organized as follows: Section II describes the
structure of the EMS implemented in this work and describes
the modelling of two EMS modules, i.e. the forecaster and
the balancer; Section III describes the adopted workflow to
perform GSA and provides mathematical details about the
specific GSA method employed in this work (i.e., variance-
based SA); Section IV elaborates on how GSA is applied
specifically to study the performance of the two EMS mod-
ules; Sections V and VI present the results of the simulations
and the performance analysis via GSA carried out on the bal-
ancer and the forecaster modules, respectively; Section VII
concludes the paper.

II. DESCRIPTION OF THE DEVELOPED EMS
The EMS developed in this work has the objective of bal-
ancing generation and consumption within the REC under
study. Fig. 1 shows the interactions among different actors
of the developed EMS including the two modules, i.e., the
forecaster and the balancer. With respect to the forecaster,
the REC operator (in particular, the DSO in this specific
field trial) with the help of a weather data provider and
the Standard Load profile (SLP) is capable to forecast the
aggregated consumption (PFtc) and generation (PFtg) profiles
of the REC, respectively. In Subsection II-B, the forecasting
mechanism of the net active power exchange at the PCC
is better detailed. On the other hand, the balancer module
is responsible for minimizing the power exchange at the
PCC. The forecast (PFtei) or measurement (Ptei,meas) values
of the active power exchange at the PCC are provided to the
balancer, along with flexibility-related parameters, i.e., the
flexibility capacity, minimum, maximum, and initial values
of the State of Flexibility (SoF), and the maximum charging
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FIGURE 1. Schematic representation of the EMS.

and discharging power limits. In return, the balancer provides
the day-ahead schedule (day-ahead setpoints) or the (near)
real-time setpoint for the utilization of the flexibility during
the forecast and measurement time windows, respectively.
It should be stressed that ‘‘flexibility capacity’’ is intended
as the total amount of available flexibility, minimum and
maximum SoF represent the percentage-wise thresholds for
using it, and the initial SoF represents the initial condition
for steering it.

In short, the proposed EMS can monitor and steer the
flexibility in a (near) real-timemanner or provide a day-ahead
schedule for steering it. The operation modes of the EMS can
be categorized as:

• measurement-and-steering mode: steering of the flexi-
bility according to (near) real-time setpoints calculated
based on the (near) real-time measurements of the net
active power at the PCC of the LV REC with the MV
grid;

• scheduling mode: steering of the flexibility according to
a day-ahead schedule calculated based on the forecast
values of the net active power exchange at PCC.

For the (near) real-time steering of the flexibility, an RBB
control logic is implemented making use of the available
flexibility and (near) real-time measurements. As mentioned
in Subsection I-D, the data exchange in this mode is done
in a (near) real-time manner in compliance with the exist-
ing state of the art communication protocols. For providing
the day-ahead schedules, both the RBB and OPT control
mechanisms could be implemented. In Subsection II-C, these
control mechanisms are elaborated in more detail.

A. ASSUMPTIONS AND OPERATIONAL CONDITIONS
• For the REC management and with respect to the avail-
ability of the forecast data, 24-h was selected as the

reference length of the forecast and measurement time
windows and the corresponding input profiles required
respectively for the scheduling and measurement-and-
steering modes. This is in line with the interest of
the REC operator and the routine pattern of residential
power load which corresponds to 24-h. In addition, the
PV power generation forecast is available for the REC
operator only as a day-ahead profile and without any
updates during the 24-h forecast time window.

• For both the measurement-and-steering and schedul-
ing modes, steering of the flexibility is done based on
respectively the quarter-hourly (near) real-time mea-
surement and forecast values leading to 96 setpoints for
a day (T = 96).

• Based on the LV REC lines and ratings, the active power
losses are neglected. Furthermore and considering the
scarcity of measurement and forecast data, a single node
approach is applied for the aggregation of renewable
generation and load consumption within the REC under
study [41].

• The main source of flexibility in the field trial and in
the REC under study is a DSO-operated BESS. Other
flexibility sources such as privately-owned storage units,
heat pumps, etc. are out of the scope of the current
study and will be investigated in future studies. Under
the premise that all of the REC’s renewable generating
units are PV systems (with a total installed capacity of
300 kWp), this study focuses on the EMS function that
offers day-ahead scheduling for the community BESS
unit [41]. To keep the generality of the mathematical
modelling though, the terminology ‘‘Flexibility’’ is used
during the rest of this paper with a total capacity of
Flexcap = 777 kWh. It is noteworthy that the field trial
focuses on the feasibility of the storage coordination for
energy communities, whereas regulatory and business
aspects thereof are not considered.

• Based on the field testings, no grid code deviations such
as violations of nodal voltage and power line thermal
constraints were observed by steering the BESS with the
maximum charging and discharging powers.

• The focus of this virtual islanding study is the
demand-generation balance and the minimization of
active power exchange at the PCC for the REC. Voltage
regulation, cost minimization, profit maximization, and
other operational and economical objective functions are
out of the scope of this study. Furthermore, the gover-
nance structure of the RECs and regulatory constraints
associated with it are not the focus of the field trial and
hence not considered in this paper.

B. FORECASTER
For the REC under study, the REC operator uses SLPs [45],
as commonly done by energy suppliers when a recorded
power measurement does not exist for electrical users. These
SLPs replace the non-existent load profile curve of end
customers with a reasonably precise estimate of energy

VOLUME 11, 2023 4135



A. Ahmadifar et al.: Development of an EMS for a REC and Performance Analysis via GSA

consumption with a quarter of an hour time resolution. They
are representative load profiles for different end customer
categories (residential, agricultural, and commercial), each of
which may be considered to have comparable consumption
patterns. With respect to the total generation of the RES,
day-ahead generation profiles are delivered to the forecast
module. A contractual agreement between the weather data
provider and the REC operator is arranged to forecast the PV
production of PVs installed within the REC [46].

Neglecting the power line losses, the net active power
exchange at the PCC for each quarter-hourly time instance t ,
with t ∈ {00:00, 00:15, 00:30, . . . , 23:45}, could be calculated
as:

PtFtei = PtFtc − PtFtg (1)

where PtFtei, P
t
Ftc, and P

t
Ftg refer to the forecast profiles of the

net active power exchange at PCC, total consumption, and
total generation, respectively, at the time instance t .

1) FORECAST CALIBRATION
As seen in (1), the forecast of the active power exchange at
the PCC is calculated based on the total consumption (PFtc)
and generation (PFtg) forecasts within the REC. Since the
active power measurement data Ptei,meas are available, the
Root Mean Square Error (RMSE) of the forecast can be used
as an indicator of the forecast accuracy and calculated as:

RMSEdPFtei =

√√√√ 1
T

T∑
t=1

(
PtFtei − Pttei,meas

)2
(2)

As net active power measurements at the PCC are available,
the total generation and consumption forecast profiles are
calibrated to improve the net power forecast profile. The
calibration process starts with computing different forecast
profiles for the total consumption and generation as:{

PtF ′tc = mdtcP
t
Ftc + bdtc

PtF ′tg = mdtgP
t
Ftg + bdtg

(3)

where d is the index representing the operation days in April
(01.04.2021 till 27.04.2021 excluding 07, 17, 18, 23 and
24.04.2021). Furthermore, mdtc, b

d
tc, m

d
tg, and b

d
tg are the scal-

ing factors used to create different generation and consump-
tion forecast profiles (PtF ′tc and PtF ′tg) varying in terms of
magnitude and time. In absence of more detailed information
about the reference profiles of generation and consumption,
a uniform Probability Density Function (PDF) is chosen
to characterize the uncertainty of the four scaling factors.
The PDFs considered for the scaling factors are reported in
Table 1, whereby the variation ranges of mtc, btc, mtg, and
btg are selected based on plausible minimum and maximum
values of the total generation and consumption profiles (PtF ′tc
and PtF ′tg). In particular, the installed capacity of the PV
panels within REC as well as minimum and maximum mea-
sured values of Ptei,meas during day and night hours are used
to extract information regarding the trends of generation and

TABLE 1. Scaling factors and respective PDFs for the forecaster
calibration.

consumption profiles and their corresponding peak values.
Once the scaled profiles of PtF ′tc and P

t
F ′tg introduced in (3)

are calculated, the scaled forecast of the net power at the
PCC is calculated similar to (1). For the selection of the
best scaled forecast of the net power profile, the one with
the smallest RMSE is chosen. Such ‘‘best’’ scaled forecast
profile is referred to as the calibrated forecast and denoted as
(PdFtei,new). Part 1 of the supplementary material provides an
insight for the adopted forecast calibration scheme.

C. BALANCER
In order to balance out the generation and consumption and
minimize the active power exchange at the PCC, the bal-
ancer requires necessary information about the flexibility-
related parameters. Furthermore, the net active power at the
PCC is provided as input profile to the balancer for both
measurement-and-steering and the day-ahead scheduling of
the BESS. For the former case, in each instance of time,
the balancer is provided with the active power measure-
ment at the PCC, whereas for the latter case, the net active
power forecast for the 24-hour scheduling horizon is pro-
vided to the balancer. In order to determine the setpoints for
the measurement-and-steering mode, the RBB mechanism is
applied, whereas for defining the day-ahead schedule, both
the RBB and OPT mechanisms can be applied. Both balanc-
ing mechanisms are described hereafter.

1) OPT CONTROL MECHANISM
In order to minimize the exchange of power at the PCC
for each instance of time t , both the import (Ptti) and the
export (Ptte) of power for the planning horizon (24 hours)
should be minimized. This is mathematically formulated by
the objective function in (4) together with the constraints in
(5)–(11).

min
T∑
t=1

(
Ptte + Ptti

)
(4)

subject to :

Ptte,P
t
ti,P

t
flex,dis,P

t
flex,ch ≥ 0 (5)

PtFtg + x tdisP
t
flex,dis + ytiP

t
ti = PtFtc + x tchP

t
flex,ch + yteP

t
te
(6){

0 ⩽ x tdis + x tch ⩽ 1 ∀{x tdis, x
t
ch} ∈ {0, 1}

0 ⩽ yti + yte ⩽ 1 ∀{yti , y
t
e} ∈ {0, 1}

(7)

SoF t+1
= SoF t − x tdis

Ptflex,dis
Flexcap

+ x tch
Ptflex,ch
Flexcap

1t (8)
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{
0 ⩽ Ptflex,dis ⩽ Pdisflex,max
0 ⩽ Ptflex,ch ⩽ Pchflex,max

(9)

mindSoF ⩽ SoF t ⩽ maxdSoF (10)

SoF t=0
= initialdSoF (11)

The constraint in (5) indicates that import and export pow-
ers as well as the charging (Ptflex,ch) and discharging (P

t
flex,dis)

powers are non-negative variables. The constraint in (6)
assures the power balance between the generation and con-
sumption: the left-side terms represent the total generation
forecast (PtFtg), discharging of the flexibility (x tdisP

t
flex,dis),

total import (ytiP
t
ti) powers, while the right-side terms rep-

resent the total consumption forecast (PtFtc), charging of the
fleixbility (x tchP

t
flex,ch), and total export (yteP

t
te) powers from

the REC. Additionally, the discrete variables of x tdis, x
t
ch and

yti , y
t
e ensure respectively that for each t , the simultaneous

discharging/charging of the flexibility and import/export of
power to/from the REC will not occur; this is formulated
mathematically in (7). The flexibility-related constraints are
formulated in (8)–(11). The dynamic representation for the
state of flexibility in successive time intervals is reported in
(8) where the variables SoF t and SoF t+1 refer to the states
of flexibility in two consecutive time instances considering
the quarter hourly time difference of 1t . The parameters
of maximum charging (Pchflex,max) and discharing (Pdisflex,max)
power limits in (9) define the power boundaries for the flexi-
bility charging/discharging while the parameters of minimum
(mindSoF ) and maximum (maxdSoF ) allowable states of flexibil-
ity in (10) set the permissible range for the SoF t . Finally, the
initial state of flexibility at the beginning of the optimization
time (t = 0) is dictated by the initialdSoF paramater and
represented in (11). It is noteworthy that the flexibility-related
parameters of initialdSoF , min

d
SoF , and max

d
SoF are all reported

in percentage of the total flexibility capacity Flexcap; e.g., a
0% value of SoF shows full availability of the total capacity.
Once all the flexibility-related parameters in addition to the
forecast profiles are known for the optimization model, the
optimal values of all the discrete and continuous variables are
calculated based on the objective function (4).

In order to simplify the model and adapt it based on the
inputs provided to the balancer, the import/export powers
and the flexibility charging/discharging powers reported in
(5)–(9) are substituted respectively by Pttei and P

t
flex in (12),

with Pttei and P
t
flex being respectively the net active power

exchange at the PCC and the flexibility setpoint for each t .{
Pttei = Ptti − Ptte
Ptflex = Ptflex,dis − Ptflex,ch

(12)

By using (1) and the variables introduced in (12), the math-
ematical description of the objective function (4) and the
following constraints (5)–(9) can be reformulated as:

min
T∑
t=1

(
Pttei

)2 (13)

subject to the permissible range and initial constraints of state
of flexibility reported in (10) and (11) and the following
constraints:

PtFtei = Ptflex + Pttei (14)

−Pchflex,max ⩽ Ptflex ⩽ Pdisflex,max (15)

SoF t+1
= SoF t −

Ptflex
Flexcap

1t (16)

In particular, the power balance constraint for the REC is
stated in (14), whereas the power boundary constraint for the
maximum charging and discharging powers and the dynamic
representation of the state of flexibility are formulated in
(15) and (16), respectively. Knowing the flexibility-related
parameters and the forecast profile (PtFtei), the optimal values
of Pttei, P

t
flex , and SoF

t variables of the OPT mechanism are
calculated based on the objective function (13).

2) RBB CONTROL MECHANSIM
The rule-basedmechanism, following the ‘‘if (conditionmet),
then (trigger the necessary action)’’ logic, balances out the
overall consumption and generation within the REC while
trying to avoid any power exchange in terms of import and
export of power to and from the REC. As the positive and
negative values of net active power at PCC (Pttei) in (12)
indicate respectively a surplus and deficit of power within
the REC, the discharging and charging mechanisms of the
flexibility can be triggered according to (17) to avoid the
import and export of power to and out of the REC:

Ptflex + Pttei = 0 (17)

Unlike theOPTmechanism, thePttei in (17) is not a variable
and is a priori known for triggering the steering of flexibility.
Basically, the charging and discharging mechanisms of RBB
are purely based on the known value of Pttei at each instance
of time t and the available amount of flexibility. In other
words, the flexibility is charged or discharged irrespective of
future forecast and measurement values. Obviously, to ensure
that the flexibility limitations are taken into consideration,
the (dis)charging power constraint in (15), the dynamic rep-
resentation of the state of flexibility constraint in (16) and
the permissible range constraint for the state of flexibility in
(10) remain valid for the RBB mechanism. In this regard and
according to (17), thePtflex is calculated as the opposite sign of
Pttei as long as the corresponding calculated state of flexibility
based on (16) remains in the permissible range reported in
(10). In other words, depending on the known value of Pttei,
the flexibility is charged or discharged even extensively in
case of high absolute values of Pttei till the power boundaries
in (15) or SoF boundaries in (16) are reached and the flexi-
bility is fully charged or discharged.

With respect to the application of RBB control mechanism
for the operation modes of the developed EMS, the RBB con-
trol mechanism is the steering logic behind the measurement-
and-steering mode of the EMS. For this operation mode, the
Pttei,measmeasurement values are first provided to the balancer
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(substituting the Pttei in (17)). Afterwards, according to the
RBB control logic (17) and the constraints (10),(15), and (16),
the flexibility is steered in a (near) real-timemanner by setting
the Ptflex setpoints following the RBB logic to minimize the
power exchange at the MV/LV feeder. On the other hand,
the RBB control logic can also be applied for the day-ahead
scheduling mode of the EMS apart from the OPT control
mechanism described in Subsection II-C1. In this regard,
instead of the Pttei in (17), the day-ahead forecast profile of
PtFtei is first provided to the balancer; then, by following the
RBB control logic, the flexibility setpoints are calculated in
the form of a day-ahead schedule.

III. SENSITIVITY ANALYSIS
In this work, GSA is adopted to assess the impact of different
sources of uncertainty on the performance of the developed
EMS. In this section some insights are provided regarding
the general GSA methodology together with details of the
mathematical formulation of variance-based SA, which is
applied in this study.

A. PRELIMINARY DEFINITIONS
SA can be defined as ‘‘the study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input’’ [47].
In particular the inputs are the model elements of inter-
est (e.g., model equation parameters, initial and boundary
conditions, time series, etc.) which are affected by some
uncertainty due e.g. to inherent randomness, incorrect/partial
knowledge, etc. The set of all possible combinations of
the inputs’ values is called input space. The output is the
model response of concern obtained by running the model
at any specific input value combination. Various techniques
are available in the literature to perform SA and are mainly
classified into local and global SA approaches [40]. In LSA
methods (e.g., derivative-based techniques) the inputs’ uncer-
tainty is taken into account around a given baseline (e.g., the
operational/nominal/optimal point) whereas GSA methods
(mostly based on Monte Carlo simulations) aim at studying
the full range of inputs’ variability hence exploring the whole
input space. It is noteworthy that LSAmethods might turn out
to be inefficient to fully investigate the overall effect of the
model inputs’ uncertainties if themodel at hand features a cer-
tain degree of nonlinearities (e.g., interactive effects among
inputs) and the inputs are affected by finite (also potentially
large) uncertainty. To effectively address these circumstances
GSA is commonly the suggested choice.

B. METHODOLOGY OF GLOBAL SENSITIVITY ANALYSIS
In this study, the general methodology for running GSA is
adopted whose different steps are briefly summarized here-
after for the sake of convenience. For more details, the reader
is referred to [40].

• The purpose of the analysis is defined beforehand.
• The simulation model to adopt is selected.

• The model output(s) of interest is (are) considered
according to the analysis goals.

• The model inputs, which might have potential influence
on the selected output, are identified. The model ele-
ments which, though entering the model definition, are
not subject to SA, remain fixed at their nominal values.

• The uncertainty of the selected model inputs are char-
acterized, e.g., in terms of PDF describing the analyst’s
degree of knowledge about the inputs’ variability.

• The proper SAmethod to adopt for answering the analy-
sis purpose is selected according to considerations such
as computational cost to run the model, prior knowledge
of the model, PDF type of the inputs, presence of corre-
lation among inputs, etc.

• The N -dimensional input sample of the Monte Carlo
simulation is generated by drawing from the input space
a set of N values for each input according to specific
sampling strategies (e.g., random or quasi-random num-
bers, etc.)

• The model response is collected by evaluating the model
at the values of inputs’ combinations specified by the
input sample of the Monte Carlo simulation.

• The uncertainty analysis can be carried out by charac-
terizing the output uncertainty via specific metrics of
interest, such as mean, variance, confidence intervals,
percentiles etc.

• The sensitivity indices of the selected SA method are
extracted to understand the ‘‘origins’’ of the model out-
put uncertainty. Thewhole analysis might be further iter-
ated, e.g., to refine the inputs’ uncertainty, to consider
different inputs, etc.

• Graphical tools are utilized to provide an effective visu-
alization of the results (e.g., via heatmaps, pie charts
etc.) as well as to complement the information derived
from the performed SA (e.g., via scatter plots, contour
plots, coordinate plots, etc.)

C. VARIANCE-BASED SENSITIVITY ANALYSIS:
MATHEMATICAL AND CONCEPTUAL FRAMEWORK
In this work, out of the different available GSA methods, the
choice is made to adopt variance-based SA. Variance-based
SA methods are widely considered as the ‘‘gold standard’’ to
effectively study the effect of inputs’ uncertainty, not only for
their capability to flexibly deal with nonlinearities and large
inputs’ uncertainties but also for their model-free property,
i.e., their ability to be applied in a trustworthy manner with-
out requiring prior knowledge/information about the model
properties (e.g., in the case of black-box models).

Consider a generic model Y = g(X1,X2, . . . ,XK ),
whereby Y is the model output (scalar for convenience)
and X1,X2, . . . ,XK are the K model inputs, which are
assumed to be independent random variables whose uncer-
tainty is accounted for by specific PDFs. Variance-based
SA aims at decomposing the total output variance Var(Y )
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into contributions of individual inputs and combinations
thereof [48]:

Var(Y ) =

∑
i

Vari +
∑
i

∑
i<j

Varij + . . . + Varij...K (18)

where

Vari = VarXi (EXXX∼i (Y |Xi)) (19)

Varij = VarXij(EXXX∼ij (Y |Xi,Xj))+

− VarXi (EXXX∼i(Y |Xi)) − VarXj (EXXX∼j (Y |Xj)) (20)

and so on for higher order terms.
In particular the inner operator of (19), i.e., EXXX∼i (Y |Xi),

is the expected value E of Y taken over XXX∼i, i.e., all possible
values of the inputs except Xi which is kept fixed, whereas
the outside operator Var is the variance taken over all pos-
sible values of Xi. Accordingly, the term VarXi (EXXX∼i(Y |Xi))
describes the expected reduction of output variance that
would be obtained if Xi could be fixed at its ‘‘true’’ (albeit
unknown) value. Intuitively, if VarXi (EXXX∼i (Y |Xi)) is high,
Xi is an important input in influencing Var(Y ). As such,
the quantity VarXi (EXXX∼i(Y |Xi)) may assume values ranging
from 0 (when fixing Xi at its ‘‘true’’ value does not cause any
output variance reduction) to Var(Y ) (when fixing Xi at its
‘‘true’’ value fully determines the output variance Var(Y )).
This is due to the law of total variance:

EXi (VarXXX∼i(Y |Xi)) + VarXi (EXXX∼i (Y |Xi)) = Var(Y ) (21)

where the term EXi (VarXXX∼i (Y |Xi)) can be interpreted as the
residual output variance that would be achieved if Xi were
fixed at its ‘‘true’’ value: EXi (VarXXX∼i (Y |Xi)) would be hence
small if Xi is influential.

By normalizing VarXi (EXXX∼i (Y |Xi)) by the total output vari-
ance Var(Y ), the so-called first order Sobol’ index of input Xi
is obtained:

Si =
VarXi (EXXX∼i(Y |Xi))

Var(Y )
Si ∈ [0, 1] (22)

whereby Si assumes the meaning of the fraction of model
output variance Var(Y ) due to Xi alone, i.e., the individual
contribution (‘‘at the first order’’) of Xi to the total output
uncertainty.

Similarly, the term Varij of (20) accounts for the variance
contribution to Var(Y ) due to the interactive effect of the
inputs Xi and Xj, hence encapsulating the portion of model
response which cannot be written simply as a superposi-
tion of the separate effects due to Xi and Xj. Intuitively,
Varij ̸= 0 if VarXij (EXXX∼ij (Y |Xi,Xj)) ̸= VarXi (EXXX∼i(Y |Xi)) +

VarXj (EXXX∼j (Y |Xj)). By normalizing Varij by the total output
variance Var(Y ), the so-called second order Sobol’ index is
obtained:

Sij =
Varij
Var(Y )

(23)

whereby Sij assumes the meaning of the fraction of model
output variance Var(Y ) due to the combined effect between
Xi and Xj after removing their first order effects Si and Sj.

Similar formulas hold for higher order indices up to the K -th
interaction order.

By normalizing (18) by the total output variance Var(Y ),
the following relationship can be obtained:∑

i

Si +
∑
i

∑
i<j

Sij + · · · + Sij...K = 1 (24)

If the model is additive, i.e., it does not contain interactive
effects among inputs, all terms of (24) higher than the first
order are null and

∑K
i Si = 1. If interactions are present, the

quantity 1 −
∑K

i Si is an indicator of the overall amount of
interactions among inputs.

Equation (24) can be seen as a normalized decomposition
of the total output variance with as many as 2K − 1 terms.
However, in practice, to avoid calculating all higher order
terms, the so-called total Sobol’ index for input Xi is instead
computed [49]:

Ti =
EXXX∼i(VarXi (Y |XXX∼i))

Var(Y )
= 1 −

VarXXX∼i (EXi (Y |XXX∼i))
Var(Y )

(25)

where VarXXX∼i (EXi (Y |XXX∼i)) represents the variance reduction
that would be obtained, on average, if all inputs except Xi
could be fixed at their ‘‘true’’ values. On the other hand, the
residual output variance EXXX∼i (VarXi (Y |XXX∼i)) represents the
contribution to the output variance due to all terms of any
order—in the decomposition formula of (24)—that include
Xi. Therefore, Ti accounts for the overall contribution of input
Xi, including not only its first-order effect, but also all the
other (higher-order) effects due to possible interactions with
other inputs. For example, for a model with K = 3 inputs, the
total Sobol’ index for inputXi reads T1 = S1+S12+S13+S123.
In general,

∑K
i Ti ≥ 1. Furthermore, Ti − Si signalizes how

much the input Xi is involved in interactions with other model
inputs: a high difference indicates that Xi owns an important
interactive role in the model.

Sampling-based strategies exist for estimating Sobol’
indices based on Monte Carlo simulation, i.e., starting from
a set of finite combinations of input values and the corre-
sponding model responses. To generate the input sample,
various strategies may be employed and common practice is
using ‘‘quasi-random’’ numbers [50], often preferred for their
space-filling properties and enhanced numerical convergence
rates (hence being particularly suitable for the numerical
estimation of Sobol’ indices [51]).

It is worth mentioning that the set of all the Sis together
with all the Tis supplies the analyst with a comprehen-
sive ‘‘big picture’’ of the model sensitivity pattern; higher-
order Sobol’ indices may be selectively computed only if
specific model properties (such as interactions among spe-
cific couples of inputs) should undergo further investigation.
As regards the computational cost, the full set of first order
and total Sobol’ indices can be obtained with N (K + 2)
model evaluations (with N usually varying between a few
hundreds to one thousand), although alternative techniques
are available to reduce the computational cost.
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The two sensitivity measures Si and Ti allow to answer
specific research questions or analysis purposes [40], [47].
In particular, Si provides the answer to the question: ‘‘What
output variance reduction would be expected if uncertainty in
Xi is removed?’’. Intuitively, the model inputs most contribut-
ing to the output uncertainty are those deserving more ‘‘atten-
tion’’, e.g., by collecting more ‘‘dedicated’’ measurements
or additional information to decrease their uncertainty and
ultimately reducing the model output variability. On the other
hand, Ti supplies the answer to the question: ‘‘Which model
inputs could be fixed anywhere in their variation range with-
out affecting the output variance?’’. In other words, Ti allows
detecting non-influential inputs that do not have significant
importance on the output uncertainty (neither alone nor in
synergy with other inputs). It can be proven that a necessary
and sufficient condition for an input to be non-influential is
Ti ≈ 0: an almost null value of Ti hence signalizes that
input Xi is inconsequential and can be fixed at any convenient
value within their variation range (without appreciably losing
information) and possibly eliminated from later analyses or to
simplify the model structure.

IV. SENSITIVITY ANALYSIS FOR THE DEVELOPED EMS
In order to analyze the impact of the different uncertainty
sources on the performance of the EMS, the GSA method-
ology summarized in Subsection III-B is adopted. Specifi-
cally, the inputs and outputs chosen for the two modules of
the EMS, i.e., the balancer and the forecaster, are described
hereafter.

A. SENSITIVITY ANALYSIS OF THE BALANCER
1) DEFINITION OF THE OUTPUTS OF THE BALANCER
In order to quantify the performance of the balancer with
respect to its specific objective function, different KPIs are
defined as SA outputs of interest, whose uncertainty is inves-
tigated with a multi-output SA. The selected KPIs are math-
ematically formulated in (26)–(30) and represent the relative
improvement (in percentage terms) accomplished by imple-
menting the balancing mechanism (subscript w) described in
Subsection II-C with respect to the case without it (subscript
wo). In particular, RMSEdbal measures the relative improve-
ment of the RMSE of the active power exchange at the PCC
for day d with respect to its desired value Ptei,ref . On the other
hand, MAXdPte, MAX

d
Pti, AVG

d
Pte and AVG

d
Pti measure the rel-

ative improvement in, respectively, the maximum exported,
maximum imported, average exported, and average imported
active power to and from the REC.

RMSEdbal =

(
1 −

RMSEdPtei,w
RMSEdPtei,wo

)
× 100 (26)

MAXdPte =

(
1 −

Pd,t
te,max,w

Pd,t
te,max,wo

)
× 100 (27)

MAXdPti =

(
1 −

Pd,t
ti,min,w

Pd,t
ti,min,wo

)
× 100 (28)

AVGdPte =

(
1 −

Pd,t
te,avg,w

Pd,t
te,avg,wo

)
× 100 (29)

AVGdPti =

(
1 −

Pd,t
ti,avg,w

Pd,t
ti,avg,wo

)
× 100 (30)

In (26), to capture the relative improvements in comparison to
the baseline case without balancing mechanism, RMSEdPtei,w
and RMSEdPtei,wo are defined as follows:

RMSEdPtei,w =

√√√√ 1
T

T∑
t=1

(
Pttei,w − Ptei,ref

)2
(31)

RMSEdPtei,wo =

√√√√ 1
T

T∑
t=1

(
Pttei,wo − Ptei,ref

)2
(32)

where Pttei,wo and P
t
tei,w refer to the net active power exchange

at the PCC with and without the balancer, respectively, and
could be calculated based on (33) and (34):

Pttei,wo = Pttei,meas (33)

Pttei,w = Pttei,meas − Ptflex (34)

Similarly, for (27)–(30), the respective KPIs can be calculated
using (33) and (34). In other words, for the calculation of the
denominators in the second terms in the parentheses, (33)
is used for calculating the maximum exported, maximum
imported, average exported, and average imported active
power to and from RECwithout the balancer mechanism. For
the calculation of the numerators, (34) is used to account for
the above-mentioned powers with the balancing mechanisms.
For instance, the term Pd,t

ti,max,w in (27) refers to the maximum
imported power (Pte in kW) for day d at time instance t with
(after) the use of the balancingmechanism and is calculated in
the same manner as the maximum of the net power Ptei using
(34). In short, (33) and (34) can be applied to net, import, and
export powers.

It is noteworthy that the above-mentioned KPIs are in line
with the virtual islanding mechanism and the correspond-
ing operational conditions described in Subsection II-A and
can provide the REC operator with unit-less indicators with
respect to the baseline case (i.e., when the virtual islanding
is not applied). The information derived from such KPIs can
help the REC operator capture the different aspects associated
with the MV/LV power exchange at the PCC for the REC
under study in a comprehensive manner, i.e., investigating
multiple aspects associated with the export, import and net
powers at the PCC. In light of this, the target reference value
for the net power exchangePtei,ref is purposefully highlighted
in (31) and (32) in relation to typical contractual agreements,
service requirements, and potential emerging grid codes for
virtual islanding. For the REC under study in this research
work, the target value is considered to be Ptei,ref = 0 kW.
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Furthermore, should the REC operator be willing to use
a total KPI for analyzing the overall performance of the
balancer for a specific day d , a linear combination of the five
different metrics listed in (26)–(30) can be built as:

totaldKPI = Krmse · RMSEdbal + Kmax,exp ·MAXdPte
+ Kmax,imp ·MAXdPti + Kavg,exp · AVGdPte
+ Kavg,imp · AVGdPti (35)

The weighting factors of each KPI in (35) areKrmse,Kmax,exp,
Kmax,exp, Kavg,exp, and Kavg,imp and describe the interest
of the REC operator for the performance of the balancer
with respect to the RMSEdbal , MAX

d
Pte, MAX

d
Pti, AVG

d
Pte, and

AVGdPti, respectively. In order to keep the consistency with the
previously defined KPIs, (36) is used to limit the maximum
possible value of totaldKPI to 100%:

Krmse + Kmax,exp + Kmax,imp + Kavg,exp + Kavg,imp = 1

(36)

It is noteworthy that the values of the weighting factors and
the corresponding total KPI are subject to the interest of the
REC operator. In this study, totaldKPI is not the key indicator
and therefore the different KPIs are weighted equally just to
provide the REC operator with a single indicator if desired.
In particular, positive values of the KPIs listed in (26)–(30)
and (35) show improvements up to a maximum value of
100% indicating the best performance. On the other hand,
negative values for these six KPIs signalize worsening of the
performance after the implementation of the balancer with
respect to the baseline case, i.e., no implementation of the
balancer.

In addition to the above-mentioned fiveKPIs listed in (26)–
(30), it might be of interest for the REC operator to investigate
the uncertainty of the BESS final SoF (finaldSoF ) after the
implementation of the balancing mechanism and realize what
inputs mostly affect its variability. Therefore, finaldSoF is also
considered as output of interest for the balancer SA.

2) SELECTION OF THE UNCERTAIN INPUTS OF THE
BALANCER
As described in Section II, the performance of the balancer
is potentially affected by the flexibility-related parameters
such as the flexibility capacity, minimum and maximum SoF,
initial SoF, maximum (dis)charging power capacities as well
as Ptei profile which could inherently be affected by the inter-
mittent weather and customer behaviors if the forecast profile
is adopted for creating the day-ahead schedule. Hence, in this
study, the inputs subject to SA—which, with their variability,
may cause uncertainty in the expected results of the balancing
mechanism with respect to the virtual islanding objective—
are the initial initialdSoF , the minimum mindSoF and maximum
maxdSoF allowable SoFs (characterized by a continuous PDF),
together with foresel which is a discrete (integer-valued)
input, assuming only three discrete values (i.e., 0, 1, 2) and
acts as a ‘‘trigger’’ to select the forecast (PdFtei), the calibrated
forecast (PdFtei,new), and the measurement (Pdtei,meas) profiles,

respectively. The inclusion of this discrete input allows for
evaluating how sensitive the output is to the choice of utilizing
the three different forecasts by simultaneously considering
also the other three sources of uncertainty (initialdSoF ,min

d
SoF ,

andmaxdSoF ). The PDFs of the selected inputs and the outputs
of interest for the balancer SA are reported in Table 2. On the
other hand, other inputs such as the scheduling horizon (24
hour), the energy-wise amount of total flexibility capacity
and the maximum (dis)charging power ratings are considered
to be known without uncertainty (777 kWh and 300kW,
respectively) and are not subject to SA. The results of con-
ducting variance-based SA to investigate the balancer inputs’
importance are reported in Subsection V-B.

B. SENSITIVITY ANALYSIS OF THE FORECASTER
1) DEFINITION OF THE OUTPUT OF THE FORECASTER
The forecast error reported in (2) is the indicator of the
performance of the forecast module with respect to achiev-
ing an accurate net power exchange at the PCC. Therefore,
for conducting SA on the forecaster module, RMSEdPFtei is
selected as output of the interest.

2) SELECTION OF THE UNCERTAIN INPUTS OF THE
FORECASTER
As seen in (1), the forecast of the active power exchange at
the PCC is calculated based on the total consumption (PFtc)
and generation (PFtg) forecasts within the REC. As both types
of forecast are affected by a certain amount of uncertainty
related to their accuracy, it is first necessary to investigate
their effect on the total power exchange forecast. To quantita-
tively analyse the impact of PFtc and PFtg on the RMSEdPFtei,
a set of random profiles (PtF ′′

tc
and PtF ′′

tg
) is produced according

to (37) with the help of the scaling factors ntc and ntg charac-
terized by the PDFs reported in column 2 of Table 3 (defined
according to [52] and [53]). Afterwards, by subtracting PtF ′′

tc
from PtF ′′

tg
, the corresponding sets of PtF ′′tei profiles could be

generated for which the output of interest reported in column
3 of Table 3 could be calculatedP

t
F ′′
tc

= ndtcP
t
Ftc

PtF ′′
tg

= ndtgP
t
Ftg

(37)

The results of conducting variance-based SA to investigate
the forecaster inputs’ importance are reported in Subsec-
tion VI-B.

V. RESULTS FOR THE BALANCER
Knowing the EMS structure described in Section II and
the operation boundaries associated with it (Section II-A),
the simulation results for the developed balancer module
of the EMS are reported hereafter. In particular, the results
of the balancer module for the measurement-and-steering
and scheduling modes are examined in Subsection V-A1
and Subsection V-A2, respectively. This is then followed by
the complete SA analysis of the balancer performance with
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TABLE 2. Summary of the selected model inputs and outputs for the balancer SA, with characterization of the inputs’ uncertainty.

TABLE 3. Summary of the selected model inputs and output for the
forecaster SA, with characterization of the inputs’ uncertainty.

respect to the uncertainty in the different inputs. The OPT
optimization problem is solved with IPOPT [54] by interfac-
ing it with Pyomo 5.7 [55] using a Lenovo ThinkPad T470s
computer with Intel i7-7500 CPU, 2.90 GHz and 16 GB
RAM. Furthermore and according to the data availability, the
simulation results are represented for the selected operational
days in April.

A. BALANCER PERFORMANCE
In this Section, the RBB andOPTmechanisms of the balancer
are analyzed. First, in Subsection V-A1 the performance
of the balancer is investigated when the measured profile is
used as the input profile. In Subsection V-A2, the balancer’s
performance based on the provided forecast input data for
creating the day-ahead schedule of the flexibility assets is
examined considering the input profile of PdFtei provided to
the balancer module by the forecaster.

1) BALANCER PERFORMANCE WITH MEASURED INPUT
PROFILE
In this Section, the performance of the balancer is investi-
gated by using the measurement profile of Ptei,meas for both
RBB and OPT control mechanisms. Obviously, analyzing the
performance of RBB logic with Ptei,meas is an indicator of the
EMS’s performance for the measurement-and-steering mode.

Fig. 2 shows the performance of the RBB and OPT mech-
anisms for two selected days: on the left (04.04.2021), the
total renewable generation is relatively low considering the
total installed capacity of 300 kWp, whereas on the right
(05.04.2021), the total renewable generation is relatively
high. For the simulation results presented in this figure, the
flexibility-related input parameters are fixed to the following
values: initialdSoF = 52.5%, mindSoF = 5%, maxdSoF = 95%.
As observed in Fig. 2, the RBB mechanism is able to min-
imise the active power exchange for a certain amount of time
per day till the flexibility threshold in eithermindSoF ormaxdSoF
is reached. In other words and for the field trial case, the
BESS is extensively discharged or charged till its boundaries
are reached. After reaching these boundary conditions, the
remaining power should be imported and exported, respec-
tively. On the other hand, the OPT mechanism satisfactorily
manages to minimize the active power exchange at the PCC
considering the flexibility availability and its restrictions.
Quantitatively, with respect to the performance indicators

RMSEdbal ,Max
d
Pte,Max

d
Pti, AVG

d
Pte, AVG

d
Pti, total

d
KPI , the OPT

mechanism is able to respectively shave the peak export
and import power profiles, reduce their average values, and
overall reach theminimization objective forPtei in a relatively
better manner compared to RBB. On 04.04.2021 for instance,
the above-mentioned KPIs have typically higher values for
OPT than for RBB (i.e., 73.5%, 72.7%, 100%, 87.7%, 100%
for OPT in comparison to 38.2%, 72.7%, 100%, 0%, 100%,
62.2% for RBB).

For different days under study, it is worth to mention that
for OPT and with the measured input profile, no negative
KPIs are recorded. However, for RBB, AVGdpte could assume
negative values. The reason behind can be inferred by looking
at the definition of this KPI in (29). For RBB and for certain
days as observed in Part 2 of the supplementary material, the
export of power is minimized for a certain amount of time till
the peak generation hours arise. After reaching the threshold
of the flexibilitymaxdSoF , the remaining relatively high power
production peaks should be exported and therefore leading to
Pd,t
te,avg,w > Pd,t

te,avg,wo, hence yielding a negative AVGdpte.
As mentioned above, Fig. 2 shows the EMS’s performance

for a set of fixed flexibility-related inputs. To gain quanti-
tative information regarding the variability of the different
KPIs with respect to the input variations reported in Table 2
(apart from foresel which is fixed at the specific value of
2 to represent the measured profile), Part 4.1 and 4.2 of the
supplementary material depict the daily standard deviation
and mean values of the listed outputs of interest, respectively.
As observed for the case of using Ptei,meas measurement val-
ues by the EMS, the typical daily mean values of RMSEdbal are
higher for OPT compared to RBB. As this output quantifies
the performance of the balancer in reaching the zero power
exchange at the PCC, higher mean values indicate better
performance of OPT in comparison to RBB. Furthermore,
the uncertainty in the RMSEdbal values for OPT are typically
lower than for RBB (comparing their ranges of variability
and respective standard deviations). In other words, provided
that there is no forecast error, OPT can achieve a better
performance (highermean value ofRMSEdbal) with less uncer-
tainty. On certain days, the export power with both RBB and
OPT could be totally minimized to the zero reference value
leading to the corresponding AVGdpte = MAXdpte = 100%. For
these days and without the forecast error, the peak generation
is comparatively low, and considering the capacity of the
storage unit, the surplus generation could be stored. On the
other hand, for the days with high peak share of generation,
the RBB approach is unable to avoid the export peaks as the
threshold SoFmax will be reached before the peak generation
hours. Therefore, for such days,MAXdpte = 0%.
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FIGURE 2. Balancer performance using the measured profile.

After analyzing the results associatedwith the performance
of the balancer using only the measured profile, the following
findings can be listed:

• The measurement-and-steering operation based on the
RBBmechanism requiring themeasured profilePdtei,meas
is able to accomplish the desired performance. However,
on days with a considerably high amount of renewable
generation with respect to the total installed capacity
of 300kWp, the flexibility reaches its limit of maxdSoF
leading to the export of power from the REC. This
problem exists inherently for RBB for the measurement-
and-steering mode of operation and peak export powers
cannot be avoided for an REC with relatively much
higher total generation with respect to the total con-
sumption. In this regard, investment decisions such as
increasing the BESS capacity or operational decisions
such as reducing the operational time under this mode
could be of help for reducing peak export power.

• For the day-ahead scheduling, provided that there is no
forecast error (i.e., zero uncertainty is assumed), OPT
mechanism leads to an overall better performance which
is reflected in the mean values of the different KPIs. Fur-
thermore, in comparison to the RBB mechanism, there
is no observation of negative KPIs, i.e., no undesired
performance is expected.

• The introduction of different KPIs enables the REC
operator to observe in detail the different aspects asso-
ciated with the performance of the EMS. For instance,
despite the fact that the overall performance of the
OPT seems to be higher than that of RBB (when using
the measured input profile), closer investigation of the
average imported power at the PCC shows the slight
superiority of RBB in this regard and for certain days.

• With respect to the uncertainty in the performance of
the balancer module and in the absence of forecast
uncertainty, OPT mechanism leads in general to lower
variability of the outputs of interest. In this regard, using
the different KPIs and/or outputs of interest enables the
REC operator to investigate the uncertainty in a detailed
manner.

2) BALANCER PERFORMANCE WITH UNCERTAIN INPUT
PROFILE
In this Section, in addition to the uncertainty of flexibility-
related input parameters of initialdSoF , min

d
SoF , and max

d
SoF ,

the uncertainty of the input profile used by the balancer mod-
ule is also included into the analysis by considering foresel as
the fourth uncertain input which can assume the three integer
values of 0, 1 and 2 representing, respectively, the selection
of the forecast (PdFtei = 0), calibrated forecast (PdFtei,new =

1), and measured (Pdtei,meas = 2) profiles. The combination
of flexibility-related input parameters together with the type
of input profile are provided to the balancer to calculate the
setpoints based on the RBB and OPT mechanisms.

Fig. 3 provides an insight about the performance of the
balancer for both OPT and RBB in presence of the forecast
error and for two different days, with the flexibility-related
input parameters set at initialdSoF = 52.5%, mindSoF =

5%, maxdSoF = 95%. On the left side, the calibrated fore-
cast profile (PdFtei,new) is used as input to the balancer for
04.04.2021 when the total renewable generation is relatively
low considering the total installed capacity of 300 kWp.
On the right side, the non-calibrated forecast profile PdFtei is
used as the input to the balancer for 05.04.2021 when the total
renewable generation is relatively high. Considering the inter-
mittent behavior of the renewable generation which is not
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FIGURE 3. Balancer performance with (a) calibrated forecast and (b) forecast input profiles.

captured by the forecast profile, the difference between the
forecast and measurement profiles can lead to import/export
power profiles affecting the zero-power exchange objective.
The flexibility setpoints Ptflex are calculated according to the
balancing objectives of OPT and RBB reported respectively
in Subsections II-C1 and II-C2. Regardless of the forecast
errors of different time steps t , the scheduled setpoints Ptflex
are calculated using the forecast value of Pd,t

Ftei and based on
the control actions associated with RBB and OPT mecha-
nisms reported respectively in (17) and (13). Once the set-
points are defined, the corresponding Pttei,w values after the
implementation of these setpoints is also known according to
(34). In particular, Pttei,w values calculated based on the fore-
cast profiles might lead to the unexpected/undesired power
flow at the PCC (|Pttei,w| > |Pttei,wo|) corresponding to unde-
sired export/import values according to (12). Part 3 of the
supplementary material provides an insight about the forecast
errors for an exemplary day with considerable amount of Ptei
power fluctuations. Obviously, not being able to capture such
fluctuations via the forecast affects the expected outcome
of the balancer in the scheduling mode as the setpoints are
calculated based on the values of the forecast input profile
and not the measurement ones.

To have a detailed look at the daily evolution of the
mean and standard deviations of the outputs considering the
variability of foresel (i.e., assuming uncertainty in the input
profile), the reader can refer to Parts 4.1 and 4.2 of the sup-
plementary material for RBB and OPT, respectively. For the
majority of the days, not only the performance of the balanc-
ing mechanism is negatively impacted but also a significant
increase in the variability of the different outputs of interest
is observed. This is also summarized in Fig. 4 where the vari-
ability of mean and standard deviation values of the different
outputs of interest over the different days is presented. For
example, with respect toMAXdPti, the magenta box plots of the
mean values show a significant drop of the median value after
the introduction of the forecast uncertainty, whereas a huge
increase of the variability of the standard deviation and of its
median can be also observed. To get an overall picture and for

a complete comparison, the variability of mean and standard
deviation of the same outputs when only the measured input
profile is used by the balancer is also provided in Fig. 4 with
the cyan box plots.
After analyzing the results associatedwith the performance

of the balancer with uncertain input profile, the following
findings can be listed:

• For the day-ahead scheduling, if forecast uncertainty is
taken into account, OPT’s performance is still in overall
superior to that of RBB with respect to the mean values
of the defined KPIs.

• Using the defined multiple KPIs enables the REC oper-
ator to fully investigate the performance of the OPT and
RBB. In this regard, it was found out for instance that for
both of these mechanisms, the maximum export power
minimization is successful at the cost of increase in the
peak of import power which is reflected in the negative
values for the KPI associatedwith the peak power import
at the PCC. This is due to the forecast uncertainty associ-
ated with the renewable generation and the correspond-
ing intermittent behavior of renewable resources which
is not captured by the forecast mechanism.

• With respect to the uncertainty in the performance
of the balancer module and in the presence of fore-
cast uncertainty, different outputs of interest show rel-
atively large variability for both OPT and RBB. This
finding contradicts the typical statements such as the
‘‘obvious’’ superiority of OPT over RBB, as the uncer-
tainty in the desired performance looking at the dif-
ferent outputs of interest proves, for certain days,
the opposite.

3) BALANCER PERFORMANCE AND NEGATIVE KPIs
According to (26)–(30) and (35), negative KPIs indicate
worsening of the power exchange with respect to the devi-
ation from the zero power exchange, maximum and aver-
age export and import powers, and the overall performance
of the EMS. Fig. 5 summarizes the occurrence of negative
KPIs for the combinations of different inputs for RBB and
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FIGURE 4. Variability of mean and standard deviation of different outputs over different days. Cyan box plots represent the case when
only measurement profile is used, magenta box plots represent the case when forecast and measurement profiles are used.

FIGURE 5. Occurrence of negative KPIs for (a) RBB and (b) OPT.A. With
certain and uncertain input profile B. With uncertain input profile C.
Occurrence can be avoided after forecast calibration D. No occurrence.

OPT. The obtained results in Subsection V-A1 showed that,
without forecast uncertainty, no negative KPI is observed
for OPT. On the other hand, for RBB and for certain days
with relatively high shares of renewable generation for rel-
atively long period of times, negative values of AVGdPte can
be observed even without the forecast uncertainty. This is
due to the fact that the mean value of export power after
the implementation of the balancing mechanism (Pdte,avg,w)
is calculated for shorter time periods and higher peak export
values as observed in Fig. 2 for 05.04.2021. Red cells in
Fig. 5 represent such days. This implies that, even if the (near)
real-time steering mechanism is conducted for certain days,
input combinations might worsen the average export power
at the PCC after the balancing mechanism is implemented.
By focusing only on RMSEdbal as a proper indicator of the
balancing mechanism performance, Fig. 5 shows that the
forecast calibration can completely remove the occurrence
of negative values for OPT. However, for RBB, even after
forecast calibration, negative values of RMSEdbal still occur in
some days, e.g., on 06.04 and 19.04, as shown by the blue

cells in the first row of Fig. 5a. For these specific days it
would be of interest to investigate which input combinations
led to negative values of RMSEdbal . To this scope, Fig. 6 shows
the coordinate plots for 06.04 and 19.04: on the vertical axis,
the range of variability of the inputs initialdSoF , min

d
SoF , and

maxdSoF are reported (foresel = 1, i.e., only the calibrated
forecast input profile is used) and the combinations of the
three inputs leading to negative values of RMSEdbal are high-
lighted in red. From these plots it can be inferred that negative
RMSEdbal values are entirely due to high values of initialdSoF .
In other words, initialdSoF is the only responsible input for
RMSEdbal to be negative (irrespective of the values of min

d
SoF ,

and maxdSoF ): values of initialdSoF higher than 70 % (for
06.04.2021) and higher than 60 % (for 19.04.2021) should
be hence avoided assuring that the RBB mechanism starts
with enough flexibility to account for the high renewable
share during peak hours. The reader can refer to Part 5.1 of
the supplementary material for a detailed look at the input
combinations and the corresponding variations in the values
of RMSEdbal .

Regarding MAXdPte, after the forecast calibration on
04.04 and by avoiding high values of initialdSoF , negative
values could be avoided for RBB and OPT as observed in
Part 5.2 of the supplementary material. For 11.04 though, this
would work only for RBB and not for OPT.

The situation for the peak import-related KPI, i.e.,MAXdPti,
is challenged by the intermittent behavior of the renew-
ables and the consequent fluctuations in the generation pro-
files. As the forecast profile (including the calibration) is
not enough to capture such fluctuations, the peak values
of import power after implementing the balancing mecha-
nism (Pdti,max,w) are typically higher than the peak of the
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FIGURE 6. Parallel coordinate plot of RMSEd
bal for RBB with calibrated

forecast input profile on (a) 06.04.2021 and (b) 19.04.2021.

original import profiles (Pdti,max,wo). Basically, peak shav-
ing mechanism for the export power tries to minimise the
high export forecast values. However, considering the above-
mentioned fluctuations, the real measurement values turn out
quite often to be smaller than the expected forecast ones
in short time intervals (e,g., a power spike from 100 KW
to 30 KW due to lower sun irradiation). As the schedule
is calculated based on the forecast power profiles, lack of
such high export values in reality should be compensated by
importing power to the REC. Similarly, the average import
power and consequently the AVGdPti is negatively impacted by
the above-mentioned intermittent behavior. To avoid negative
values for both MAXdPti and AVG

d
Pti KPIs, selecting proper

ranges for initialdSoF might help for certain days. This could
be observed in Part 5.3 of the supplementary material: e.g.,
avoiding initialdSoF higher than around 40% can prevent neg-
ative values of AVGdPti for this day, too.
In short, after analyzing the occurrences of negative KPIs,

it can be inferred that the improvement in the input forecast
profile enhances the performance of OPT and RBB. For the
former, simple methods such as the calibration can solely
eliminate the occurrence of negative values for the output of
interest describing the balancer’s performance with respect to
the zero target value for power exchange at the PCC. Further-
more and provided that sufficient data (e.g., additional mete-
orological data) are available, clusters of different operating
days can be made for each KPIs. Knowing for which cluster
which KPI experiences negative values, the REC operator can
use the provided hints and combinations of flexibility-related
input parameters (in presence of forecast uncertainty), and
finally avoid the undesired negative performance with respect
to that specific KPI for that specific cluster.

B. RESULTS OF THE BALANCER SENSITIVITY ANALYSIS
In Subsections V-A1 and V-A2, the variations of different
outputs of interest considering different input combinations
for both themeasurement-and-steering and schedulingmodes
have been investigated, though selectively keeping fixed one
or more of the balancer’s uncertain inputs. In this Section,

GSA is instead applied to explore the variability of all the
balancer inputs according to the PDFs reported in Table 2.
As amatter of fact, the application of GSA as a diagnostic tool
can guide model calibration and verification, and support the
prioritization of efforts for uncertainty reduction in a concrete
and robust manner.

In light of this, GSA is been applied for RBB and OPT
to assess, for different days, which is the sensitivity of the
different outputs of interest with respect to the uncertainty
of the considered inputs. The results are summarized in the
heatmaps of Fig. 7 and Fig. 8 for RBB and OPT, respectively.
These heatmaps visualize the total Sobol’ indices, which
provide the inputs’ importance ranking taking into account
the overall contribution of each input not only ‘‘per se’’
but also in interaction with other inputs. It can be observed
from Fig. 7 and Fig. 8 that foresel plays the biggest role
in affecting most of the outputs of interest for both RBB
and OPT. This shows the importance of focusing the efforts
towards the reduction of forecast uncertainty by improving
the forecast accuracy. On the other hand, GSA helps real-
izing why foresel (and the consequent input profile varia-
tions) does not impact the variability of the standard devi-
ations of certain outputs reported in Fig. 4. For example,
in the case of finaldSoF and RMSEdbal , these variations were
not considerably different from each other with and without
the uncertain input profile (cyan versus magenta box plots,
respectively). Investigating the total Sobol’ index of foresel
reveals that the uncertainty of the input profile is either not
influential or, in comparison to flexibility-related inputs, rela-
tively less influential in the variations of the above-mentioned
outputs.

Focusing on RMSEdbal as the metric measuring the devia-
tion of the balancing mechanism from the minimum power
exchange at the PCC, it can be concluded from Fig. 7 that
RMSEdbal of RBB is quite sensitive against the variations in
initialdSoF . This is due to the nature of the rule-based approach
which strictly follows the forecast values at each time t and
charges/discharges the BESS according to them. In such a
case, the variations in the starting point, i.e. initialdSoF can
impact also significantly how the (dis)charging profile, i.e.,
the schedule, is going to be and therefore affect the varia-
tions in the Pdtei,w and RMSEdbal reported in (34) and (26),
respectively. On the other hand and by observing specifically
the total Sobol’ indices for RMSEdbal in Fig. 8, the OPT
mechanism shows relatively less sensitivity to the variations
in initialdSoF and this mechanism is able to plan the schedule in
a more effective manner considering the whole optimization
period and not purely based on forecast instances. Further-
more, by looking at the daily values of the total Sobol’
indices for mindSoF and maxdSoF , it can be observed that they
do not show significant contribution to the uncertainty of
KPIs introduced in (26)-(30). Therefore, these two inputs can
be fixed anywhere in their variation range without affecting
the balancer KPIs for RBB and OPT. As regards finaldSoF ,
it can be said that mindSoF is typically non-influential for
the developed RBB and OPT mechanisms. However, maxdSoF
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is quite an influential input for affecting the variability of
finaldSoF for both RBB and OPT.
As mentioned in Subsection III-C, by computing the term

1−
∑
Si, quantitative information regarding the total amount

of model interactions can also be obtained. The level of inter-
actions existing among the different balancer inputs is shown
in Fig. 9 for RBB and OPT for the different days under study.
As regards OPT, the amount of model interactions affecting
is quite low for most of the days (values of 1 −

∑
Si < 0.1),

whereas there are relatively higher interactions for RBB. For
example, on 09.04 and 22.04, more than 30% of the variance
ofMAXdPte is due to interactions among the different balancer
inputs. To further investigate this contingency, the second
order Sobol’ indices Sijs are computed specifically for these
days: the values of the Sijs show that the interactive effect
among initialSoF and foresel contributes to a worth 28% of the
total variance of MAXdPe (Sij = 0.28 for the pair {initialSoF ,
foresel}). This might be related to the patterns of the forecast
profiles and how the initial condition at the beginning of
the balancing mechanism can interact with it. In the case of
finaldSoF and for both RBB and OPT, there are high interac-
tions among initialSoF and foresel with a second order Sobol’
index of Sij = 0.42, signalizing that the variations in the
finaldSoF are greatly influenced by the joint effect of these two
inputs.

Moreover, Fig. 8 shows that initialdSoF is of importance
for the variation of some KPIs on some days. As mentioned
in Subsection V-A2, proper selection of initialdSoF after the
forecast calibration could be helpful in avoiding negative KPI
occurrences for certain days. Typically, the range of final state
of flexibility for the preceding day, i.e., finald−1

SoF , is already
in the ‘‘preferable’’ range of the initial state of flexibility for
the upcoming day, i.e., initialdSoF (where ‘‘preferable’’ range
refers to the one avoiding negative KPIs). However, in some
cases, fixing finald−1

SoF to a specific value might be of interest.
For instance, in accordance to Part 5.3 of the supplementary
material, to avoid negative values of AVGdPti, low values of
initialdSoF are preferable. On the other hand, for the previ-
ous day, i.e., 13.04, finaldSoF is ranged between [62%, 74%].
Therefore, it might be of interest to set a fixed value of
finaldSoF to have a fixed initialdfinal for the upcoming day. This
is only possible for the OPT by adding a constraint to the
optimization problem and not for RBB as RBB mechanism
basically follows strictly the forecast value at each time t to
decide about the schedule setpoint(s) and the corresponding
SoF value(s). Equation (38) shows this additional constraint
for the OPT if fixing the final state of flexibility by the end
of the optimization (t = end) to a predefined finaldSoF is of
interest:

SoF t=end = finaldSoF (38)

However, this advantage of OPT should be examined
more carefully. The addition of the constraint in (38) to the
optimization model changes both the model and the input
space affecting the performance of the OPT mechanism.
This additional constraint might have an important role in

the variance of different outputs of interests. Therefore, SA
should be conducted after revising the OPTmechanism (from
here referred to as the revised OPT) with the outputs 1 to
5 defined in (26)–(30) and the inputs listed in Table 2, in addi-
tion to the newly introduced finaldSoF input with a uniform
distribution U [15%, 85%] covering the possible range for
it. Fig. 11 shows the ranking for the revised OPT for the
above-mentioned set of inputs and outputs. It can be con-
cluded that for the majority of KPIs and for most of the days,
foresel is still the most influential input. Furthermore, it can be
observed that finaldSoF plays an important role in the variation
of the outputs of interest for the revised OPT. Interestingly,
on 04.04 for instance, initialdSoF and finaldSoF play an impor-
tant role in the variations of RMSEdbal . With respect to the
interactions, Fig. 12 shows that, in comparison to Fig. 9, more
interactions can be observed among different inputs affecting
the variance of different outputs. For instance, by looking
at the second order Sobol’ indices for AVGdpti, out of the
30% observed interactions, around half of it originates from
the second order interactions among foresel and finalSoF .
Considering both the ranking and interactions, the revision
of the OPT model (which in the first place was conducted
to limit the occurrence of negative KPIs and improve the
performance of OPT) leads to a more sensitive behavior with
respect to the input variability. If the finaldSoF is not carefully
selected, undesired values of different KPIs may occur as it
was shown that the variability of this newly added model
input, i.e., finaldSoF , can have a significant impact on the
variability of different outputs. Part 6 of the supplementary
material shows the daily mean and standard deviations after
the revision of OPT. It can be observed that for the majority
of the days and most of the KPIs, introducing finaldSoF in the
set of uncertain inputs leads to the slight reduction in the
mean values and the slight increase in the standard deviations.
This is in line with the results of GSA that highlights the
importance of finalSoF variations and their impact on the
variations of different outputs.

According to the obtained results, the following findings
could be listed with respect to the SA of the balancer.

• The application of GSA can fully support the ranking of
influential parameters affecting the variability of outputs
of interest. As an example, one could not observe that
much of impact on the standard deviation variation of
certain outputs of interest with and without the uncer-
tain input profile in Fig. 4 (cyan vs magenta box plots,
respectively). Once the total Sobol’ indices are analyzed
though, it is inferred that either the input profile is not
an influential input or there are other influential inputs
affecting the variations of these specific outputs.

• Based on the quantitative results obtained, the impact of
the forecast uncertainty on the variability of the different
KPIs (especially the indicator for the peak import power
minimization which showed also occurrence of negative
values) is quite crucial. This implies that reducing the
uncertainty of this influential input helps in reducing the
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FIGURE 7. Total sensitivity indices for RBB. If the output variability is almost null, NaN value of the sensitivity indices are reported.

FIGURE 8. Total sensitivity indices for OPT.

FIGURE 9. Total amount of interactions (1 −
∑

Si ) in the model for (a) RBB and (b) OPT.

uncertainty in the KPI variations and can ultimately help
significantly in avoiding the variations towards negative
values. This reduces in the first place significantly the
uncertainty in the expected outcome, paves the path
for the EMS model revision in the second place and
ultimately leads to the improvement in the EMS perfor-
mance.

• Although observing that the SA ranking for different
KPIs (for both RBB and OPT) guides the REC operator

to prioritize the forecast uncertainty reduction as the first
corrective action to reduce the uncertainty in the perfor-
mance of the balancer for the majority of days, it has
also been shown that, for certain days, flexibility-related
parameters have a significant impact on the uncertainty
of the balancer performance and should not be ignored.

• The variations in the flexibility-related input parameters,
especially the initial state of flexibility, have bigger
impact on the variability of the outputs of interest for
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FIGURE 10. Mean and standard deviation variability over different days for the revised OPT. Cyan box plots represent the case when only
measurement profile is used while magenta box plots represent the case when forecast and measurement profiles are used.

FIGURE 11. Total sensitivity indices for the revised OPT.

FIGURE 12. Total amount of interactions (1 −
∑

Si ) in the model for the revised OPT.

RBB in comparison to OPT. Furthermore, the interac-
tions among the different inputs affect the variability
of outputs of interest for RBB more in comparison
to OPT.

• Based on the GSA results, if the REC operator is willing
to, there is a possibility of revising OPT accordingly
(unlike RBB). In this work, such revision has been
conducted for OPT by introducing finaldSOF as addi-
tional input and repeating the application of GSA on the
revised model.

• For RBB and OPT and for almost all days, the two
flexibility-related inputs of minimum and maximum
state of flexibility are non-influential in the variations of
KPIs and can be fixed at any value within their variation
range. Furthermore, these inputs are not influential in
the variations of the final state of flexibility as another
output of interest, either.

• The revision of theOPTmodel with the inclusion of final
state of flexibility as an additional input can increase
the variability of the outputs, in this case KPIs, as they
show sensitivity towards this newly introduced input
variability. This is also accompanied by interaction with
other inputs variability. The application of GSA for this
revised model can allow the REC operator to identify
the uncertainty and sensitivity associated with the dif-
ferent outputs of interest and take necessary actions to
reduce uncertainty and/or improve the performance of
the EMS. For this specific case, reducing the uncer-
tainty in the variability of the new input parameter, i.e.,
finaldSoF , according to an a-priori decision regarding the
upcoming usage of the BESS by the REC operator, is of
relevance. Furthermore, for the revised OPT, fixing the
two flexibility-related inputs of minimum andmaximum
state of flexibility to any values within their ranges of
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FIGURE 13. Generation, Consumption and net power forecast profiles.

variability can be done as they are not influential in the
variability of outputs of interest for almost all days under
study.

• The application of GSA provides detailed information
about the importance of each input for each specific
output of interest in a quantitative manner. Such infor-
mation, in addition to supplementary data (e.g., mete-
orological data, provided that they will be available)
are crucial for the REC operator to make clusters of
operating periods for specific outputs of interest with
the corresponding influential and non-influential input
models, to reduce the model dimensionality, to pos-
sibly reduce uncertainty in the influential inputs and
ultimately improve the model performance.

VI. RESULTS FOR THE FORECASTER
In the previous Section V-A, the results associated with the
balancer, which is responsible for achieving the virtual island-
ing objective of the EMS, were presented. As one of the key
findings, it was also highlighted that the uncertainty in the
forecast can play an important role in the performance of the
balancer in the scheduling mode. In light of this and knowing
the EMS structure described in Section II and the operation
boundaries associated with it (Subsection II-A), this section
provides the simulation results for the forecaster module of
the EMS.

A. FORECASTER PERFORMANCE
According to the mathematical formulation provided in (1)
and based on the total generation (PFtg) and consumption
(PFtc) forecast input profiles, the forecast profiles of the net
active power exchange at the PCC (PFtei) could be calculated
for the time horizon of this study. In Fig. 13, a typical example
of such profiles is provided for the specific day of 04.04.2021.

As described in Subsection II-B1, the forecast profiles
could be calibrated to generate more accurate profiles. Fig. 14
depicts the forecast profiles before and after the calibration
(blue and red lines, respectively) along with the correspond-
ing actual measurement values (orange line) for two different
days. As observed in this figure, the calibration of the forecast
profiles can lead to reasonable reductions in the forecast
errors. With the forecast calibration mechanism, RMSE for
the forecast of net active power exchange at the PCC is on
average reduced around 12.5% for different days under study.

Such reductions can even reach up to 33%. The reader can
refer to Part 7 of the supplementarymaterial to have a detailed
look at corresponding reductions in the forecast errors.

In short and with respect to the forecaster performance
results, it can be inferred that considering the low availability
of historical data and other boundaries associated with the
forecast module, the calibration can act as an intermediate
measure to deliver an improved forecast. In Subsection V-A2,
it has been also discussed how such an intermediate measure
can restrain the negative impact on the performance of the
balancer module and reduce the occurrence of negative KPIs.
Provided that enough data (including the meteorological one)
are at disposal of the REC operator, clusters of different days
with respective calibrated scaling factors for each specific
cluster can be made to improve the forecast uncertainty for
different operational days.

B. RESULTS OF THE FORECASTER SENSITIVITY ANALYSIS
According to themethodology illustrated in Subsection III-B,
before computing the sensitivity indices, uncertainty analy-
sis is conducted to evaluate the uncertainty of the forecast
prediction (i.e., RMSEdPFtei) given the uncertainty in the load
and generation related inputs (i.e., PtF ′′

tc
and PtF ′′

tg
reported in

Subsection IV-B).
An overview of the daily variability of the forecast errors

in terms of RMSEdPFtei is provided in Fig. 15 in the form
of box plot representation, where mean, median, first and
third quartiles of the forecast RMSE are shown. As it can
be observed, the smallest average RMSEdPFtei is reached on
04.04 and 11.04 with values of 12.4 kW and 18 kW, respec-
tively, whereas in the rest of the month the average RMSEdPFtei
assume values around (or higher of) 40 KW. The highest
average RMSEdPFtei is observed on 06.04. Furthermore, the
lowest and highest variability of the RMSEdPFtei values are
observed on 05.04 and 27.04, respectively. The reader can
also refer to Part 8 of the supplementary material to have a
look at the histogram example which can provide an insight
about the data distribution associated with the uncertainty in
the output of the forecaster module.

The box plot representation of Fig. 15 supplies information
about the degree of confidence in the forecast estimate. The
uncertainty of the forecast estimate (after being characterized
and quantified) can be apportioned to the different sources of
variability (i.e., the uncertainties of the load and generation).
To this purpose, variance-based SA is performed to iden-
tify the most relevant inputs affecting the output of interest,
i.e., the RMSE of the net active power exchange forecast
(RMSEdPFtei). Analyzing the daily evolution of the sensitivity
indices of PdFtg and PdFtc allows for assessing their relative
importance on the RMSEdPFtei over time. Fig. 16 reports the
results for the total Sobol’ indices, reflecting the importance
of each input according to its overall effect. Null values of
Ti signalize an inconsequential input, which could be hence
fixed at any convenient value within its range of variation and
removed from subsequent analyses. As observed in Fig. 16,
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FIGURE 14. Forecast, calibrated forecast, and measurement profiles for 04.04.2021 and 27.04.2021.

FIGURE 15. Box plot visualization for the variability of the forecaster error RMSEd
PFtei .

FIGURE 16. Total Sobol’ indices for the forecaster.

PdFtg is the most influential input for all days. Interestingly,
on 04.04—for which the uncertainty is relatively low com-
pared to other days, as reported in Fig. 15— PdFtg and PdFtc
happen to have almost the same importance on the RMSEdPFtei
variability. It can hence be inferred that, on this specific
day, the scaling of both total generation and consumption
forecast profiles can affect the variance in the net active power
forecast. On the other hand, on 27.04 (where the highest
variability of RMSEdPFtei was recorded as seen in Fig. 15),

the consumption forecast has a negligible impact on the total
forecast error (Ti ≈ 0). In this case, the variability of the
forecast error is almost entirely due to the variability of the
scaling factor ndtg.
After performing the forecaster SA, from the above results

it can be concluded that, in general, a resource investment
for reducing the uncertainty in the total generation forecast
of REC is inevitable. However, for the days characterized
by a relatively limited amount of total renewable generation

VOLUME 11, 2023 4151



A. Ahmadifar et al.: Development of an EMS for a REC and Performance Analysis via GSA

considering the total installed capacity of 300 kWp and
the corresponding net power exchange at the PCC (e.g.,
on 04.04 as shown on the left side of Fig. 14), the provided
consumption and generation forecast profiles—respectively
based on the SLP and the contractual agreement with the
weather-data provider—lead to reasonably accurate forecast
profiles with relatively low uncertainty, as seen in Fig. 15.

VII. CONCLUSION
This research work has presented the development of an
EMS which consists of a balancer and a forecaster mod-
ule and is in line with the virtual islanding scope of an
REC field trial equipped with a BESS unit. Considering the
availability of the field data and the associated boundary
conditions, the RBB and OPT mechanisms of the devel-
oped balancer managed the REC in both measurement-and-
steering and day-ahead scheduling modes based on (near)
real-time measurements and forecast values, respectively.
Given the unavoidable presence of specific sources of uncer-
tainty potentially affecting the EMS performance, a thor-
ough study of the EMS sensitivity behavior has also been
conducted via GSA (by employing variance-based SA) with
respect to multiple quantities specifically selected to encom-
pass relevant aspects of the virtual islanding of the REC under
study for its operator. In particular, different KPIs reflecting
the performance of the developed balancer for minimizing the
power exchange at the PCC and the final state of flexibility
of the BESS have been selected as the outputs of interest.
On the other hand and as inputs to investigate, the proposed
multi-output GSA has considered not only flexibility-related
parameters (such as the initial, minimum and maximum
states of flexibility for the BESS), but also different levels
of forecast accuracy that might affect the performance of
the balancer. For the forecaster GSA, the total generation
and consumption forecast profiles have been considered as
inputs while the forecast error was selected as the output
of interest. The thorough analysis using GSA has led to
the identification of the most influential inputs affecting the
desired performance of the EMS. Consequently and in this
regard, EMS model inputs whose uncertainty is not crucial
for certain outputs were also identified. In other terms, GSA
helps in realizing the uncertainty of whichmodel inputs could
be neglected without affecting the output variability and pro-
vides solid basis for taking informed decisions e.g., in terms
of model revisions and/or uncertainty reduction measures.
For instance, for the OPT control mechanism of the devel-
oped EMS and for more than 95% of the days under study,
the initial state of flexibility of the BESS, although being
uncertain, had no impact on the variations of the KPI reflect-
ing the minimization of maximum export power. In other
words, the peak export reduction of the OPT mechanism is
not typically (for 95% of the days) influenced by the initial
state of the flexibility of the BESS. Hence, for such days,
this might translate into the decision of the REC operator
to allocate resources for decreasing the uncertainty of only
the influential inputs to ultimately reduce the uncertainty of

this KPI (or, in other words, enhance the EMS performance
related to it). Furthermore, it was also discussed why it
is necessary to comprehensively examine the EMS model
including its revision(s) by GSA to capture both the positive
and negative impacts on the EMS model uncertainty and
performance. It was revealed for instance that the revision of
the OPT model with the inclusion of final state of flexibility
as an additional input requires additional attention as certain
KPIs show sensitivity to this input while the minimum and
maximum permissible states of flexibility of the BESS have
a much less impact on those KPIs’ variability after the model
revision.

Moreover, it is of importance to highlight that, although in
the first place one might assume that forecast uncertainty is
the most influential input for the performance of the EMS,
GSA results proved that flexibility-related inputs can also
influence the uncertainty in the performance of the EMS:
neglecting it would lead the operator to take incorrect deci-
sions. Similarly, one might in the first place assume the
‘‘obvious’’ performance superiority of OPT over RBB mech-
anism for the developed EMS. This has indeed proved to be
generally but not always true by looking at the values of the
different KPIs. On the other hand, it was indeed shown though
that such a judgmental superior performance is accompanied
with almost the same amount of uncertainty for both of these
mechanisms. It was only possible via GSA to quantitatively
identify to which extent each of these mechanisms is sensitive
towards the variations of the inputs of the balancer.

In view of the obtained results, it has emerged how the
application of GSA is crucial to effectively support the uncer-
tainty quantification of an EMS in order to ultimately pro-
vide the REC operator with a support tool for the decision
making process in an uncertainty framework, e.g., to develop
and revise EMS algorithms specifically designed for RECs.
In this regard and by paving the path for future applications,
this paper suggests the reusability of the proposed multi-
output GSA for other similar EMS applications. For instance,
a replicate of the developed EMS with the inclusion of
other flexibility sources within the same REC under study
or other RECs with different boundary conditions can be
equally investigated following the workflow in this study.
Furthermore and provided that sufficient data (including the
meteorological one) are available, more advanced predicting
algorithms (e.g., neural networks) can be used for reducing
the uncertainty in the forecast values required for the schedul-
ing mode of the developed EMS.
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