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ABSTRACT Most of the turbo encoding schemes at standards are parallel-based, so different architectures
for efficient implementation are common in the literature. However, a serial turbo decoder is not that
common. This scheme is used in CCSDS 131.2-B-1 standard, which is attracting much of attention recently
due to its higher performance for satellite communications. In this paper, an efficient architecture for the
decoder is proposed and analyzed. It is intended to show an architecture that can be modeled in a circuit
description language (such as VHDL and Verilog) in such a way that it can be easily implemented on a Field
Programmable Gate Array (FPGA). This work describes in detail this architecture explaining the encoding
operations that are performed at the transmitter and then, how to undo them at the receiver. The proposed
algorithm works by using independent components to divide the tasks and to obtain a pipeline architecture
to improve the efficiency. The results of simulating and implementing the proposed architecture on a Xilinx
Zynq UltraScale+ RFSoC ZCU28DR board with XCZU28DR-2FFVG1517E RFSoC are shown. The final
results presented demonstrate how the hardware operations give equivalent results to the software simulation
and do not consume board resources aggressively as usually the turbodecoder does.

INDEX TERMS DSP, coding, FEC, serial turbodecoder, pipeline, convolutional, BCJR, VHDL, synthesis,
implementation, hardware, FPGA, CCSDS.

I. INTRODUCTION
Forward Error Correction (FEC) is a mandatory technique
nowadays for the design of a high performance communica-
tions system, as it allows to detect and correct errors on the
transmitted information, allowing to reach the well-known
Shanon limit [1].

Among all the channel coding techniques, turbo encod-
ing/decoding [2] is one of the most promising strategies
for improving performance [3] although the complexity
increases.. For this reason, there are many standards using
turbo encoding/decoding [4], [5], [6]. The turbo encoding
idea is the concatenation of two simple convolutional
encoders, preferably those based on a recursive systematic
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codes (RSC) model, to improve the error correction capacity
by means of an iterative algorithm, in order to achieve
very low error rates without the need to use a large
number of shift registers in the encoder architecture, as this
would exponentially increase the complexity of the decoding
process [3].

The origins of turbo decoder technology dates back to late
1980s. In 1989, Alain Glavieux proposed a modification to
the Viterbi algorithm called Soft-Output Viterbi Algorithm
(SOVA) [7], [8] that allowed working with soft outputs
after decoding a single convolutional encoder, which led to
the observation that working with soft-input and soft-output
(SISO) decoders [9], [10], [11] improved the signal-to-noise
ratio (SNR). When the next phases of the general structure
of the turbo decoder were developed, the concatenation of
the encoders made the use of SOVA for decoding unfeasible
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and the BCJR algorithm [12], [13], also known as the
forward-backward algorithm, which follows the Maximum a
Posteriori (MAP) criterion, began to be used. It was created
in 1974 but adapted and improved in 1993 by its inventors,
Bahl, Cocke, Jelinek, and Raviv.

The first commercial use of turbo codes occurred in
1997 with Inmarsat’s M4 multimedia service by satellite.
This new service used the component of Turbo4 circuits [14]
(CAS 5093 successor) with a 16-QAM modulation and
enables the user to communicate with Inmarsat-3 spot-
beam satellite from a terminal at 64 kbit/s. The narrowband
technology based on a 16 QAM constellation mapping and
turbo coding provides significant reduction (>50 %) in
the required bandwidth for mobile satellite channels, at the
same time improving the satellite power efficiency [15].
This was the beginning of turbo codes in commercial
applications which took a lot of effort from several teams
in hardware implementation [16], [17] and the adaptation
of communications standards to these technologies in a
way that would make them achievable in commercial
electronics [18], [19]. However, as hardware development
technology evolved and it became possible to increase the
number of resources of the devices where such algorithms
are to be implemented, it also became possible to increase the
complexity of the turbo decoder variant to be implemented,
as increasingly higher transmission rates are required and
decoding operations are applied to arrays of symbols of much
longer lengths, as is the case with IEEE 802.16 family of
wireless communications standards [20] or HomePlug AV
became an IEEE standard in 2010 [21]. It has also been
a key player in more recent technologies such as faster-
than-Nyquist (FTN) signaling [22], [23], [24] or coherent
decoding [25], [26].

For the case of satellite communications, the performance
of the turbo decoder combined with Frequency-Hopped
Spread Spectrum (FH-SS) has been analysed in [27] and
comparedwith the combined performance of several dynamic
power allocation algorithms, where a modification of the
classical structure is made to develop a new iterative
algorithm for channel variance and carrier phase estimation
(side information), which was shown to provide superior
performance to the case where no side information is
available [28]. A turbo trellis coded modulation in con-
junction with continuous phase modulation was used in a
frequency-hopping packet radio structure to further reduce
the error probability too [29]. Also very interesting is the high
throughput that can be achieved with error correction algo-
rithms based on newer techniques such as Turbo-Hadamard
coding methods [30]. However, all these algorithms are not
yet validated in direct hardware implementation, that is, they
are still complex to implement by transcribing them directly
into a circuit description language, either VHDL or Verliog,
without using other elements such as a microprocessor or
Universal Software Radio Peripheral (USRP) that allow
certain parts of the algorithm to be implemented in software.
That is why the standard when using a turbo decoder scheme

is to try not to add additional blocks beyond those used in
classical schemes [31], which are the RSCs, an interleaver
and a puncturing block in some cases to achieve the rates
recommended in the standards.

Thus we come to the standard specifications recommended
by the Consultative Committee for Space Data Systems
(CCSDS) in [32] where optimal combinations of coding
rates and frame lengths are pursued to make efficient use of
bandwidth and maximising spectral efficiency.

The aim of this work is to present a valid and efficient
architecture to perform decoding of the Serial Concatenated
Convolutional Code (SCCC) block, described as a Serial
Concatenated Convolutional (SCC) Turbo Coding Scheme,
proposed in the aforementioned standard and described
in [33], showing the pipelined components of the complete
decoder assembly and the connections of its integrated
components. In addition, detailed simulation results are
shown on the code produced in VHDL, corresponding to
the waveforms that would be obtained from the proposed
circuit, validating the likelihoods computed in each iteration
and the final bits obtained after the hard decision process,
to compare those results with the software simulation using
MATLAB. In addition, the synthesis and implementation
performance values are included on the evaluation board,
in this case, on a Xilinx Zynq UltraScale+ RFSoC ZCU28DR
with XCZU28DR-2FFVG1517E RFSoC, to evaluate the
resource management on it and the efficiency of the proposed
architecture.

In other words, this paper presents a novel architecture not
explored in the literature to provide a customized decoding
scheme to [32], and optimized for electronics to facilitate its
implementation in real systems. So, the main contributions of
this paper are summarized as follows:

• Complete description of the proposed architecture,
including the description of each component with its
corresponding block diagram and the connections and
signals between them for their subsequent hardware
implementation. In addition, the optimized algorithm is
specified for decoding each RSC individually.

• A software simulation comparing the theoretical and
optimized versions of the algorithm, to demonstrate that
using the appropriate number of iterations only 0.5 dB of
Eb/N0 is lost between the two versions, the latter being
infinitely simpler to implement in hardware and more
efficient in terms of FPGA resource consumption.

• Exhaustive comparison of the results in the software
simulation with the hardware simulation to demonstrate
that the values are the same and to verify that the
architecture works correctly.

• Show the synthesis results of the proposed architecture
to evaluate the resources it consumes on the evaluation
board.

• Present the results of carrying out the implementation
of the synthesised circuit to evaluate the timing and
temperature performance and certify that it can be
realised on the FPGA.
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FIGURE 1. Block Diagram of the SCC Turbo Coding Scheme in the transmitter. Extracted from [32].

This paper is organized as follows: Section II describes the
SCC Turbo Coding block collected in the reference standard,
an overview of the BCJR algorithm for a single RSC and
a the description of methods of simplifying this algorithm,
which makes it possible to do such signal processing in
hardware in an efficient way; section III shows the proposed
architecture of the turbo decoder, detailing the pipelined
structure that builds it, showing each component that makes
it up and how the flow is controlled to avoid mismatches
of information in the memory blocks to generically fit
the different proposed lengths of the input and output
frames; section IV presents hardware simulation, synthesis
and implementation commented results; conclusions are
presented in section V.

II. SYSTEM MODEL
A. SCC TURBO CODING SCHEME DESCRIPTION
Turbo encoder classic architecture is based on two RSCs
concatenated through a memory called interleaver which is
responsible for scrambling the input data to avoid bursts of
consecutive encoding errors. The most common is to find
the encoders in parallel, i.e. the original input and the input
modified by the interleaver are encoded at the same time,
although there is also the possibility of the turbo encoder
appearing with the RSC in series with the interleaver in
between, in such a way that the interleaver messes up the
original encoded information, which means that it has a
larger memory than in the parallel case. Each variant has its
advantages and disadvantages, which are discussed in [34],
but one important advantage that the serial configuration has
over the parallel model is that the data and parity bits can
exploit the extrinsic information. This advantage is one of the
main reasons why in the reference standard of this work a
modification of the series turbo decoder,the above mentioned
SCCC configuration, is chosen.

The use of SCCC is intended mainly for high data rate
applications. The Forward Error Correction (FEC) scheme
is based on the concatenation of two simple four-state
encoder structures. The SCCC scheme implies a Physical
Layer frame of constant length, with pilots inserted in fixed

positions. This architecture simplifies the synchronization
procedure, thus further allowing fast and efficient acquisition
at very high rates for the receiver [32]. The following
sub-subsections describe the different blocks that make up the
complete encoder. As it has been exposed, the turbo encoding
proposed in this standard is a serial-based one, which needs a
completely different architecture at the decoder side. As it can
be seen in the figure, the puncturing operation after CC1 only
removes one bit out of 4 of redundancy, thus the systematic
bits are always transmitted.

Fig. 1 shows the block diagram for the complete encoder.
It consists of two convolutional encoders, the outer one
is referred to as CC1 and the inner one as CC2, a fixed
puncturing block, an interleaver block, one de-multiplexer
item to split the systematic and parity bits produced by
encoder CC2, so that the inputs are finally reorganised to
enter another interleaver, named as Row-Column interleaver,
with its own puncturing patterns that would only affect the
systematic or parity information separately, again preventing
possible concatenation errors and making the system more
robust. It should be emphasised that the puncturing block
pattern, the interleaving block pattern and the additional
puncturing patterns of the Row-Column interleaver depend
on the mode of operation followed from those available
in the reference standard. It should be noted also that it
is these modes of operation that determine the lengths of
the frames that are sent between the different blocks that
make up the SCC Turbo Coding Scheme. Although it is
not in the scope of this paper to explain in detail how the
individual blocks work, it is considered necessary to provide
some additional information about the encoders and the Row-
Column interleaver, in order to facilitate the subsequent
understanding of the proposed architecture for the decoding
of the complete structure.

About the encoders, they have the same features, with
coding rates 1/2 and 4 possible states in the encoding process.
Fig. 2 shows the architecture of this type of encoder, where
the boxes with a D inside symbolise a shift register, and the
circles enclosing the ‘+’ symbol refer to the logical operation
‘‘Exclusive OR’’. Initially the registers are initialised to ‘0’,
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FIGURE 2. Convolutional Encoder Block Diagram for CC1 and CC2.
Extracted from [32].

FIGURE 3. Schematic representation of the action performed by the
Row-Column de-interleaver block.

and the coding takes place with the switch in upper position.
Once the frame is encoded, for the final two bit times, the
switch moves to the lower position to receive feedback from
the registers. This feedback cancels the same feedback sent
(unswitched) to the leftmost exclusive OR gate, and causes
all two registers to become filled with zeros after the final two
bit times. In this way, a terminated trellis has been obtained,
which simplifies the decoding process.

In the case of Row-Column interleaver, its goal is to
reorganize the information in such a way that the output
consists first of getting all the systematic bits, applying a
certain puncturing pattern to them, and then all the parity bits
of CC2 also having done an additional puncturing operation.
Fig. 3 presents a graphical representation of this action in the
reverse way to be implemented in the receiver, in a block
that is called Row-Column de-interleaver. It can be seen
how the systematic and parity bits of CC2, orange and blue
positions in Fig. 3 respectively, are interleaved, and after
passing through the block first all the systematic bits are
grouped together, and then all the parity bits. At this point,
the block has independent puncturing patterns too for the
systematic or parity information, which it applies to recover
the corresponding position that was deleted in the transmitter
when the original puncturing was applied, reflected as black
filled positions in Fig. 3. Depending on the transmission
mode, the amount of systematic or parity bits are different.

B. BCJR ALGORITHM OVERVIEW
As mentioned in the introduction, in a turbo decoder design
the algorithm should be selected as a trade off between the
decoding performance and implementation complexity. The

BCJR algorithm must work with soft inputs and soft outputs,
which allows it to obtain more accurate results than applying
a hard method to the output. Besides, a soft output allows
to make the structure more flexible to develop an iterative
architecture.

Let’s consider an input sequence x = x1x2 . . . xN of N n-bit
symbols, and let ui be a binary random variable with possible
values {0, 1} which represent the information or message
input bit corresponding to estimated value according to xk
symbol. From now, if uk is ‘1’, it is mapped as +1 and ‘0’ is
mapped as −1 otherwise. Thus, taking into account the input
bit a priori probability P(ui), we define the log-likelihood
ratio (LLR)

L(ui) = log
P(ui = +1)
P(ui = −1)

, (1)

which, at the beginning of the algorithm is zero. The reason
is because we do not have any previous information and we
assume the input bits are i.i.d, so P(ui = +1) = P(ui =

−1) = 1/2.
The BCJR algorithm needs certain information to estimate

the correct bit. This information corresponds to the sequence
of symbols received, denoted as y for which the algorithm
computes the a posteriori LLR

L(ui|y) = log
P(ui = +1|y)
P(ui = −1|y)

. (2)

Considering the transition from the current state ψ ′ to the
next state ψ , and defining two sets denoted as U1 and U0
representing the set of transitions from state Si−1 = ψ ′ to
state Si = ψ originated by ui = −1 or ui = +1, with
i = 1, 2, . . . ,N , respectively. Thus, a posteriori LLR can be
expressed as

L(ui|y) = log
P(ui = +1|y)
P(ui = −1|y)

= log

∑
U1
P(ψ ′, ψ |y)∑

U0
P(ψ ′, ψ |y)

. (3)

Applying Bayes theorem over (3) due to transitions are
mutually exclusive, we finally obtain

L(ui|y) = log

∑
U1
P(ψ ′, ψ, y)P(y)∑

U0
P(ψ ′, ψ, y)P(y)

= log

∑
U1
P(ψ ′, ψ, y)∑

U0
P(ψ ′, ψ, y)

. (4)

In (4), it is shown the joint probability of receiving theN-bit
sequence y and being in state ψ ′ at time i-1 and in state ψ at
the current time i. It can be seen how the final expression for
calculating the LLR is a ratio of two joint probabilities, with
the numerator being the joint probability of receiving y and
being in state ψ ′ at time i − 1 and in state ψ at the current
time i for the set originated by uk = +1, and the numerator
same case for the set originated by uk = −1. In turn,
this joint probability can be disassembled as the product of
three temporally differentiable probabilities, associated to the
temporal character that reflects the computed trellis diagram
of a convolutional encoder. Assuming that we are in the
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i-th position of the trellis, we can define these probabilities
as referring to the past state, present state and future state of
that position in the diagram. Reapplying Bayes’ theorem and
assuming a memory-less channel where the current symbol
does not depend on past information, the joint probability
decomposition in the three temporal subsequences is as
follows

P(ψ ′, ψ, y) = P(y>i|ψ ′, ψ, y<iyi)P(ψ ′, ψ, y<i, yi)

= P(y>i|ψ)P(ψ ′, ψ, y<i, yi)

= P(y>i|ψ)P(yi, ψ |ψ ′, y<i)P(ψ ′, y<i)

= P(y>i|ψ)P(yi, ψ |ψ ′)P(ψ ′, y<i)

= βi(ψ)γi(ψ ′, ψ)αi−1(ψ ′). (5)

Attending to (5), the above-mentioned time subsequences
are therefore described by those conditional and joint
probabilities, in such a way that βi(ψ) = P(y>i|ψ) is the
conditional probability that, given the current state is ψ ,
the future sequence will be y>i, γi(ψ ′, ψ) = P(yi, ψ |ψ ′)
defines the probability that next state is ψ , and the received
symbol is yi given the previous state is ψ ′ and αi−1(ψ ′) =

P(ψ ′, y<i) determines the joint probability that at time i-th
the state is ψ ′ and the received sequence until then is y<i.
Associating the definitions of the probabilities to the grid
diagram, therefore, βi(ψ) refers to the future transitions for
moments after i-th instant and it is denoted as backward
metric, γi(ψ ′, ψ) refers to current transitions values and it
is denoted as branch metric, and αi−1(ψ ′) refers to previous
transitions for moments before i-th instant and it is denoted
as forward metric. Finally, by inserting (5) in (4) we arrive at
the final LLR expression that we will implement in the FPGA
to calculate the a posteriori probabilities of each decoder of
the proposed architecture

L(ui|y) = log

∑
U1
βi(ψ)γi(ψ ′, ψ)αi−1(ψ ′)∑

U0
βi(ψ)γi(ψ ′, ψ)αi−1(ψ ′)

. (6)

The process by which an approximate closed expression is
derived for each of the time subsequences is shown below in
order to facilitate the simplification process discussed in the
next section where the final expressions to be implemented
in VHDL are shown.

1) BRANCH METRIC COMPUTATION
Applying the definition of conditional probability, the branch
metric expression can be written as

γi(ψ ′, ψ) = P(yi, ψ |ψ ′)

= P(yi|ψ,ψ ′)P(ψ,ψ ′)

= P(yi|ψ,ψ ′)P(ui). (7)

Referring to the first factor, P(yi|ψ,ψ ′), it should been
noted that the joint occurrence of the consecutive states
Si−1 = ψ ′ and Si = ψ is equivalent to the occurrence
of the corresponding coded symbol xi in the transmitter, so,
P(yi|ψ,ψ ′) = P(yi|xi). Substituting this in (7) we obtain

γi(ψ ′, ψ) = P(yi|xi)P(ui). (8)

To define an expression for P(yi|xi), it is taking into
consideration that in a memory-less channel the successive
transmissions are statistically independent, so it can be
written than

P(yi|xi) =

N∏
m=1

P(yim|xim). (9)

In this work, in order to facilitate the hardware imple-
mentation, we consider the approximation that the channel
has been modeled under the conditions of an Additive and
White Gaussian Noise (AWGN) channel, therefore in [35] it
is shown that the expression for (9) is as follows

P(yi|xi) = C(0)i exp
{
2FR

Eb
N0
(xi · yi)

}
, (10)

where C(0)i is a constant computed from channel character-
istics such as fading or measure with the received sequence,
F is the channel fading amplitude, R is the coding rate and
Eb/N0 is the energy per bit-to-noise ratio in dB of the system.
The P(ui) calculation case is much simpler, since by defining

P(ui = ±1) =
exp {uiL(ui)}

1 + exp {uiL(ui)}
, (11)

and substituting this value in (1), we obtain, after regrouping
the terms

P(ui) = C(1)i

{
uiL(ui)

2

}
. (12)

Finally, substituting (10) and (12) into (8), we arrive at the
final expression of the branch metrics

γi(ψ ′, ψ) = C(0)i C(1)i exp
{
2FR

Eb
N0
(xi · yi)

uiL(ui)
2

}
= Ci exp

{
FR

Eb
N0
(xi · yi) uiL(ui)

}
. (13)

In the case of other channel models the metric can be
adapted to accordingly or even used as it is in eq. 13 assuming
a slight degradation in the performance.

2) FORWARD AND BACKWARD METRIC COMPUTATION
Let us define the expressions to be implemented to refer to
past and future transitions with respect to the motion in the
i-th state. Previously, the subsequence corresponding to the
past had been defined as

αi−1(ψ ′) = P(ψ ′, y<i) ⇔ αi(ψ) = P(ψ, y<i, yi), (14)

and applying definitions of probability theory [36] and
assuming again the action on a memory-less channel, the
expression for the forward metrics computation expression
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remains in a recursive calculation as defined below

αi(ψ) = P(ψ, y<i, yi)

=

∑
ψ ′

P(ψ,ψ ′, y<i, yi)

=

∑
ψ ′

P(ψ, yi|ψ ′)P(ψ ′, y<i)

=

∑
ψ ′

γi(ψ ′, ψ)αi−1(ψ ′). (15)

It is worth nothing to say that constraints of memory-less
channel is not mandatory for good performance. It is only for
ease on the explanation. For the case of the sub-sequences
corresponding to the future, the process is analogous. From
the probabilistic definition

βi(ψ) = P(y>i|ψ) ⇔ βi−1(ψ ′) = P(y>i−1|ψ
′), (16)

and following the constrains of the previous case, the
recursive expression for calculating future transitions is
defined as follows

βi−1(ψ ′) = P(y>i−1|ψ
′)

=

∑
φ

P(ψ, yi, y>i|ψ ′)

=

∑
ψ

P(y>i|ψ ′, ψ, yi)P(ψ, yi|ψ ′)

=

∑
ψ

P(y>i|ψ)P(ψ, yi|ψ ′)

=

∑
ψ

βi(ψ)γi(ψ ′, ψ). (17)

Due to the fact that (15) and (17) are recursive expressions,
it is necessary to define an initial value, in the case i = 0 for
the forward metrics and i = N in the case of the backward
metrics. In both cases, the initial value is

α0(ψ) =

{
1 ifψ = 0,
0 ifψ ̸= 0.

(18)

βN (ψ) =

{
1 ifψ = 0,
0 ifψ ̸= 0.

(19)

However, as discussed in [37], all these expressions are
too expensive to be implemented in hardware, and therefore
numerical methods have been developed that are able to
present similar results to those achieved with the previous
expressions but with lower computational cost.

C. BCJR ALGORITHM SIMPLIFICATION METHODS
In order to implement the convolutional decoder for a RSC
based on the BCJR algorithm, it is necessary to first apply
(13), and then recursively and preferably with a paralleled
structure, (15),(17), (18) and (19).

In order to achieve this goal efficiently, in [38] a method
based on natural logarithms is proposed, by which the

expressions mentioned above are altered, thus obtaining

L(γ )
i (ψ ′, ψ) = logγi(ψ ′, ψ)

= Ci + FR
Eb
N0
(xi · yi)+ uiL(ui). (20)

L(α)
i (ψ) = logαi(ψ)

= max[ψ]
(
L(α)
i−1(ψ

′) + L(γ )
i (ψ ′, ψ)

)
. (21)

L(β)
i−1(ψ

′) = logβi−1(ψ ′)

= max[ψ ′]

(
L(β)
i (ψ) + L(γ )

N−i(ψ
′, ψ)

)
. (22)

From (20), (21) and (22) it can be seen that the greatest
advantage obtained is that the multiplications have been
transformed into sums evaluated on the max[Si](·) function,
which is nothing more than the ordinary maximum function
evaluated in the current trellis state, where the highest value
is sought, which is simple to implement in VHDL’93 and
already compiled if VHDL’08 is used. This simplification
is known as the max-log-MAP algorithm. Since logarithms
are applied to recursive expressions, we must also apply
logarithms to the expressions (18) and (19), obtaining

L(α)
0 (ψ) =

{
0 if ψ = 0,
−∞ otherwise.

(23)

L(β)
N (ψ) =

{
0 if ψ = 0,
−∞ otherwise.

(24)

There is a disadvantage with this approximation, and
that is that the numerical values are slightly worse than
values obtained with the original expressions. However, such
degradation in performance are not very large and therefore
in practice this sub optimal solution makes it perfectly viable
for implementation due to the versatility it offers in terms of
simplicity of implementation and computational efficiency,
since in hardware the computational expressions would use
auxiliary Digital Signal Processors (DSPs) that with this
implementation are replaced by adders, much less expensive
and faster, leaving the DSPs free for other tasks of the
receiver.

Original BCJR algorithm has a disadvantage which is the
problem of numerical instability that occurs in (15) and (17),
since a normalization of these expressions is required for each
time i and avoid overflow. Max-log-MAP algorithm solves
this problem and does not require such normalization, which
translates as a splitting over previous results that must be
saved for subsequent iteration due to recursion, and therefore,
entails extra memory cost and auxiliary DSPs in hardware.

It is important to note that in [39] another simplification
method is proposed that gives the same numerical results as
the original solution but with less computational expense,
using the max* function, based on the Jacobian logarithm
operation and defined as

max*(θ, φ) = max(θ, φ) + log (1 + exp {1 − |θ − φ|}) .

(25)
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Algorithm 1:Max-Log-MAP Algorithm Steps
Data: ui,L(ui), i = 0
Result: L(ui|y) ∈ R
; /* Branch metrics computation */

1 while i ̸= N do
2 Compute (20) for each input ui and L(ui);
3 i++;

4 i=0;
; /* Forward and backward metrics
computation */

5 while i ̸= N do
6 Compute (21) with L(γ )

i (ψ ′, ψ);
7 Compute (22) with L(γ )

N−i(ψ
′, ψ);

8 i++;

9 i=0;
; /* A posteriori probability
computation */

10 while i ̸= N do
11 Compute (26) with L(α)

i (ψ ′), L(γ )
i (ψ ′, ψ) and

L(β)
N−i(ψ);

12 i++;

13 i=0;

This variant is known as log-MAP algorithm, but despite
giving the exact results of the original BCJR algorithm,
it requires making external auxiliary modules based on Look-
Up-Tables (LUTs) that would consume more board resources
and would also add additional clock cycles delays. Due to
that the integration of this block with the rest of the structure
would harder the complete turbo decoder and the receiver
itself, since the latter also uses LUTs based on counters
to synchronize the sending of information from one block
to another. For these reasons we have preferred to use the
max-log-MAP version, since it is simpler to implement and
allows the calculations to be performed in the same clock
cycle.

Finally, changes made in (20), (21) and (22) have an effect
on (6) where the a posteriori probabilities computation is
simplified as

L(ui|y) = max[U1]

(
L(α)
i (ψ ′) + L(γ )

i (ψ ′, ψ) + L(β)
N−i(ψ)

)
− max[U0]

(
L(α)
i (ψ ′) + L(γ )

i (ψ ′, ψ) + L(β)
N−i(ψ)

)
.

(26)

For implementation purposes, max-log-MAP algorithm
summarized steps are described in Algorithm 1 box. It must
be emphasised that while statements in Algorithm 1 box are
not apply to do a loop in hardware, they are just to note that in
the implementation should be a pipelined structure with flow
control.

FIGURE 4. SCC-Decoder full hardware block schematic.

FIGURE 5. Main block diagram of the two major stages of the proposed
turbo decoder architecture.

III. PROPOSED PIPELINED ARCHITECTURE
This section shows the schematics of the proposed design to
implement the complete turbo decoder structure in hardware.

First, Fig. 4 shows a schematic of the inputs and outputs of
the above modules. The Row-Column de-interleaver input,
which is the input of the complete SCC-decoding block,
takes the output values from the previous soft demodulator
and a trigger signal that is activated while calculating those
soft values a priori. The demodulator is designed to, on the
same clock edge, provide the soft bit corresponding to the
systematic bit and the parity bit coming out of the CC2
encoder, according to the transmission scheme shown in
Fig. 2. Once these soft bits are obtained, while the trigger
signal arriving from the demodulator is enabled, the storing
circuit is also active, which is responsible for storing the
incoming information, until finally the maximum of the
frame has been reached and the demodulator is deactivated.
Therefore, the incoming trigger signal to our block is not
more enabled and the storing circuit is stopped to perform
the interleaving and puncturing operations corresponding to
that block.

The proposal for this next block can be simplified in
the diagram in Fig. 5, where the decoder operation has
been divided into 2 main stages. The first stage consists
of decoding by inverting the steps of the proposed scheme,
where a block with the VHDL implementation of the max-
log-MAP algorithm corresponding to CC2 would be applied,
then the effect of the interleaver and the fixed puncturing
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FIGURE 6. Full block diagram for the hardware components and connections corresponding to the Row-Column de-interleaver block.

block would be undone, and finally the max-log-MAP
algorithm corresponding to CC1 would be applied again
on the processed information. These four big blocks are
collected in the purple area of Fig. 5, named as feedforward
stage, where the next step is to check the iteration on which
we are, if it has already been the last one, we take out the
calculated likelihoods to apply a hard decisor and obtain the
estimated bits, otherwise we go to the second stage. The
second step consists of an update of the a priori observations
from the first decoding block, obtaining the inputs from the
second decoding block, updating their values and applying
puncturing to them to adjust the size of the first decoding
block frame, which is fixed, due to the first decoding block
inputs always are the observations from the Row-Column de-
interleaver, which are themselves stored in auxiliary block
RAMs. Also, updated a priori observations are modified by
the original interleaver. These stage refers to green area in
Fig. 5, named as feedback stage. Data in this stage always
returns to feedforward stage.

Further details of the Row-Column de-interleaver can
be seen in Fig. 6, where the pipelined components that
compose it are shown in yellow. Also, in same figure,
it is shown several rectangular prisms in dark turquoise
blue that represent the RAM blocks where the information
used in the blocks is stored for processing. In Fig. 6,
it can be seen how the block consists of a master process,
called deinterleaver synchronizer, which is responsible for
activating each component at the right time, as it has followed
a parallel architecture and the blocks are independent, so that

when implementing on the FPGA resources are allocated
more efficiently. The master process activates the storing
circuit in such away that the input information is stored in two
RAM blocks. Subsequently, when no more data enters, the
de-interleaving + puncturing process is activated to perform
the behavior shown in Fig. 3. For this, the data is stored in
another auxiliary RAM block in the appropriate order, and
finally, reading the puncturing patterns corresponding to the
operation mode, implemented by LUTs where ‘1’ is stored if
the corresponding position is not deleted and ‘0’ if a position
on which puncturing has been performed in transmission has
to be added, the corresponding positions are added. Finally,
when the end of the LUT corresponding to the puncturing
patterns is reached, the information stored in the auxiliary
RAM block is sent to the block corresponding to the turbo
decoder.

The more detailed separate components that make up
the turbo decoder block (hardware-oriented component
implementation of the complete decoding algorithm) and
the connections between them to control the data flow
between the two stages are presented in Fig. 7. As with
the Row-Column de-interleaver block architecture, a master
process called turbodecoder synchronizer is also used here,
which is responsible for enabling each of the independent
components that perform the operations mentioned above
(activation of decoders, interleaver and puncturer circuits for
the feedforward stage, and updater, puncturer and interleaver
circuit for the feedback stage). As in the previous case, it is
shown in yellow every pipelined component used in this

VOLUME 11, 2023 7705



M. Á. P. Naranjo, V. P. Gil Jiménez: CCSDS 131.2-B-1 SCC Turbo Decoder Architecture for Efficient FPGA Implementation

FIGURE 7. Complete block diagram of the proposed hardware architecture for the corresponding turbo decoder block.

architecture and as a rectangular prism in dark turquoise
blue for RAM blocks, but in addition, two marked data
flows have been added, a purple-coloured path reflecting the
route followed in the feedforward stage and a green-coloured
path showing the route followed in the feedback stage,
in accordance with the diagram presented in Fig. 5. The
rest of the blue markers refer to the trigger signals of
the independent components, which are handled by the
turbodecoder synchronizer process.

Before explaining the control logic over the data flow,
it should be noted that depending on the used transmission
mode, the dimensions of the frames within the block will
vary. These dimensions are given in the reference standard
and can be summarised in up to two single variables in
this block: an integer variable S representing the number
of systematic bits generated in the complete encoder, and
another integer variable K representing the encoder input
frame size [32], both referring to the transmitter components.
Therefore, in the block diagram in Fig. 7, the dimensions of
the frames according to these variables have been added to all
the paths corresponding to the two main stages of the block.

The operation is therefore as follows: in the case of the first
iteration, the synchronising signals between the Row-Column
de-interleaver and the turbo decoder are only activated while
information is sent from the former to the latter, where that
information is stored in RAM blocks. Once these signals
are deactivated, the 1st convolutional decoder (corresponding

to CC2 applying max-log-MAP algorithm) starts to operate
taking a priori observations as null, since i.i.d. inputs are
considered and therefore their LLR is zero, which produces
the first set of observations a posteriori with respect to the
initial input information. These observations are reordered
according to reverse the original interleaving pattern assigned
by a LUT depending on the transmission mode, which
generates a frame of 2 observations less than the input,
as the interleaver length is S-2 according to the standard,
regardless of the transmission modes. The de-interleaved
observations are then passed through the depuncturer block,
where the dimension of the incoming frame is increased to
undo the effect of the fixed puncturing pattern applied in
transmission and match the length of the output frame of
CC1 in transmission. As explained above, this puncturing
pattern is fixed in the standard, and as in the transmitter it
consisted of removing one observation every four coming out
of CC1, this block in reception generates an extra observation
every 3 received from the de-interleaver block. Next, the
2nd convolutional decoder (corresponding to CC1 and also
applying the max-log-MAP algorithm version) is applied and
the first set of a posteriori observations of the complete turbo
decoder is obtained, finishing the operations corresponding
to first iteration of the feedforward stage. This decoder also
works with null a posteriori likelihoods, but unlike the first
one, these are not going to be updated in any iteration,
since the information about the changes of the interleaver
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and puncturer blocks are the ones used to update only the
1st decoder at the beginning of a new iteration, i.e. the
modifications are included in the first decoder. This bring us
a simpler and efficient architecture, due to it is not necessary
to do extra computation for this block. At this point, it is
evaluated whether the maximum number of iterations set has
been reached. If this is the case, the hard decision is made on
the last a posteriori likelihoods obtained, but as we are still
in the first iteration, we move on to the feedback stage, and
therefore the a posteriori likelihoods are discarded (frame of
length K) and the updated 2nd convolutional decoder input
(frame of length 2(K+2)) is sent to the 2nd convolutional
decoder block. In this way the original puncturing pattern is
performed and the interleaving operation is applied to these
observations, which finally return to the 1st convolutional
decoder block andwill be the a priori observations to be added
to the original inputs in the next iteration.

This process will be repeated until the maximum number
of iterations is reached, and as mentioned above, it will be
applied in a hard decision on the a posteriori likelihoods
coming from the 2nd decoder, such that a ‘0’ is chosen if the
likelihood is negative, and ‘1’ otherwise. An efficient way to
perform this operation in hardware is just to invert the sign bit
of the observation value to be evaluated, i.e. if we obtain an
observation whose value as a real number is negative, its sign
bit will always be ‘1’, and therefore the result of the circuit
is simply to apply a NOT gate to this bit, obtaining a ‘0’.
The same operation would be done in the case of a positive
likelihood.

IV. RESULTS AND ANALYSIS
This section describes the results obtained with the proposed
architecture. Before analysing the simulation and implemen-
tation results. It is important to note the degradation suffered
with themax-log-MAP algorithm approximationwith respect
to the optimal version described by (25). For this purpose,
Fig. 8 shows the software simulation results of the Bit Error
Rate (BER) obtained using the complete architecture for a
different number of iterations and for a low range of values
over the Eb/N0. This figure is intended to show the difference
in error correction gain achieved by applying the optimized
algorithm with the theoretical, or optimal, algorithm (much
more expensive and difficult to implement in hardware) since
both versions will correct all frame errors but with different
values of Eb/N0 (in dB).

Two groups of curves can be seen in the figure, the solid
line curves corresponding to the optimal version of the BCJR
algorithm and the dashed line curves corresponding to the
results of applying the max-log-MAP algorithm. For the case
in which only one iteration of the turbodecoder (associated
to both blue curves) is performed, the difference between the
optimal version and the simplified approach is null, since the
system has not been fed back by updating the information
a priori, so the differences between the two versions of the
algorithm cannot be appreciated. However, when a second
iteration is performed, the difference in system performance

FIGURE 8. BER results using the optimal version of the BCJR algorithm
(solid lines) and using the simplified version based on the max-log-MAP
algorithm (dashed line) for the complete turbo decoder architecture.

FIGURE 9. Beginning of the Row-Column de-interleaver input frame in
the hardware simulation.

is already noticeable, as shown by the red curves. This trend
is maintained as the number of iterations increases, being the
system able to correct all errors more drastically for a higher
number of iterations than the previous cases, until in the case
shown by the magenta and black solid lines, corresponding to
use 7 and 10 iterations respectively, the system converges and
corrects all errors for an Eb/N0 = −1 dB, and its simplified
version (associated to the dashed curves with the same colors)
shows the same behavior in the case of −0.5 dB. Therefore,
it has been decided to implement the system using 7 iterations
instead of 10 in order to realize a more efficient system that
spends less processing time and FPGA resources.

A. HDL SIMULATION
This subsection shows the hardware simulation, after having
applied the architecture described in this paper in VHDL.
Simulation is the processing of a complete frame corre-
sponding to having used transmission mode 1, consisting
of 16000 observations from the soft demodulator, will be
established with the turbo decoder set to run at 7 iterations
and operating at a clock frequency of 100 MHz. To verify
the results shown and for simplicity for the reader, integer
arithmetic is considered. For this, a random synthetic signal
of logic vectors is generated, but it will be evaluated using
the Vivado converter to signed integers, and the input signal
will be cloned with MATLAB to show that the results of the
likelihoods and the final logic signal are correct, obtaining the
same results in both tools.

The result of the hardware simulation of the Row-Column
de-interleaver block is shown in Figures 9 and 10. Fig. 9
shows the Row-Column de-interleaver own input, which
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FIGURE 10. Action time of the block corresponding to the Row-Column
interleaver.

FIGURE 11. Numeric values of the beginning of the Row-Column
de-interleaver input frame (left) and of the beginning (middle) and (right)
of the Row-Column de-interleaver output frame.

is mapped to samples received from the soft demodulator.
It can be seen in this figure how the inputs of this block
(marked with a yellow marker) correspond to the outputs of
the demodulator (named as ‘LL1’ and ‘LL2’ in the figure).
Fig. 10 presents the time transition between all the operations
corresponding to this complete block. The yellow vertical
time marker indicates the beginning of the de-interleaving
and puncturing process, and the blue marker indicates the end
and the beginning of the ejection of the modified information
to the turbo decoder. Also in this figure, it is mentioned
the beginning and the end of the modified Row-Column de-
interleaver frame, respectively, marking with blue arrows also
the positions where extra values have been added as a result
of the depuncturer process. The beginning of the frame is the
figure divided by a red dash line and the end of the same
frame is signalized with an orange dash line, all in the same
figure.

The results shown can be validated with the software
results shown in Fig. 11, where the systematic observations
have also been highlighted in blue, leaving the unmarked ones

FIGURE 12. Waveforms corresponding to the turbo decoder 1st iteration
process.

as those corresponding to parity. Blue arrows are also used to
indicate the action of the depuncturer on the corresponding
positions.

Fig. 12 shows all the trigger signals corresponding to the
subsystems involved in the decoding for a single iteration.
The signals ‘y1’ and ‘y2’ are the outputs of the Row-Column
interleaver, while the signals highlighted with an orange box
symbolize the activation of each of the blocks that make
up the turbo decoder architecture. It is shown how these
signals are activated sequentially to maintain the flow of
the complete turbo decoding algorithm, and also the end of
the second decoder (where the max-log-MAP algorithm has
been applied for the second time in this first iteration) has
been marked with a circle and a red arrow to symbolize that
this is where the likelihoods of interest to be evaluated are
obtained after a fixed number of iterations (7 according to the
gain simulation measurements as indicated at the end of the
second paragraph of section IV). Finally, separated by a red
and orange dashed line, the numerical values of the beginning
and end of the plot, respectively, of final likelihoods obtained
in the first iteration of the architecture are shown. These
values are to be compared with those obtained in the software
simulation to check the correct functioning of the architecture
in hardware.

These trigger signals are responsible for enable each of
the sub-circuits marked in yellow in Fig. 7 in the appropriate
order tomaintain the correct flow of the algorithm. According
to the label used for each signal in Fig. 12, it is summarized
in Table 1 which sub-circuit is activated and which function
each activation signal performs.

Fig. 13 presents the numerical values of the output of the
first decoder for each of the iterations in software simulation,
to validate the data of the algorithmwritten in VHDL. The left
column shows the values at the beginning of the frame and the
right column shows the values at the end of the frame.

Fig. 14 shows the waveforms obtained when the complete
decoding process has been completed, reaching themaximum
number of configured iterations. In the figure itself, an orange
grid has been added in the part according to the trigger signals
that divide the activation’s of each iteration. It can be seen
how the patterns of the activation signals are repeated during
all iterations, according adapting to the behavior seen in
Fig. 12, where in addition a trigger signal is activated which is
held at ‘1’ for the rest of the iterations and returns to ‘0’ when
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TABLE 1. Associated circuits and functions of each trigger signal shown in Fig. 12.

FIGURE 13. Beginning (left) and end (right) of the numerical values frame
for the feedforward stage output observations for all iterations.

FIGURE 14. Waveforms corresponding to performing the turbo decoder
iterations.

the iteration is finished and the hard decision is about to be
made. Below, separated with a dashed red line, the update of
the values of the likelihoods of interest on which to do in the
last iteration the hard demodulation and obtain the estimated
bits of the frame is shown. It can be seen how the behavior
of the previous figure is maintained without anomalies in
each iteration. At the beginning, it has been marked with a
red circle the activation of the signal called in the figure as
‘SET-UP-F’, which is activated only in the first iteration, and
remains off in the rest of iterations, since this signal only
indicates that the original input values onwhich it is necessary
to iterate have been stored inmemory. Likewise, with a purple
circle we have marked the end of the last iteration, where

FIGURE 15. Bits obtained after performing the hard decision process in
software simulation. Initial (left) and final values (right).

only the signal ‘HARD-D-F’ is activated, which applies hard
demodulation on the last likelihoods calculated to obtain bits,
with the method explained in the last paragraph of Section III.
Therefore, the behavior is shown to be correct since there are
markers at the beginning and end of the architecture.

Finally, the results of the hard decision process are shown
in figures 20-22. Fig. 20 simply shows the results of applying
the proposed software architecture on the signed integer
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FIGURE 16. Beginning of the bit frame obtained at the output of the SCC-decoder block.

FIGURE 17. End of the bit frame obtained at the output of the SCC-decoder block.

TABLE 2. Resources used by the FPGA after synthesising the proposed
architecture.

results used in this simulation. Figures 21 and 22 present the
start and end of the bit frame obtained after the complete
decoding process, respectively. Also, in these figures, the
value of the corresponding bit at each clock edge has been
marked to make it easier to compare the results.

B. SYNTHESIS RESULTS
Once it has been shown that the hardware description of
the proposed architecture shows waveforms that suit our
objectives, we move on to synthesise the circuit to see the
resources it consumes. The synthesis tool used is Vivado
and, as mentioned before, the FPGA is the Xilinx Zynq
UltraScale+ RFSoC ZCU28DR model. The results of the
synthesis are summarised in Table 2.
This table 2 shows that the proposed architecture as awhole

expends 6914 LUTs, 2542 Flip-Flops (FF), 273.5 RAM
blocks (BRAM), 28 input-output (IO) nets and 1 clock
buffer (BUFG). It should be emphasised that the BRAM
components used in this design refers to the set of memories
used in the design, as the architecture in general uses
39 memories, distributed as follows: 12 RAMs of 207 Kbits,
12 RAMs of 180 Kbits, 2 RAMs of 174 Kbits, 3 RAMs
of 168 Kbits, 3 RAMs of 126 Kbits, 2 RAMs of 92 Kbits,
2 RAMs of 87 Kbits and 3 RAMs of 84 Kbits. These sizes
are related to the turbo decoder parameters in the standard,
which define the frame lengths with which it operates. In this
way, it is possible to customise the RAMs to be used in the
circuit and use the right amount of bits to implement the
hardware. Thus, a component such as the decoder that usually
consumes a lot of receiver resources has been optimized to

FIGURE 18. Main view of synthesized circuit. The Row-Column
De-inteleaver is marked in green and the turbodecoder block is marked in
red.

FIGURE 19. Some implemented and encapsulated sub-circuits of
Figure 17 inside the turbodecoder block.

use around 25% of the FPGA’s available BRAMs. The rest of
the resources used are residual considering all those available.

The synthesis results shown can be graphically com-
plemented with the RTL models that Vivado generates
from the VHDL code written to implement the equations
corresponding to the proposed architecture. Figure 18 shows
the two major components of the architecture, which are
the Row-Column de-interleaver (marked in green) and the
turbodecoder block (marked in red).

Within the turbodecoder block, the submodules of Figure 7
are implemented, some of which are shown in Figure 18.
However, it should be noted that for the system to function
correctly, a large number of primitives are generated that
clutter the canvas, so a zoom of the complete block is
provided. In this figure the initial RAMs have been marked
in red, used to store the initial frames coming from the
Row-Column de-interleaver so that they can be used at the
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TABLE 3. Summary of results of timing test on the proposed implemented architecture running at 100 MHz.

FIGURE 20. Full RTL implementation of turbodecoder block.

beginning of each iteration of the algorithm and not be
lost in the following clock edges, and in green the circuits
corresponding to the implementation of the max-log MAP
algorithm have been marked. You can also see other blocks of
the architecture such as the de-interleaver or the de-puncturer
and see the connection between them, i.e., how the blocks
are connected and how the signals enter according to the
workflow shown in Figure 17. It should be noted that without
making cuts and zooming the images, a large number of
primitives are generated, which, as mentioned above, occupy
the entire canvas. This case is shown in Figure 19, where it
can be seen how you get very little information from the full
RTL implementation. This does not matter at the hardware
level of the FPGA since its ability to work in parallel allows
using different areas of the board to perform operations and
modules at the same time. That’s why, to facilitate the reading
of the paper and not to introduce too much information about
the implementation that would complicate its reading, only
some details in the implementation are indicated to give a
more precise vision.

C. IMPLEMENTATION RESULTS
Finally, the results of implementing the architecture described
during this work are shown. In the case of end resource
usage, it is the same as shown in Table 2 except that the
implemented design uses 6807 LUTs instead. For the case
when timing constrains are evaluated, results are shown in
Table 3. It should be remembered that implementation has
been carried out for a clock frequency of 100 MHz. These
results reveal that timing requirements are very comfortably
met in the WNS and WPWS measurements, so higher
frequencies could be used. The results on the WHS measure
are a little tighter, but this is to be expected since this
measurement occurs according to the worst case FPGA
resources hold up, and more taking into account that many
BRAMs components are used where there have to be a
lot of connections between LUTs, nets and these blocks,

TABLE 4. Summary of results of the power test carried out on the
proposed implemented architecture.

FIGURE 21. Summary of power expended by each on-chip component.

which affects the performance, but as the results show it is
not a problem in the implementation. In the case of power
consumption, the results are quite good as there is still a lot
of thermal margin. These results are shown in Table 4.

In addition, as the resources used in the implemented
design have been analysed, a breakdown of the individual
power consumed by each component on these on-chip
resources is added in Fig. 21. As expected, the BRAM blocks
represent the highest consumption of the FPGA due to the
fact that they represent the largest number of components
used in the proposed design. All these implementation results
are due to the routing positioning shown in Fig. 22, where
a schematic of the FPGA is shown and the primitives that
have been assigned to each of the processes describing the
proposed architecture are marked in blue. It can be seen how
the implementation tool has decided to put the primitives in
the northern part of the device, i.e. those areas with a higher
value for the Y coordinates with respect to the different clock
sections.
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FIGURE 22. Implemented design on the FPGA device.

V. CONCLUSION
The work presented in this paper proposed a simple
architecture for the implementation in the Xilinx Zynq
UltraScale+RFSoC ZCU28DR evaluation board a decoding
scheme valid for the SCC Turbo Coding Scheme block
suggested in the CCSDS 131.2-B-1 standard. The algorithms
to be implemented in the design have been detailed as well as
complete and explained schemes on the data flow treatment
and the nets connections that would be necessary to be
able to be implemented in hardware. In addition, a structure
consisting of independent components has been presented
that favours a pipeline architecture, separating as much as
possible the resources to be used by the FPGA, which is
an advantage for the efficiency of the design. Results have
been presented on a hardware simulation based on integer
arithmetic to simplify the validation of results, showing that
the results match the software simulation results and proving
the effectiveness of the proposed architecture. Finally, it has
been verified that the design is synthesizable and passes the
time and temperature tests running the device at 100 MHz,
as well as presenting the resources consumed by the FPGA,
which are used in a very small percentage with respect to
those provided by this board and a scheme of the implemented
design on the device. Although the proposed scheme in this
paper is for the standard CCSDS 131.2-B-1, the ideas and
architecture can be easily extrapolated to other serial-based
turbodecoder scheme what makes the contribution of this
paper more valuable.

REFERENCES
[1] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.

Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.
[2] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon limit error-

correcting coding and decoding: Turbo-codes. 1,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), vol. 2, May 1993, pp. 1064–1070.

[3] C. Berrou andA. Glavieux, Turbo Codes. Hoboken, NJ, USA:Wiley, 2003.

[4] BTM Synchronization and Channel Coding: Blue Book, Consultative
Committee for Space Data Systems, Standard CCSDS 131.2-B-0,
Mar. 2013.

[5] Low-density Parity-Check Codes for use in Near-Earth and Deep Space
Applications. Experimental Specification, Standard CCSDS 131.1-O-0.4,
Consultative Committee for Space Data Systems, Mar. 2006.

[6] Use of DVB-S2 ETSI Standard in High Data Rate Telemetry for Near
Space-Earth Transmissions. Experimental Specification, Standard CCSDS
131.1-O-0.4, Consultative Committee for Space Data Systems,
Mar. 2006.

[7] G. Battail, ‘‘Weighting of the symbols decoded by the Viterbi algorithm
(in French),’’ Ann. Télécommun., vol. 42, pp. 31–38, Jan. 1987.

[8] J. Heller and I. Jacobs, ‘‘Viterbi decoding for satellite and space
communication,’’ IEEE Trans. Commun. Technol., vol. CT-19, no. 5,
pp. 835–848, Oct. 1971.

[9] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, ‘‘A soft-input soft-
output maximum a posteriori (MAP) module to decode parallel and serial
concatenated codes,’’ Telecommun. Data Acquisition Prog. Rep., vol. 42,
pp. 1–20, Nov. 1996.

[10] A. J. Viterbi, ‘‘An intuitive justification and a simplified implementation of
the MAP decoder for convolutional codes,’’ IEEE J. Sel. Areas Commun.,
vol. 16, no. 2, pp. 260–264, Feb. 1998.

[11] S. Benedetto and G. Montorsi, ‘‘Performance of continuous and blockwise
decoded turbo codes,’’ IEEE Commun. Lett., vol. 1, no. 3, pp. 77–79,
May 1997.

[12] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ‘‘Optimal decoding of linear
codes for minimizing symbol error rate (Corresp.),’’ IEEE Trans. Inf.
Theory, vol. IT-20, no. 2, pp. 284–287, Mar. 1974.

[13] P. Robertson, P. Hoeher, and E. Villebrun, ‘‘Optimal and sub-optimal
maximum a posteriori algorithms suitable for turbo decoding,’’ Eur. Trans.
Telecommun., vol. 8, no. 2, pp. 119–125, Mar. 1997.

[14] M. Jezequel, C. Berrou, C. Douillard, and P. PENARD, ‘‘Charac-
teristics of a sixteen-state turbo-encoder/decoder (Turbo4),’’ in Proc.
Int. Symp. Turbo Codes Rel. Topics, Brest, France, Sep. 1997,
pp. 280–283.

[15] S. A. Barbulescu, ‘‘Turbo codes on satellite communications,’’ in
Turbo Code Applications: A Journey from a Paper to Realization,
K. Sripimanwat, Ed. Dordrecht, The Netherlands: Springer, 2005,
pp. 257–299, doi: 10.1007/1-4020-3685-X_11.

[16] M. Rice, P. Gray, S. A. Barbulescu, andW. N. Farrell, ‘‘Bandwidth efficient
turbo coding for high speed mobile satellite communications,’’ 1997.

[17] S. S. Pietrobon, ‘‘Implementation and performance of a turbo/MAP
decoder,’’ Int. J. Satell. Commun., vol. 16, no. 1, pp. 23–46,
Jan. 1998.

[18] Introduction to CDMA2000 Standards for Spread Spectrum Systems, 3rd
Generation Partnership Project Jul. 1999.

[19] Physical Layer Standard for CDMA2000 Spread Spectrum Systems, 3rd
Generation Partnership Project, Jul. 1999.

[20] D. Wisdom, E. Ajayi, U. Arinze, O. Aladesote, A. Ganya, H. Idris,
and D. Wisdom, ‘‘IEEE compter society–Nigeria—Technical paper series
a comprehensive survey on power saving schemes (CSPSS) in IEEE
802.16e/m networks,’’ Jul. 2021.

[21] H. A. Latchman, S. Katar, L. Yonge, and S. Gavette, ‘‘The Home-
Plug AV network architecture,’’ in Homeplug AV and IEEE 1901:
A Handbook for PLC Designers and Users, 2013, pp. 12–17, doi:
10.1002/9781118527535.ch2.

[22] S. Li, B. Bai, J. Zhou, P. Chen, and Z. Yu, ‘‘Reduced-complexity
equalization for faster-than-Nyquist signaling: New methods based on
Ungerboeck observation model,’’ IEEE Trans. Commun., vol. 66, no. 3,
pp. 1190–1204, Mar. 2018.

[23] F.-L. Luo and C. Zhang, Faster-than-Nyquist Signaling for 5G Communi-
cation. Chichester, U.K.: Springer, 2016, pp. 24–46.

[24] J. Fan, S. Guo, X. Zhou, Y. Ren, G. Y. Li, and X. Chen, ‘‘Faster-than-
Nyquist signaling: An overview,’’ IEEE Access, vol. 5, pp. 1925–1940,
2017.

[25] V. K. Veludandi, ‘‘BCJR vs SOVA for a practical coherent turbo coded
OFDMsystem,’’ inProc. 10th Int. Conf. Comput., Commun. Netw. Technol.
(ICCCNT), Jul. 2019, pp. 1–5.

[26] K. Vasudevan, ‘‘Coherent detection of turbo-coded OFDM signals
transmitted through frequency selective Rayleigh fading channels with
receiver diversity and increased throughput,’’ Wireless Pers. Commun.,
vol. 82, no. 3, pp. 1623–1642, Jun. 2015.

7712 VOLUME 11, 2023

http://dx.doi.org/10.1007/1-4020-3685-X_11
http://dx.doi.org/10.1002/9781118527535.ch2


M. Á. P. Naranjo, V. P. Gil Jiménez: CCSDS 131.2-B-1 SCC Turbo Decoder Architecture for Efficient FPGA Implementation

[27] J. H. Kang and W. E. Stark, ‘‘Turbo codes for noncoherent FH-SS
with partial band interference,’’ IEEE Trans. Commun., vol. 46, no. 11,
pp. 1451–1458, Nov. 1998.

[28] H. El Gamal and E. Geraniotis, ‘‘Turbo codes with channel estimation and
dynamic power allocation for anti-jam FH/SSMA,’’ in Proc. IEEE Mil.
Commun. Conf. (MILCOM), vol. 1, Oct. 1998, pp. 170–175.

[29] J. H. Gass, P. J. Curry, and C. J. Langford, ‘‘An application of turbo trellis-
coded modulation to tactical communications,’’ in Proc. MILCOM. IEEE
Mil. Commun. Conf., Oct. 1999, pp. 530–533.

[30] S. Jiang, P. W. Zhang, F. C. M. Lau, C.-W. Sham, and K. Huang, ‘‘A turbo-
Hadamard encoder/decoder system with hundreds of Mbps throughput,’’
in Proc. IEEE 10th Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC),
Dec. 2018, pp. 1–5.

[31] A. Louliej, Y. Jabrane, V. P. Gil Jiménez, and A. García Armada, ‘‘Practical
guidelines for approaching the implementation of neural networks on
FPGA for PAPR reduction in vehicular networks,’’ Sensors, vol. 19, no. 1,
p. 116, Dec. 2018.

[32] Flexible Advanced Coding and Modulation Scheme for High Rate Teleme-
try Applications: Blue Book, Standard CCSDS 131.2-B-1, Consultative
Committee for Space Data Systems, Mar. 2012.

[33] A. Lamoral Coines and V. P. G. Jiménez, ‘‘CCSDS 131.2-B-1 trans-
mitter design on FPGA with adaptive coding and modulation schemes
for satellite communications,’’ Electronics, vol. 10, no. 20, p. 2476,
Oct. 2021.

[34] E. Boutillon, C. Douillard, and G. Montorsi, ‘‘Iterative decoding of
concatenated convolutional codes: Implementation issues,’’ Proc. IEEE,
vol. 95, no. 6, pp. 1201–1227, Jun. 2007.

[35] P. Robertson, ‘‘Illuminating the structure of code and decoder of parallel
concatenated recursive systematic (turbo) codes,’’ in Proc. Commun.,
Global Bridge (GLOBECOM), Dec. 1994, pp. 1298–1303.

[36] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester, A Modern
Introduction to Probability and Statistics: Understanding Why and How.
London, U.K.: Springer, 2005.

[37] J. Erfanian, S. Pasupathy, and G. Gulak, ‘‘Reduced complexity symbol
detectors with parallel structure for ISI channels,’’ IEEE Trans. Commun.,
vol. 42, no. 234, pp. 1661–1671, Apr. 1994.

[38] W. Koch and A. Baier, ‘‘Optimum and sub-optimum detection of coded
data disturbed by time-varying intersymbol interference (applicable to
digital mobile radio receivers),’’ in Proc. IEEE Global Telecommun. Conf.
Exhib., vol. 3, Dec. 1990, pp. 1679–1684.

[39] P. Robertson, E. Villebrun, and P. Hoeher, ‘‘A comparison of opti-
mal and sub-optimal MAP decoding algorithms operating in the log
domain,’’ in Proc. IEEE Int. Conf. Commun., vol. 2, Nov. 1995,
pp. 1009–1013.

MIGUEL ÁNGEL PÉREZ NARANJO received the
B.S. and M.S. degrees in telecommunication from
the University Carlos III of Madrid, in 2019 and
2021, respectively. In addition to working in the
private sector in Spain, most of his research
career has been focused as a Senior Research
Assistant at the University Carlos III of Madrid,
from 2020 to 2022, where he has also partici-
pated in international projects. His research inter-
ests include advanced beamforming techniques

and hardware implementation of hybrid algorithms applied to satellite
communications.

VÍCTOR P. GIL JIMÉNEZ (SeniorMember, IEEE)
received the B.S. degree (Hons.) in telecommu-
nication from the University of Alcalá, in 1998,
and the M.S. and Ph.D. degrees (Hons.) in
telecommunication from the Universidad Carlos
III de Madrid, in 2001 and 2005, respectively.
He was a Communications Staff with the Spanish
Antarctica Base, in 1999. He visited the University
of Leeds, U.K., in 2003, Chalmers Technical
University, Sweden, in 2004, and the Instituto

de Telecommunicaçoes, Portugal, from 2008 to 2010. He is currently
an Associate Professor with the Department of Signal Theory and
Communications, Universidad Carlos III de Madrid. He has also led
several private and national Spanish projects and participated in several
European and International projects. He holds one patent. He has published
more than 80 journal articles/conference papers and nine book chapters.
His research interests include advanced multicarrier systems for wireless
radio, satellite, and visible light communications. He received the Master’s
Thesis and the Ph.D. Thesis Award from the Professional Association of
Telecommunication Engineers of Spain, in 1998 and 2006, respectively.
He held the IEEE Spanish Communications and Signal Processing Joint
Chapter Chair, from 2015 to 2023.

VOLUME 11, 2023 7713


