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ABSTRACT Massive electrical load exhibits many patterns making it difficult for forecast algorithms
to generalise well. Most learning algorithms produce a better forecast for dominant patterns in the case
of weekday consumption and otherwise for less dominant patterns in weekend and holiday consumption.
In view of this, there is the need to cluster the load patterns, so learning algorithms can focus on the patterns
independently to produce forecasts with better accuracy for all cases. However, clustering time-series
data breaks the time-series dependency, making model training difficult. This paper presents a novel
sequence-to-sequence cluster framework to reform time-series dependency after clustering; this enables
independent clusters to be modelled using Convolutional Neural Network-Gated Recurrent Unit, which
learns spatiotemporal features for future forecasts. A real-world dataset by the Korea Power Exchange
composed of nationwide consumption is used for case studies and experiments. Experimental results verify
that the proposed study effectively improves the accuracy of electric load forecasting by about 50%, with a
WAPE of 0.67%. The proposed method also speeds up the training process of the forecast algorithm by about
35%, given that only a subset of the dataset is trained due to clustering. Korea Water Resources Corporation
has implemented the proposed method for load forecasting and system marginal price estimation.

INDEX TERMS Convolutional neural network-gated recurrent unit (CNN-GRU), feature engineering, k-
means clustering, LightGBM classifier, sequence-to-sequence forecast, short-term load forecast (STLF).

I. INTRODUCTION
Rapid technological advancements have accelerated energy
consumption in buildings across all walks of life [1].
Modern building energy systems integrate resources, such
as electric vehicles (EVs) and heating, ventilating, and
air conditioning (HVAC), for smart grid scheduling [1].
With this growth comes the need to increase energy
production and introduce different energy mixes into the
grid; this is a concern owing to the high emission of
greenhouse gases associated with electricity production,
inefficiencies related to energy consumption, and high
tariff on energy consumption [2]. Energy generation and
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consumption planning need to be enforced to mitigate
these problems. This can be achieved through accurate load
forecasting.

Load forecasting can also assist in the scheduling system
marginal price (SMP) for energy market optimisation. The
SMP price forecast is vital for optimal bidding on the energy
market for market stabilisation and economic benefit. Since
load power demand and SMP are closely related, an accurate
load forecast must be considered to determine the exact
hourly SMP [3].

To this end, much research has been conducted on elec-
trical load forecast for economic benefit, efficient operation,
and building energy management.

Load forecasting can be categorised into statistical-based
forecasting and artificial intelligent-based forecasting [4].
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Statistical-based forecasting applies mathematical theory
to model time series patterns. Examples include Linear
Regression (LR), Support Vector Machines (SVM), and
Autoregressive Integrated Moving Average (ARIMA) mod-
els [5], [6], [7]. These methods and their variant employ
powerful time-series techniques that are simple to use with
high computation speed. Nonetheless, since these methods
are bent on the stationarity of time series, they have very
low accuracywhen forecasting electrical loads with high non-
linear features.

Comparatively, neural network-based artificial intelligence
models mimic the human brain and have shown impressive
results in learning important details from massive power
load data. There are various types of Artificial Intelligence
(AI) forecasting models, aka machine learning techniques.
References [8] and [9] proposed a Back Propagation Neural
Network (BPNN) power load forecasting for electricity grids
with reasonable accuracy. However, BPNN suffers from
overfitting and does not generalise well. By default, they
can also not capture non-linear hidden features such as time
dependency, trends, and seasonality. Due to this, feature
engineering that captures time-series trends and seasonality
needs to be integrated [10].

Over the years, Recurrent Neural Network (RNN) has
proved effective and suitable for time-series load forecasting
as it is capable of non-linear problems. Reference [11]
discusses household load forecasting via an RNN. However,
it suffers from a diminishing gradient, making it forgetful and
falling short in practical application.

Long short-term memory (LSTM) is an improved RNN
that considers long-term correlations in a dataset. Refer-
ences [12] and [13] applies LSTM to better electric load
forecasting accuracy. Although the LSTMnetworks are better
at dealing with time-series data, one main drawback is that
they capture temporal variations in sequential data while
ignoring correlations between the input features.

A Gated recurrent unit (GRU) network mitigates the
shortfall of LSTM networks. Reference [14] proposes a
GRU model to forecast energy consumption. Comparatively,
GRU architecture is simple and has fewer parameters with
a faster convergence time than LSTM. However, neither
LSTM nor GRU is capable of analysing discontinuous
data. The study by [15] and [16] employed an ensemble
LSTM hybrid model to forecast electric load accurately. The
comparative analysis validated the efficiency of the proposed
method.

Convolutional Neural Network (CNN) is mostly used to
extract special features from a dataset [17]. Spatial features
provide contextual information and a visual appearance
of a section of the load profile (pattern), while tempo-
ral characteristics define the relative correlation between
load records [18]. In such a case, the one-dimensional
CNN shows unique advantages of extracting non-linear
features from electric load data. Many researchers resort
to CNN and LSTM/GRU to extract spatiotemporal fea-
tures for load forecasting. The works in [19] and [20]
employed CNN-LSTM and CNN-GRU hybrid models

for load forecasting; comparative results show higher
accuracy than electric load forecasting with non-hybrid
models.

Though CNN-GRU shows relatively promising results in
accuracy, its training process is time-consuming; also, when
the load data exhibit high non-linearity, such as multiple
seasonality, its accuracy reduces [21]. To mitigate the issues
above, most researchers introduce clustering to extract and
separate non-linear patterns in load consumption for accurate
forecasting. Reference [22] proposes load forecasting for
individual users of a building. This method uses k-means
to cluster a load of multiple users into similar groups.
A Back Propagation Neural Network (BPNN) is utilised
for short-term load forecasting. Reference [23] developed
a Pyramid-CNN model for feature extraction by taking
advantage of its convolutional layers; also, the pyramidal
architecture allows for complexity reduction; the DBSCAN
algorithm is employed to group similar electricity users and
provide group predictions. The work in [10] proposed a
load forecasting framework employing clustering for pattern
extraction and a classification method to label the data
patterns for future forecasts. Clustered labels with historical
data generate and encode categorical features for future
forecasts. Reference [24] presented K-means clustering with
CNN network for load forecast, big data is clustered into
sub-datasets to train a CNN model to improve forecast
accuracy.

As big data exhibit different patterns of variable pro-
portions, the future forecast does not generalise well in
some cases. In the case of electric load, weekday forecasts
are primarily good while weekends and holidays fail
woefully [25]; a way around this is a process of tuning, which
takes much time and cannot guarantee success [26]. Weekend
and holiday load forecasts for planning energy management
systems are equally important; when scheduling SMP for
energy market optimisation, significant forecast errors lead
to high economic penalties [3]. To mitigate this problem,
it is prudent to isolate possible similar partners in a dataset
as a cluster and use the individual clusters to learn futures
forecasts independently. The problem with this approach is
that the cluster a future forecast belongs to needs to be
determined beforehand. Reference [10] proposed an early
classification method to determine future forecast horizons
ahead of time using the Light Gradient Boosting Machine
algorithm (LightGBM or LGBM), but the forecast model
uses this information for feature extraction and not direct
forecast.

The clustering notion for time-series data can be based on
the divide and conquer method that has proven beneficial in
engineering applications where large or complicated systems
are solved by dividing large problems into smaller bits that
are easy to solve [27].

The divide and conquer notion are employed in cluster
learning, where a large dataset is clustered into distinct
profiles, with each profile organised into a specific sequence
for improved learning and forecasting; thus, the focus of this
paper.
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To this end, most of the clustering methods, as discussed
in [19], [20], [21], and [22], fall under two categories:

1. Ensemble methods: Electric load is clustered into
various patterns; each cluster pattern is passed to a
learning algorithm for cluster forecasts. The cluster
forecasts are then recombined into a single future
forecast using an ensemble method. These have a
similar drawback as most ensemble methods discussed
above.

2. Feature extraction: These methods utilise clustering to
extract features from the electric load data, in con-
junction with times series data, which are passed to a
learning algorithm for future forecasts.

The uniqueness of our proposed method is to provide
individual cluster forecasts: this aims at clustering electric
load into various consumption patterns. The most suitable
cluster is selected for training to forecast future loads based
on prior information of the coming day. Since there can
be many clusters, deciding the right cluster to train for
future forecasts is non-trivial. Also, after clustering, the long-
term time-series relationship in the data is broken, making
learning difficult. We propose a framework to reform the
time series data after cluster learning to resolve the time-
series dependency for cluster learning. There is also the need
to model irregular time information of power consumption,
non-linear patterns, and spatial information of all clusters for
accurate load forecasting.

This paper proposes a novel sequence-to-sequence cluster
learning and forecasting framework with the following
contributions.

1. A new framework: Owing to the multimodal nature
of electric load, K-means clustering with dynamic
time wrapping (DTW) is used to identify different
consumption patterns in the dataset; the proposed
framework is designed to reform time series depen-
dency after clustering. A CNN-GRU algorithm is
used to adaptively learn spatiotemporal characteristics
of each time-series cluster to improve load forecast
accuracy.

2. Efficient inference: To identify the best cluster model to
forecast future loads, an efficient LightGBM Classifier
based on prior knowledge extracted from the future day.

3. Verification via real-world data: With a real-world
historical dataset by Korea Power Exchange (KPX),
we compare classical forecast methods and up-to-date
learning algorithms by performing a case study on the
dataset.

The rest of the contents are arranged as follows: Section II
discusses the proposed framework. Section III describes the
simulation process via a case study. Section IV presents ana-
lytical results and discusses them, and Section V summarises
the results and conclusions.

II. PROPOSED FRAMEWORK
The proposed framework isolates load consumption patterns
using clustering and reforms the time series dependency to
produce a cluster sequence-to-sequence dataset, as depicted

in Figure 1. This enables learning algorithms to focus more
on each clustered pattern to improve forecast accuracy. This
session discusses details of the proposed framework.

FIGURE 1. Proposed architecture.

A. DATA PRE-PROCESSING
In the current age of big data, processing high volume and
diverse data is required since data suffer from anomalies such
as missing data and outliers. When these are significant, they
pose a problem for model learning; the data needs to be
processed in advance to favour practical model training and
forecasting. Times series noise in the form of missing data
can be observed as an instance(time) record with ‘‘nan‘‘ or
a blank value or a missing(absent) time record. These noise
effects significantly affect forecast quality when the amount
is significant. In this research, we resort to Copy-Paste
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Imputation (CPI) technique which accounts for the total
energy gaps in time series data using past data estimates [28].

Data values that might differ significantly from similar
day/time expected values are outliers. In order to address
the problem, there is a need to identify the outliers and find
the root cause, if possible. In electric demand, outliers may
occur due to equipment faults and catastrophes. These may
be identified as a one-off or recurring event [29].

One effective method of identifying outliers is the gener-
alised extreme studentised deviation (ESD) [30]. Generally,
if the outlier is one-off and sporadic due to an error, we treat
it as missing data and use the method discussed in [28] to
resolve it. However, if the outlier is recurring, it is helpful to
isolate and forecast them separately. Outliers, in this case, can
be clustered, and their results are factored in as features of the
dataset so that the forecasting algorithm can learn from the
information [10]. This is where the proposed method shines,
as clustered outlier information can be used as features;
outliers can also be isolated and forecasted separately.

B. FEATURE ENGINEERING
From empirical evidence, factors that affect consumption
can be categorised into weather, trend, and time series [28].
With the knowledge of these factors, future forecasts can be
made even for multiple horizons ahead with less uncertainty.
Feature engineering involves extracting useful information
that our algorithm can easily interpret [10]. Table 1 details
useful features considered in this paper.

• Weather factors
Weather factors influence electrical load consumption pat-
terns significantly. Seasonal trends arise due to seasons such
as winter and summer, where consumptions are highest
due to the mass use of equipment like heaters and air-
conditioners [31]. On the other hand, spring and fall seasons
record low consumption as the weather is warmer, with less
dependency on coolers or heaters.

• Trend factors
These factors influence load consumption due to a specific
day, week, month, season, or event. These can be detailed as
the differences in electricity consumption on working days
identified as weekdays and non-working days as weekends
and holidays [32]. Consumption differences can be narrowed
down to a specific day with working and non-working
hours. Commercial entities such as factory companies
usually operate on working days, while shopping malls and
other entertainment venues experience peak consumption on
weekends and holidays; from a daily perspective, enterprise
and entertainment venues experience higher consumption in
the evenings than during the day. Residential units consume
more energy in the mornings and evenings than in the
afternoons, and midnight on working days, holidays and
weekends have a complex consumption. As important as
daily trends are, so are the transitions from one trend to
another. Since notable trends can be identified for weekdays,
weekends, and holidays, transitions, where a specific day is
before or after a weekday, weekend, or holiday, are also vital
information to consider.

TABLE 1. Feature set.

• Recency factors
The electric consumption exhibits recency characteristics,
thus indicating a high correlation between the immediate
past and a scale factor [33]. In this paper, lag features
are engineered to represent the correlation between electric
consumption at a time instance and that of immediate past
times. 24-hour lag horizons (lag 1∼lag 24) are selected as
features.

• Periodic factors
These factors reflect the cyclic nature of calendar days and
times. Periodic features are extracted from time series load
as a cyclic event [34]. Periodicity in electric consumption
over the calendar days and trend factors such as season,
month, year, and hour of a day is considered to represent the
corresponding sine and cosine transformations:

c1 (t) = sin( 2π ftT ) (1)

c2 (t) = cos( 2π ftT ) (2)

where t is the time a feature value was observed; ft is the value
of a periodic feature at time t; T represents the period, e.g. for
cycles observed in a year, T = 365(6), weekly cycles T = 52,
and daily cycle T = 24.

For the discrete features, one-hot encoding is used to
encode feature values as 1 or -1. The summary of the features
considered for training is shown in Table 1. Features are
usually normalised before being fed to the neural network.
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It is beneficial for the training process. It eliminates the
difference in magnitude between the features in the dataset,
improving network stability. Features that are not cyclic nor
one-hot encoding are normalised between [1, −1] using the
min-max normalisation (3).

x∗
n =

xn − xmin
xn − xmax

, n = 1, 2, . . . ,N (3)

where x∗
n is normalised dataset value;xn is the n-th dataset

sample; xmin and xmax represent the minimum and maximum
of the dataset.

Considering the features discussed above, the load fore-
casts at a time t can be expressed as (4):

ŷt = f
(
TNt

)
+ f

(
WR
t

)
+

∑
lag

f(Yt−lag) (4)

where ŷt is the future load forecast, f
(
TNt

)
is a function of

trend factors, N is the number of trend factors, f
(
WR
t
)
is

a function of weather factors, R is the number of weather
factors, f(Yt−lag) is a function of recency factors and Yt−lag
is the consumption at t − lag, and lag = {1, 2 . . . 24}.

C. FEATURE EXTRACTION
According to the features summarised in Table 1, we deter-
mine and select features that strongly correlate to the electric
load. This is necessary because although many features can
improve forecast accuracy, they can also adversely affect the
training time and the variance of the model.

The correlation between dataset features and load con-
sumption patterns is evaluated via Distance correlation (DC).
DC measures the association between paired random vari-
ables of linear or non-linear nature with flexible dimensions.
The DC coefficient of a paired variable is zero if and only if
they are independent [35]. The confusion correlation matrix
between the electric load and the d-th feature is evaluated
using (5). This is the ratio of relative distance covariance
between the paired variables to the product of their standard
deviation.

dCor
(
Xd ,Y

)
=

dCov2(Xd ,Y )√
dVar(Xd )dVar(Y )

(5)

dCov2
(
Xd ,Y

)
=

1
n2

n∑
i=1

n∑
j=1

Ai,jBi,j (6)

dVar2
(
Xd

)
=

1
n2

n∑
i=1

A2i,j (7)

dVar2 (Y) =
1
n2

n∑
i=1

B2i,j (8)

Ai,j = ai,j − āi − āj − a.. (9)

Bi,j = bi,j − b̄i − b̄j − b.. (10)

ai,j =

∥∥∥Xdi − Xdj
∥∥∥ , i, j = 1, 2, . . . , n (11)

bi,j =
∥∥Yi − Yj

∥∥ , i, j = 1, 2, . . . , n (12)

where Xd is the d-th feature, Y is the target label, (Xdi , Yi)
are the ith sample from the paired random variable (Xd , Y ),

i = 1, 2,. . . , n; āi is mean of the i-th row; āj is mean of the j-th
column; a.. and b.. are the grand mean of the distance matrix
of samples Xd and Y respectively; ai,j and bi,j are pairwise
distance matrices of sample Xd and Y respectively. The
range of value for dCor(Xd ,Y ) is [0,1]. When dCor(Xd ,Y )
equals 0, this signifies the d-th feature and the label do not
correlate; when dCor(Xd ,Y ) equals 1, it signifies a strong
correlation between the d-th feature and the label. From (13),
Vd is an identification function for the d-th feature. If the
correlation coefficient is greater than or equal to a set value
ω, Vd is 1, and the d-th feature value is included as part of the
final input dataset; if the correlation coefficient is less than ω,
Vd is 0, and the d-th feature is discarded.

Vd
=

{
dCor

(
Xd ,Y

)
≥ ωVd

= 1
dCor

(
Xd ,Y

)
< ωVd

= 0
(13)

D. K-MEANS CLUSTERING
To isolate load consumption patterns from the given dataset,
K-means clustering is employed. Clustering is a popu-
lar machine-learning technique to identify patterns in a
dataset [36]. K-Means is greatly popular due to its simplicity,
interpretability, and fast convergence [37].

With a dataset X = [x1, x2, . . . , xn] ∈ Rp×n the
objective is to partition the dataset into K clusters µk , where
µk ∈ Rp is the model associated with the k th cluster, and
k = 1, 2, . . .K . A set of identification functions cik ∈ {0, 1}
represent assignments where ci = [ci1, ci2, . . . , cik ]t is the
k th canonical basis vector in RK if and only if xi belongs
to the k th cluster. Here µ = {µk}

K
k=1 is the cluster centres

and c = {ci}ni=1 are associated data samples. The objective
of K-means clustering is to minimise the sum of the squared
Euclidean distances of samples belonging to a clusters [38]:

J (c, µ) =

n∑
i=1

K∑
k=1

cik ∥xi − µi∥
2
2 (14)

where J (c, µ) is the objective function.
To identify samples belonging to a cluster, the centroids

and the distance between two points must be calculated.
Given that (15) and (16) represent time-series instances:

X = [x1, x2, . . . , xn] (15)

Y = [y1, y2, . . . , yn] (16)

where n is the number of samples in the time series; the
Euclidean distance between XandY is obtained via:

deuc (X,Y) =

√
(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2

(17)

Euclidean distance is not suited for time series data as
the latter has a high dimensional form which may lead to
information loss [10]. Dynamic time wrapping (DTW) is
much suited for time-series analysis as it flexibly maps two
sets of time series to obtain their relative distance [39].

The distance between the two time-series ddtw (X, Y) =

ddtw (xn, yn) is evaluated as the cost of the optimal alignment
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path:

ddtw (xi, yi) = deuc (xi, yi) + min[ddtw (xi−1, yi−1) ,

× ddtw (xi, yi−1) , ddtw (xi−1, yi−1)] (18)

To maintain the shape characteristics, the centroids of
DTW are obtained via dynamic time-warping barycenter
averaging (DBA) [40].

This paper employs K-means clustering with DTW to
cluster historical daily load profiles into K clusters. Each
cluster contains similar demand characteristics and patterns.
A member of a cluster is denoted X ki , k= 1, . . .K , i =

1, . . . r, r ∈ {n1, n2, . . . , nK}, nk is the total number of
daily profiles that belong to the k − th cluster, as depicted
in Figure 2(a). From Figure 2(a), each daily profile A, B,
C, D, E, and F is of the form X ki which is a vector in
R24, this represents a day load and is characterised by a
24-hour sequence, X ki =

[
X ki,1,X

k
i,2, . . . ,X

k
i,24

]
. The position

of X ki in the original time series is determined by the date of
observation dt .

FIGURE 2. Sequence-to-sequence (S2S) cluster formulation.

E. SEQUENCE-TO-SEQUENCE (S2S) CLUSTER MODELING
After the dataset has been clustered into groups of similar
load consumption patterns, the clusters cannot be used
directly to learn a model for future forecasts since the
long-term time-series dependency in the dataset is lost, and
forecasting becomes impractical. Time series measures the
sequence of values over time where values at any point in
the set are strongly correlated to previous values. Given a
data xt at time t , the objective of time-series forecasting
is to anticipate the upcoming value xt+1 at time t + 1 or
xt+n at time t + n, which models the history of the dataset

considering factors that affect the dataset. From a sequence-
to-sequence (S2S) perspective, given a past data sequence of
horizon h, X = [xt−h, . . . , xt−2, xt−1], the forecast objective
is to estimate a future data sequence of horizon p, Y =

[yt , yt+1, yt+2, . . . , yt+p], where h and p are desired horizons
for past and future datasets.

To enforce cluster learning, S2S cluster formatting is
explored to transform the dataset of each cluster k into a
training dataset. To achieve this, the clustered dataset is
transformed into a supervised learning format, X, Y, where
X is the sequence of load data set as the input and Y is the
corresponding sequence set as the label or output to X. Each
X ki member of a cluster observed at a time instance dt is
set as the target output Y as it is the sequence we want to
predict given the input X. The input sequence is obtained as
the profile that precedes X ki in the original time series. If X ki
was observed on a day dt , then the profile that precedes it was
observed on dt − 1.
The profile at dt−1 is padded with that of dt , thus restoring

the time-series dependency, as shown in Figure 2(b). This
process is repeated for all the profiles in a cluster. The
resulting dataset is the sequence-to-sequence cluster dataset
for training the machine learning algorithm on a specific
cluster ck .

FIGURE 3. Sequence sliding window with length h.

The sliding windowmethod is employed to section the S2S
cluttered dataset into subsets with the matching length, which
is fed as the input sequence to the CNN-GRU model. With a
sliding window of length h, suppose X t = [xi, xi+1, . . . , xh]
is an input set at time t with length h, then the input at the
next time step t + 1 will be X t+1 = [xi+1, xi+2, . . . , xh+1],
where t ≥ 1 and h > 1, as shown in Figure 3. The final input
sequences are obtained from an Nth sized dataset, divided
into N-h+1.

F. CNN-GRU MODEL
In this paper, the learning algorithm of choice is the hybrid
CNN-GRU algorithm employed to learn spatiotemporal
features in each S2S cluster dataset.

• CNN
These are special neural networks developed for processing
spatial or time-series data, such as energy consumption data,
considered as a 1D grid [34].

The 1D integrated CNN network consists of input, pooling,
padding, convolution, and a linear layer. One objective of
CNN is identifying trends from adjacent values in a time
series dataset via the convolution operation [41]; this is
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expressed as in (19):

FM i = (I ∗ K )i =

∑
m

Ii+m · Km (19)

where ‘‘∗’’ is the convolution operation. K is a 1D kernel,
I is the 1D input of a target layer, m is the kernel size and
FM i also referred to as a feature map, is the output of the
convolution operation. The feature map is via the convolution
operation using a persistent kernel on input sequentially;
thus, a feature can be sensed and learned, irrespective of its
location within the input sequence. Applying the convolution
operation (19) on input data x1, x2, . . . , xn transforms it into
feature maps FM1,FM2 . . . ,FMn. Before the convolutional
operation, pooling and a padding operation are applied to
the input, respectively. The pooling layer is employed to
decrease the spatial size of the input, making the feature
dimension smaller and thereby reducing the number of
parameters in the network. This helps combat overfitting.
Pooling makes the network robust to input distortions as it
aggregates (max, sum, average) the neighbourhood values
of the input. The aggregating function employed in this
paper is max (aka MaxPooling), a down-sampling scheme.
To apply MaxPooling, a sliding filter transitions across the
input sequence, where the maximum value of the overlapped
area is set as the output. Padding is adding one or more zeros
around the input boundaries to increase its effective size.
Padding helps retain more information by preserving the size
of the input.

• GRU
RNN generalises feedforward networks as sequences [42].
For an input X = [x1, x2, . . . , xn], RNN evaluates an
outputs sequence Y = [y1, y2, . . . , yn] via iteration using the
following equations:

ht = sigm(W hxxt +W hhht−1) (20)

yt = W yhht (21)

RNNs have incredible success handling S2S tasks [43], where
a decision at a time step t−1 is affected by that of a time step
t , signifying a temporal dependency. However, RNNs suffer
from vanishing and exploding gradients and cannot capture
long-term dependencies effectively [44], [45].

Gradient vanishing refers to the case where the gradient
norm for long-term relationships decreases exponentially
to zero, inhibiting the learning of long-term temporal
relationships. In contrast, gradient exploding is the contrary
event. An approach tomitigate these problems is using amore
sophisticated activation function employed by the LSTM
unit [46]. A variant of LSTM dubbed GRU can capture
long-term dependencies. It is immune to the vanishing
gradient needing fewer calculations to update its hidden state.
Figure 4. shows a GRU cell unit. The update gate controls the
amount of memory retained by the network, and the reset gate
coordinates the input and memory data.

The GRU gating mechanism can be formulated as:

zt = σ (Wzxt + Uzht−1 + bz) (22)

rt = σ (Wxt + Urht−1 + br ) (23)

FIGURE 4. Structure of GRU Cell.

h̃t = tanh(Wxt + U (rr ⊙ ht−1 + bz) (24)

ht = (1 − zt) ht−1 + zt h̃t (25)

where zt is the update gate, rt is the reset gate, xt ∈ RN

represents the input sequence at time t . ht , ht−1 ∈ RH

are the current and previous hidden state, respectively.
In (22)-(24), the notation σ is a sigmoid function,
[Wz,Uz, bz], [Wr ,Ur , bh], and [W ,U , bh] are parameters of
the update, reset, and hidden modulation gates responsible
for learning. In (24), the operator ⊙ does an element-wise
multiplication.

• CNN-GRU Network Configuration
The proposed network configuration for CNN-GRU com-
prises three lines that capture different non-linear features
from the dataset using different CNN configurations Figure 5.
The first line of the network passes the clustered sequence
dataset to a padding layer; after 1D convolution, padding is
applied to preserve the input dimension; this helps maintain
the information at the input boundaries. The 1D convolutional
layer is connected to a second padding layer flowed by
a second 1D convolution; the resulting feature map is
passed to a GRU network. The second line applies the
pooling operation to the clustered sequence dataset; this
layer entails sliding the kernel over the input to return the
average value. The pooling operation samples the feature
map, reducing network complexity. Padding is subsequently
applied to the feature map and fed to the 1D convolutional
layer. The padding and coevolution operations are repeated,
and the resulting feature map is passed to a GRU network.
The third line repeats the second line but with a relatively
different filter and kernel size. The three lines extract spatial
representation in the dataset, passing on to the three GRU.

After extracting the spatial features, the cluster feature
maps are fed into GRU layers. The GRU layers model
temporal characteristics; the outputs are concatenated into a
linear layer to forecast future load consumption.

This process is repeated for each clustered sequence
dataset to obtain a forecast model for each cluster.

G. FORECAST MODEL SELECTION
Forecasting a future date is difficult because the cluster that
this day will fall under is unknown beforehand. To determine
the cluster of a future date, a classification algorithm
LightGBM is employed. Classification models a predictive
problem where a label is predicted by input data [47]. The
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FIGURE 5. CNN-GRU network architecture.

classification algorithm takes in a multivariate dataset and a
label as a requirement. The clustered dataset developed in
section II-B is used to model a classifier in our proposed
methodology. Based on K-means clustering, each record in
the dataset is assigned a membership Ck that is the record’s
label. LightGBM, which is a gradient-boosting decision
tree (GBDT) method [48], is employed for future load
classification due to lower memory usage, higher efficiency,
and faster training time [49].

III. CASE STUDY
The case study experiments were conducted using the Jupyter
Lab with Python3 on a PC with an Intel i-9 processor of
5.0 GHz and 32 GBs of RAM.

A. DATA DESCRIPTION
The proposed study was verified for efficacy using a
nationwide dataset via KPX [50]. The electric load data is
a multivariate time series spanning 2015 to 2022 with an
hourly resolution. An additional weather dataset spanning
2015 to 2022 of an hourly resolution was obtained to
feature the electric load dataset via an open API provided
by Korea public data portal [51]. Compared to conventional
methods, the data is processed for missing data and feature
engineering based on events and characteristics that affect
electric load consumption, as detailed in section II-B.
Distance correlation is used to identify features that strongly
correlate to electric load consumption, thereby reducing
the dimension of the feature dataset: this helps refine the
feature dataset and contributes to a reduction in training
time. Figures 6 to 8 show the correlation results for trend
and demand, cyclic and demand, and recency factors and
demand, respectively. Figures 6 and 7 depict the distance
correlation between trends, cyclic factors, and demand.
Here DC shows a low correlation between the factors and
demand, with a maximum of about 0.4. This is because DC
is biased towards short-term (hourly) correlation, as such

factors with long-term correlation (hour, day, week, month,
seasonal) though significant, are assigned low correlation
indices. To resolve this, we grouped factors with similar
characteristics; for example, hour, day, week, month, and
seasonal features are grouped independently. For each group,
the probability of each factor is evaluated based on their
distance correlation values, and a discrimination threshold of
0.5 is set to decide whether the feature is significant.

FIGURE 6. Correlation between trend factors and demand.

FIGURE 7. Correlation between cyclic factors and demand.

Figure 8 depicts the DC between recency factors and
demand. Because load consumption is cyclic for a day,
events close to the start and the end of the cycle are
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FIGURE 8. Correlation between recency factors and demand.

similar; consequently, Figure 8 shows a parabolic trend.
From the figure, demand values close to each other are
strongly correlated, but the correlation decreases stepwise
feather away. Demand values 11 to 14 hours apart exhibit
the least correlation, but the correlation increases steadily
at the end of the cycle. Using a discrimination threshold of
0.5, lag 1 to 6 and lag 20 to 24 are selected as significant
recency features. Temperature and humidity had a 0.8 and
0.45 correlation index with load for weather factors; as such,
the temperature feature is retained.With the dataset processed
into a multi-variate feature dataset, the dataset is partitioned
into 90% training dataset and 10% test dataset. K-means
clusteringwith dynamic timewrapping is employed to extract
non-linear load consumption patterns over a day horizon
from the training dataset. The average silhouette [52], elbow
curve [53], and gap statistic [54] are used to estimate the best
number of clusters [55].

The average silhouette and elbow curve methods are
termed direct methods, and the gap statistic is an example
of a statistical method. The direct methods minimise within-
cluster error, while statistical methods collect evidence to
support or reject a null hypothesis [56].

We employ a combination of these indices to select the
number of clusters with the most occurrence among all
indices. Figure 9 depicts the elbowmethod. A sharp decline in
the sum of squared distances is observed at K = 3 therefore,
3 is selected as the optimum number of clusters.

FIGURE 9. Elbow curve.

Figure 10 shows the three normalised daily cluster patterns
obtained from K-means. The clusters also give insight into
consumption patterns for each day in a week and each

FIGURE 10. Normalised daily cluster patterns with centroids.

FIGURE 11. Daily cluster distribution.

FIGURE 12. Monthly cluster distribution.

month in a year, as in Figure 11 and Figure 12, respectively.
From Figure 11, it is clear that cluster 3 is very dominant
during the weekday (Monday-Friday) and less prevalent on
Saturday; cluster 3 patterns are not recorded on Sundays.
Clusters 2 and 1 are weekend clusters more dominant on
weekends. Figure 13 shows that cluster 3 is dominant across
12 months; however, clusters 1 and 2 show an interesting
pattern. Cluster 2 is dominant from January toMay, with a dip
from June to September and a rise fromOctober to December.
This signifies a cluster for the cold season. On the flip side,
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FIGURE 13. Analysis of load forecast for a day in cluster 1.

TABLE 2. The network configuration of CNN-GRU.

cluster 1 kicks in slowly from March, with a high from May
to October and then a low during November and December.
Thus, complex consumption patterns can be identified for
load forecasting with clustering. After clustering, each cluster
dataset is processed into a sequence-to-sequence format to
enable the learning algorithm to learn patterns in a particular
cluster and forecast multiple steps. This gives the model a
better shot at a higher accuracy.

B. SPATIOTEMPORAL FORECASTING
CNN-GRU is configured to learn spatiotemporal features
in the S2S cluster dataset. Table 2 lists the network
configuration for CNN-GRU. It comprises three lines,
polling layer, padding layer and convolution layer for
spatial representation. Each line is then fed to a GRU
network to model temporal characteristics. Finally, the
output of each GRU unit is concatenated and linearised.
CNN-GRU is used to learn a model for each cluster
dataset. With a model for each cluster, it is non-trivial
to know which model forecasts a given day best; how-
ever, prior knowledge of the future date trend factors,
as described in section II-B, can be obtained as predictors for
identification.

LightGBM is used to learn a classification model using
the predictors from each dataset with cluster membership
as a label. For the LightGBM classification model, we used
29 features from the trend factor, as discussed in section II-B.
With a dataset set size of 2606 daily profiles spanning
eight years, the LightGBM classification model produced
an accuracy of 95% when identifying future date cluster
membership.

C. EVALUATION METRICS
This paper uses LR, SVR, GRU, and CNN-GRU models
on the dataset for comparative analysis. To evaluate the
forecast methods, we determine how well the forecast
matches the observed load. To achieve this, we evaluate
the deviation between the observed load sequence and the
corresponding forecast sequence via Mean Absolute Error
(MAE), Coefficient of Variation of the Root Mean Squared
Error (CV-RMSE), and Weighted Average Percentage Error
(WAPE) [57]. Compared to Mean Absolute Percentage Error
(MAPE) [58], WAPE weighs the individual absolute errors
to account for the intermittent load consumption; as such,
WAPE is recommended over MAPE. MAE, CV-RMSE, and
WAPE are evaluated using (26) - (28).

MAE =
1
N

∑N

i=1

∣∣yi − ŷi
∣∣ (26)

CV − RMSE =

√∑N
i=1

(
yi − ŷi

)2
N

/

∑N
i=1 yi
N

(27)

WAPE =

∑N
i=1

∣∣yi − ŷi
∣∣∑N

i=1 |yi|
(28)

where yi and ŷi are the observed and forecasted load values at
the time step i, and N is the number of samples in a sequence
spanning a time horizon.

IV. RESULTS AND DISCUSSIONS
In this section, the forecast results obtained by the proposed
method is compared with benchmark algorithms such as
LR [5] and SVR [6] and also with state-of-the-art forecast
provided by LGBM,GRU andCNN-GRU, [10], [14] and [20]
respectively. Figures 13 – 19 present a comparative result of
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the forecast algorithm and how they fare with the proposed
method.

A. CLUSTER 1 FORECAST RESULTS
Figure 13 presents a forecast analysis of a consumption
pattern under cluster 1. Cluster 1 contains mainly weekend
consumption and also consumption between April and
October. From the figure, the forecast by the proposed
method (CNN-GRU with clustering) tracks the observed
values best compared to CNN-GRU, GRU, LGBM, SVR, and
LR. The forecast evaluations show that SVR had the worst
performance, followed by LR, LGBM, GRU, and CNN-GRU
in succession with WAPE of 1.91%, 1.50%, 1.59%,1.25%,
and 0.87%, respectively, the proposed method with a WAPE
of 0.61%.

FIGURE 14. Analysis of load forecast for a day in cluster 2.

B. CLUSTER 2 FORECAST RESULTS
Figure 14 presents a forecast of consumption patterns that fall
under cluster 2. Profiles under cluster 2 are mostly weekend
consumption between January and May and September to
December. The figure shows that forecasts from the proposed
study fit the observed values best. SVR had the worst
performance, followed by LR, LGBM, GRU, and CNN-GRU
in succession with WAPE of 2.15%, 2.09%, 1.99%, 1.30%,
and 1.00%, respectively, and the proposed method with a
WAPE of 0.51%.

C. CLUSTER 3 FORECAST RESULTS
Figure 15 depicts the forecast results of a consumption
profile tahe fall under cluster 3; these are primarily available
throughout the year as weekday consumptions with a low
presence on Sundays and absence on Sundays. Figure 15(b)
shows a WAPE of 1.98%, 1.51%,1.32%, 1.00%, 0.86% and

FIGURE 15. Analysis of load forecast for a day in cluster 3.

0.50% for SVR, LR, LGBM,GRU, CNN-GRU and proposed,
respectively.

FIGURE 16. Analysis of load forecast for a weekday.

D. WEEKDAY FORECAST RESULTS
Figure 16 illustrates the forecast profile of a typical weekday
consumption. It shows that almost all the algorithms can fit
the observed load closely; however, the proposed method
scores the least WAPE of 0.56%, followed by CNN-GRU,
GRU, LGBM, SVR and LR with WAPE of 0.85%, 1.16%,
1.58%, 1.58% and 1.66%, respectively.
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FIGURE 17. Analysis of load forecast for a weekend.

E. WEEKEND FORECAST RESULTS
Figure 17 illustrates the forecast results on a typical
weekend consumption profile. From the evaluation in
Figure 17(b), the proposed method scored the best WAPE
of 0.39% and CNN-GRU, GRU, LR, LGBM, and SVR
scored WAPE of 0.90%, 1.06%, 1.28%, 1.36% and 1.70%,
respectively.

FIGURE 18. Analysis of load forecast for a holiday.

F. HOLIDAY FORECAST RESULTS
Figure 18 exemplifies a holiday consumption profile.

Here the proposed method produced a WAPE of 0.48%,
CNN-GRU and GRU scored 0.75% and 1.01%, LR scored
1.08%, LGBM scored 1.42%, and SVR scored 1.55%.

FIGURE 19. Analysis of load forecast for the test dataset.

G. FORECAST RESULTS ON TEST DATASET
Figure 19 demonstrates the results of training the various
forecast algorithms on 90% training dataset and forecasting
the remaining 10% test dataset. Generally, the proposed
method produced a WAPE of 0.61%, CNN-GRU and GRU
scored 1.14% and 1.43%, LGBM scored 2.18%, LR scored
2.30%, and SVR scored 2.37%. This shows that the proposed
method records the best accuracy; thus, it effectively
improves the accuracy of CNN-GRU on the test dataset by
about 50%.

H. DISCUSSIONS
From the results, SVR mostly produced the least accuracy,
followed by LR and LGBM, compared to GRU, CNN-
GRU, and the proposed method. From the evaluation results,
as shown in Figures 16 to 18, GRU shows that weekday
forecasts have better accuracy than weekends and holidays.
This is because weekday profiles are dominant with less
variability, and weekends and holidays have lesser samples
and exhibit more variability. Generally, forecasts around the
turning points of the profile are more erroneous, as indicated
by LR, SVR, and GRU.

Since CNN-GRU is an upgrade of GRU, the hybrid model
can learn spatial-temporal features to improve GRU forecast
around the turning points of the consumption curve.

FIGURE 20. Comparative analysis of training time for the forecast
methods.

The proposed method has the best WAPE, and the values
are stable for weekdays, weekends and holidays. Although
CNN-GRU can improve the accuracy of GRU, it incurs a
higher training time due to the added spatial feature extraction
layer. The proposed sequence-to-sequence cluster method
can mitigate the shortcomings of both GRU and CNN-GRU
by 1) Clustering the dataset into clusters to extract complex
patterns for the learning algorithm to focus on; in doing so, the
training time of the algorithm is reduced since only a subset
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of the dataset is used to train a cluster. 2) each S2S cluster
is trained to learn spatiotemporal representation to improve
forecast accuracy. From a model training time perspective,
LGBM is the fastest, followed by LR. SVR was faster than
GRU, and CNN-GRU followed with the worst time. Due
to dataset size and the convolution operation, CNN-GRU
exhibits the highest training time; but the proposed method
can reduce this training time due to clustering by about
35%. Figure 20 illustrates the training time for the individual
forecast algorithms.

V. CONCLUSION
One vital aspect of load forecasting is identifying features
that characterise the data; this includes complex relationships,
trends, cycles, and recency factors.

This paper proposes an S2S cluster learning algorithm
for electric load forecasting designed to reform time series
dependency after clustering. The dataset extracts spatial
and complex features to improve load forecasting accuracy.
A case study uses a historical Korea Power Exchange
(KPX) dataset to train the proposed algorithm. Three (3)
consumption patterns are identified using K-mean clustering
with DTW from the dataset. Each cluster is formatted into an
S2S dataset using the proposed method to restore time-series
dependency, making it suitable for training. The forecast
model obtained from training the S2S cluster dataset with
CNN-GRU is evaluated for efficacy by comparing it to
benchmark models such as LR, SVR, LGBM, GRU, and
CNN- GRU. Based on the study, the proposed method
yielded the highest forecast accuracy with a WAPE of 0.61%
compared to that of LR, SVR, LGBM, GRU, and CNN-GRU
with WAPE of 2.30%, 2.37%, 2.18%, 1.43%, and 1.14%
respectively on the test dataset. The proposed method also
speeds up the training process of the forecast algorithm by
about 35%, given that only a subset of the dataset is trained
due to clustering. These contributions are reached under a
comprehensive dataset; however, themodel might suffer from
high bias under a scanty dataset. Future work will follow
transfer learning [25] to adapt the model to a scanty dataset
based on the results.
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