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ABSTRACT Unlicensed cellular networks are being deployed worldwide by cellular operators to meet
the rising data demands. However, the unlicensed band has existing incumbents such as Wi-Fi and radar
systems. This creates a highly dynamic environment, making harmonious unlicensed coexistence difficult.
Consequently, conventional optimization techniques are not sufficient to offer latency-critical applications
and services. A data-driven hybrid optimization approach is necessary for optimal network performance with
low convergence times. However, a largely unexplored problem in dense unlicensed network optimization
is the accuracy-speed trade-off, that is, achieving high accuracy in optimization objectives with minimal
time costs. This work seeks to address this problem through a hybrid optimization approach that combines
machine learning and network optimization. It investigates the use of more precise higher-order network
feature relationships (NFRs) in optimization formulations and the consequent trade-off that arises between
the increase in convergence time (Speed) and the nearness to optimal results (Accuracy). In addition,
it demonstrates the relevance of context awareness of network conditions and the traffic environment
to mitigate the trade-off. To that end, a context-aware network feature relationship-based optimization
(CANEFRO) approach is proposed and validated through decision matrix analysis. The experiments were
carried out on a coexistence testbed consisting of both unlicensed LTE standards (LTE-U & LAA) and two
Wi-Fi standards (802.11n/ac) on multiple channel bandwidths. In addition, LTE-U & LAA are contrasted
on signaling and user data traffic data models and resource block allocation performance. More importantly,
CANEFRO demonstrates the impact of the network context on the degree of feature relationship (2nd & 3rd

degree polynomials), objective of optimization (SINR and Capacity), and the network use case (Accuracy
vs. Speed). CANEFRO is also used to contrast LTE-U & LAA optimization performance. In particular,
the decision matrix analysis demonstrates a higher decision score for LAA by as much as 42% compared
to LTE-U.

INDEX TERMS Unlicensed networks, machine learning, network optimization, context awareness, LAA,
LTE-U, 5G NR-U, data analysis, network measurements.
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I. INTRODUCTION
There has been a consistent increase in latency-critical data
traffic from services such as augmented reality (AR) and
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on-the-go video streaming [1]. The inability of existing
LTE/LTE-A (Long Term Evolution/Long Term Evolution-
Advanced) networks to meet the Quality of Service (QoS)
requirements for uplink-heavy and bursty flows of AR appli-
cations deny the end-user a seamless experience [2].

To address these challenges cellular operators have taken
recourse to harnessing the potential of the unlicensed
spectrum through operation of LTE in the 5GHz band in
coexistence with Wi-Fi. Two unlicensed cellular standards
were put forward, viz., LTE in unlicensed spectrum (LTE-U)
and LTE license assisted access (LTE-LAA). The adoption
of these standards has led to a rapid deployment of LAA/
LTE-U small cells in the 5GHz band where 500 MHz has
been allocated for unlicensed LTE operation in coexistence
with Wi-Fi access points (APs) [3], [4].

However, dense deployment of LTE/LTE-A, LAA, and
5G small cells (SCs), magnifies the scale and complexity
of cellular networks. This leads to increased computational
costs and longer convergence times to arrive at optimal
solutions [4], [5]. From the perspective of ultra-low-latency
augmented reality (AR) applications and high-speed vehicu-
lar networks, this is extremely undesirable. A typical LTE/
LTE-A network already contributes about 30% to end-to-
end latency in mobile AR [2]. Network densification will
exacerbate the latency problem and undo the enhancement in
network throughput achieved through the utilization of unli-
censed spectrum. Thus, an important expectation from opti-
mization techniques is low convergence times, so that dense
unlicensed networks can seamlessly facilitate latency-critical
services to end-users [6]. To meet this expectation, data-
driven optimization is a hybrid optimization technique that
is quickly gaining prominence, especially in the unlicensed
band [7], [8].

A. MOTIVATION
In the unlicensed band, cellular operators must co-exist
with existing incumbents, such as Wi-Fi, radar operation,
fixed satellite transmission links, and Broadcast Auxiliary
Services (BAS) [3]. This increases the probability of trans-
mission conflicts making the environment highly dynamic.
Although conventional optimization techniques have been
the bedrock of wireless network performance enhancement,
a data-driven optimization approach is more suitable for
unlicensed band optimization [9]. A data-driven optimization
approach combines the power of machine learning and tra-
ditional optimization to better support applications such as
mobile AR and autonomous vehicles that need low end-to-
end delays (typically ≤ 10ms).
However, machine learning-based optimization is context-

specific and application-dependent. Applications such as
mobile AR and autonomous vehicles require low association
times and fast handovers. These constraints make optimiz-
ing performance and resource allocation time-critical for
these applications. This work refers to it as the ‘‘Speed’’
of network optimization model. However, some applications
and services such as VR-enabled telesurgery are resource

intensive and require the highest priority QoS Class Identifier
for satisfactory end-user QoS. To ensure maximal resource
allocation, data-driven time-critical optimization solutions
must be close to theoretical optimal solutions. This nearness
to optimal solutions is referred to as the ‘‘Accuracy’’ of the
model.

In [9], the proposed data-driven optimization solution
focuses on reducing convergence times for time-critical ser-
vices. However, the challenge of Accuracy-Speed trade-off
was not investigated. This involves selecting the network
feature relationship (NFR) learned from the network data
to be used in the optimization model. Typically, multiple
feature relationships with varying polynomial degrees can be
learned using machine learning algorithms. Thus, selecting a
suitable NFR is a non-trivial problem. Further, the network
context was not considered in the data-driven optimization
solution presented in [9]. The context typically comprises
the network configuration, the ambient network environment,
the priority of the application for Accuracy or Speed, the
goal of optimization, the degree of learned feature relation-
ships, etc. [10], [11]. For example, only signaling data and
user-plus-signaling data would create two different network
contexts.

Furthermore, since the network context is extremely
dynamic, the context-aware solution should be validated
through an appropriate methodology. Therefore, this work
explores a context-aware data-driven approach that combines
machine learning and network optimization. It reduces the
time-cost of dense unlicensed network performance opti-
mization while ensuring high accuracy vis-a-vis baseline
optimization models.

B. CONTRIBUTIONS
This work utilizes Network Feature Relationships (NFRs)
learned from machine learning algorithms to accelerate net-
work optimization. NFRs are also a suitable indicator of
the network context. Further, in comparison to [9], this
work examines the performance of higher-order feature rela-
tionship models. It analyzes the trade-off involved in the
use of higher-order NFRs with high R-sq in data-driven
optimization. Specific contributions of this work are listed
below.

• Conducted experiments for multiple dense LTE-WiFi
coexistence combinations and bandwidth variations on
an experimental testbed.

• Evaluated LTE-U and LAA network perfor-
mance through feature relationship analysis (e.g.,
SINR-Capacity relationship) using machine learning
(ML) algorithms.

• Demonstrated importance of network context through
difference in ML model parameters such as R-sq, resid-
ual error (RSD), outliers, etc.

• Utilized network feature relationships (NFR) to
optimize performance through four state-of-the-art
network capacity and signal strength optimization
formulations.
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• Analyzed Accuracy-Speed trade-off in using higher-
order NFRs in optimization models for different coex-
istence configurations.

• Validated context-aware data-driven optimization
through decision matrix analysis.

This work expands on the data-driven optimization
solution proposed in [9], through: (a) 8 additional test sce-
narios, (b) analysis of context using signaling vs. user data
and resource block allocation for LAA & LTE-U, (c) anal-
ysis of trade-off in data-driven network optimization using
higher-order feature relationships, and (d) validation of data-
driven context-aware optimization through decision matrix
analysis.

II. A REVIEW OF RELATED WORKS
A brief overview of recent studies relevant to the analysis and
solutions proposed in this work is presented in the following
subsections.

A. UNDERSTANDING NETWORK CONTEXT THROUGH
FEATURE RELATIONSHIP ANALYSIS
Understanding the interplay between various network param-
eters is crucial for analysis and modeling of wireless network
performance. The network context is governed by these met-
rics such as throughput, signal plus interference and noise
ratio (SINR), resource block allocation, modulation coding
scheme, etc.

Conventionally, relationships between network parameters
were determined through abstract theoretical models. For
example, capacity interference relationship (CIR) analysis
and modeling has been the focus of numerous works [12],
[13], [14], [15]. Theoretical solutions invariably require addi-
tional prior network related information, e.g., the network
layout, location of the nodes, etc. Further, due to the complex-
ity of the problem (e.g., determining CIR is NP-hard), often
assumptions are made about wireless network parameters
such as the expected traffic load or expected mobility patterns
of nodes in dynamic scenarios [13], [15]. However, context
is highly spatio-temporal and can be adequately represented
only through actual network data. Theoretical models and
assumptions cannot offer a true measure of the actual context
of the network. Thus, a better approach of understanding
network context is to learn the relationships between the net-
work variables through data analysis. In recent state-of-the-
art studies, the most common machine learning techniques
used to learn network feature relationships include family
of regression algorithms, decision trees, and random forests
[16], [17], [18], [19], [20]. This approach is empirical and
data-driven, compared to the abstract theoretical solutions
discussed earlier. Training models on network data also does
away with the need for assumptions, approximations, and
prior network information typically required in theoretical
models [14], [21]. Further, the algorithms used in learn-
ing NFRs are not only reliable but also computationally
less expensive, compared to both conventional solutions and

FIGURE 1. Interference in the unlicensed band.

more advanced machine learning techniques, such as deep
learning. These advantages have encouraged the applica-
tion of NFR analysis to learn context even in large-scale
networks [18], [19].

The relevance of network context in the unlicensed
spectrum can be demonstrated through the NFR analysis of
unlicensed LTE standards, viz., LAA & LTE-U. The exist-
ing research literature on the comparative performance of
the two LTE unlicensed standards is characterized by three
features. First, experiments are conducted primarily through
simulations and often make assumptions or relaxations [22],
[23]. Second, the comparative analysis and the conclusions
drawn rely on measurements, i.e., through the comparison of
important network parameters such as network capacity, sig-
nal plus interference and noise ratio (SINR), resource block
(RB) allocation, modulation coding scheme (MCS), latency,
number of retransmissions, etc. Third, there is a limited focus
on learning the network context. For example, the variation in
performance of LTE unlicensed variant with the variation in
the coexisting Wi-Fi standard is rarely studied. Similarly, the
network context is influenced by factors such as bandwidth
allocation and signaling data.

While measurement-based studies are a great first step in
network performance evaluation, learning and utilizing the
network context is highly desirable for the optimal perfor-
mance of dense unlicensed networks [10], [11]. Thus, net-
work feature relationship analysis of network variables is the
logical next step. It facilitates learning the network context
through machine learning models trained on network data.

NFR analysis unlocks deeper insights into various dimen-
sions of network context such as the strength of the
relationship between network variables (R-sq or accuracy),
precision in the prediction of the response variable (residual
error), presence of significant fluctuation in parameter values
(Outliers), etc. In addition, NFR analysis can also reveal asso-
ciations between network parameters such as dependence,
correlation, causation, etc.

Furthermore, as shown in Figure 1, the adverse impact
of interference on the LTE-WiFi coexistence networks will
exacerbate and pose additional challenges with network
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FIGURE 2. Testbed design.

densification. Although it may lead to an initial gain in
unlicensed system capacity, network performance eventually
deteriorates with increasing network density [24]. However,
the impact of factors relevant to network performance and
context, viz., unlicensed LTE variant, Wi-Fi standard, allo-
cated bandwidth, and signaling data remains unexplored.
For example, the analysis presented in [25] is limited to
demonstrating how the SINR-Capacity relationship differs in
regular and dense/ultra-dense networks and does not explore
the impact of these factors.

Therefore, we focus on these aspects of performance
and context in dense unlicensed coexistence networks. The
importance of network context is demonstrated through a
comparative performance analysis of LAA & LTE-U net-
works. The feature relationship between interference and
network capacity is analyzed in a dense coexistence network
by considering a variety of network configurations.

B. DATA-DRIVEN NETWORK OPTIMIZATION
Several challenges in network management are solved
through optimization viz., dynamic allocation of resources,
energy efficiency, interference management, and efficient
spectrum sharing [6]. Although efficient solutions to many
of these problems are available for sparse wireless networks,
they assume new dimensions in dense unlicensed networks.
Interestingly, the decrease in inter-AP/inter-SC distance does
not necessarily lead to gains in network capacity due to
increased interference in dense coexistence networks [24].
With increased spatial colocation of small cells and APs in
coexistence deployments, the complexity of formulations,
and consequently, the convergence time of optimal solutions,
increases significantly [26]. Due to the complex network
topology, detailed network information is required for unli-
censed network optimization [5]. The cumulative impact of
these factors results in NP-hard mixed integer non-linear for-
mulations [6], which lead to higher computational overheads
and longer convergence times.

To overcome these challenges and reduce convergence
times in unlicensed network optimization, some measures
can be taken. First, instead of complex theoretical con-
straints, constraints rooted in ground truth that are learned

from network data should be considered. Second, sim-
plistic constraint relaxation techniques should be avoided.
For example, linearizing complex theoretical constraints by
making context-specific assumptions or considering specific
scenarios [27]. Such reductionist approaches lead to sub-
optimal results, and a better solution for dense unlicensed
networks is network-data-driven optimization.

Consequently, several recent studies have used machine
learning to optimize vital network metrics, e.g., rate adapta-
tion [16], link adaptation [19], and network throughput [17].
In particular, the learned feature relationships can be uti-
lized to improve network performance. For example, learning
802.11n feature relationships can facilitate improved configu-
ration selection and enhanced rate adaptation [16]. Likewise,
they can be used to design link adaptation algorithms and
improve network throughput [17], [19].

However, the impact of the degree of feature relationship
equations on optimization goals and performance is not stud-
ied. In [9], we show that strong NFRs are characterized by
high R-sq, low fluctuations in R-sq, and low mean squared
error. These NFRs lead to high Accuracy, i.e., nearness to
baseline optimal formulations. But the solution is restricted to
only second-order polynomial NFRs and the Accuracy-Speed
Trade-off involved in higher-order NFRs is not investigated.
Further, a methodology for mitigating this trade-off based on
the network context and the use case (application/service) is
not explored either.

This work addresses these challenges. It focuses on the
relationship between interference and network throughput
or the capacity-interference relationship (CIR), since inter-
ference is a serious bottleneck to network performance
management.

III. FEATURE RELATIONSHIP ANALYSIS METHODOLOGY
This work seeks to leverage network feature relationships to
analyze network context and optimize network performance.
To that end, this section contains a discussion on LTE-WiFi
experimental textbeds (LTE-U and LTE-LAA), the ML algo-
rithms considered for feature relationship analysis, and the
test scenarios considered in the comparative context analysis
of LTE-U and LAA.
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TABLE 1. Experiment parameters.

A. NETWORK DESIGN CONSIDERATIONS
For efficient utilization of the unlicensed band, LTE and
Wi-Fi coexistence must be fair and cooperative. To achieve
fair coexistence between the two radio access technologies,
two standards for unlicensed LTE were released, viz., LTE-U
and LTE-LAA. However, the two standards employ different
mechanisms for medium sensing and access, illustrated in
Figure 2(a). While LTE-U has a load-dependent duty-cycle
mechanism, LTE-LAA relies on a Listen-Before-Talk (LBT)
mechanism. LAA’s LBT is compatible with the CSMA/CD
MAC protocol of Wi-Fi, ensuring a more fair coexistence
with 802.11 WLANs compared to LTE-U.

Testbed Design LAA/LTE-U testbed are created using the
National Instruments NI RIO platform, shown in Figure 2(b).
The NI Labview system provides 3GPP prescribed PHY
implementation and supports flexible configuration of system
parameters such as transmission power, LAA transmission
opportunity (TXOP), LTE-U duty cycle ON & OFF, etc. The
Wi-Fi platform comprises of Netgear wireless routers which
support both 802.11n and 802.11ac in the 5 GHz band. The
Wi-Fi testbed allows easy configuration of MAC and PHY
layers parameters such as channel bandwidth, transmission
power, CWmin, CWmax , etc. Relevant technical specifications
related to the testbed are presented in Table 1.
The experiments were performed in an indoor setting at

the University of Chicago. Multiple coexistence configura-
tions were implemented through combinations of LAA-LTE/
LTE-U, 802.11n/802.11ac, and varying bandwidths (5, 10,
15, & 20MHz) to account for cross-talk interference. The
interference from LAA was kept below Wi-Fi’s clear chan-
nel assessment (CCA) threshold by regulating LAA’s power
spectral density (PSD). Further, as shown in Figure 2(c), ran-
dom dense coexistence networks were created bymaintaining
an internodal distance ≤ 10m between nodes in the testbed.
SINR and Capacity data was gathered through the experi-
ments. It is noteworthy that apart from the dense scenario,
multipath fading due to obstacles such as walls and furniture,
makes this experimental setup suitable for studying CIR in
coexistence networks.

FIGURE 3. Test scenario specific comparative analysis.

B. MACHINE LEARNING ALGORITHMS FOR
RELATIONSHIP ANALYSIS
Next, the feature relationships in the LTE-WiFi coexistence
data gathered from the experimental testbed are modeled as a
regression problem.

Let N represent the number of training points and let
dimensionality of the feature vector be denoted by D. Then,
the unlicensed network data can be represented as {xi, yi}Ni=1,
where xi ∈ RD is the feature vector and yi ∈ R is the ground
truth value for ith training point. The goal is to learn amapping
f : xi −→ yi where xi is the predictor (SINR or Capacity) and
yi is the response (Capacity or SINR). This work considers
the following basket of learning algorithms for the regression
analysis:

Linear Regression: This group of algorithms learns a
linear relationship by solving argminw,b

∑N
i=1 ||(w⊤xi+b)−

yi||22 + αw⊤w [28]. Here, the weight vector is denoted by
w ∈ RD and the bias term is b ∈ R. Further, the weightage
(importance) of the l2-regularization term is controlled by
the hyperparameter denoted by α, which is set to zero for
Ordinary Least Squares Linear Regression (OLS). However,
for Ridge Regression (RR), α is set through k-fold cross
validation (kCV).

Kernel Ridge Regression: A non-linear mapping is
expected to be more suitable for the SINR-Capacity relation-
ship, especially with respect to optimization [21]. Therefore,
we use Kernel Ridge Regression [28] that employs non-linear
transformations such as polynomial and radial basis func-
tion (RBF). Its goal is to solve argminw,b

∑N
i=1 ||K (w, xi) +

b − yi||22 + αw⊤w. Here, w ∈ RD is the weight vector,
b ∈ R is the bias term, and α is a hyperparameter defined
above. It should be reiterated that α is the weightage of the
regularization term that can help us avoid overfitting and lead
to better performance on test data, especially in case of non-
linear kernels. The experiments are performed for both radial
basis function (RBF) and polynomial kernel (MPR).
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FIGURE 4. Configuration-level comparative analysis.

C. TEST SCENARIOS AND MODEL SELECTION
Experiments were performed and data was recorded for CIR
analysis for 40 Test Scenarios, represented as TSi, where
i ∈ {1 . . . 40}. A TSi denotes a unique unlicensed coexistence
configuration which is a combination of the unlicensed LTE
standard (LTE-U/LTE-LAA), the Wi-Fi variant (802.11n/ac),
bandwidth allocation (5, 10, 15, &20MHz), and the response
variable (SINR/Capacity). Eight new test scenarios (TSi
where i ∈ {33 . . . 40}) are considered, which involve exper-
iments only for control and signaling data transmission in
LTE-U and LAA, 802.11n/ac, for the 20 MHz band. These
scenarios are compared with the respective control-plus-data
transmission test scenarios. Further, the CIR selection for
each TSi is carried out through the following ML model
selection scheme. Feature relationships that are 1–3 degree
polynomials are learned and validated through k-fold cross
validation (kCV). Further, higher-order terms are ensured to
be statistically significant to avoid overfitting. To remove
outliers, the local outlier factor (LOF) algorithm is used,
which is an unsupervised technique that determines the devi-
ation in the density of a sample with respect to its k neighbors.
Using this methodology, the context and performance of

LAA & LTE-U networks is studied and a comparative analy-
sis is presented in the next section.

IV. RELEVANCE OF CONTEXT IN UNLICENSED
COEXISTENCE NETWORKS
To delineate the network context, the parameters of the
CIR model are observed and a comparative analysis
of LTE-U & LAA is performed. The results are pre-
sented for scenario-specific comparisons in Figure 3, and
configuration-level trends in Figure 4. Please note that
only for Figure 4(b), a logarithmic scale is used to show
‘‘% Difference’’ due to a high variation in values. Relevant
aspects that shape unlicensed coexistence network context,
such as outliers, are also discussed.

A. UNLICENSED COEXISTENCE: LTE-U VS LAA
We begin with measurement-based observations on average
network capacity, as most comparative studies focus primar-
ily on this metric [23]. In 75% of the test scenarios, LTE-LAA
outperforms LTE-U in coexistence with the corresponding
Wi-Fi variant (n/ac). Likewise, in 87.5% scenarios, 802.11ac
outperforms 802.11n in coexistence with the corresponding
LTE variant (LTE-U/LAA). Further, LTE-LAA in coexis-
tence with 802.11n/ac offers a higher SINR on average than
LTE-U in all scenarios save one.

The LBT mechanism of LAA is quite similar to the
CSMA channel access protocol of Wi-Fi and leads to a
higher network capacity on average in LTE-LAA. LAA nodes
sense the energy level on the medium (−72 dBm) prior to
transmission, which mitigates co-channel interference from
Wi-Fi and other LAA APs, ensuring higher SINR on aver-
age than LTE-U. On the contrary, LTE-U has a duty-cycle-
based channel access mechanism which leads to inefficient
transmissions and packet collisions in both the LTE-U and
Wi-Fi components of the coexistence system.

1) R-sq OR REGRESSION MODEL VALIDITY (RMV)
LAA and LTE-U models perform equally well, in a scenario-
specific comparison with ≤5% difference in RMVs in
13/16 comparisons (26/32 scenarios). CIR in LAA seems
to be only slightly better, as it outperforms LTE-U in
the remaining 3 scenarios. In terms of average RMVs
across all 32 scenarios, LAA and LTE-U are compara-
ble, although LAA has a slight edge (<1%). Likewise, in
LAA-WiFi-Predictor configuration combinations, LAA has
a slight edge (0–2%). Prima facie, based solely on RMV,
CIR does not appear to be impacted by the unlicensed LTE
variant. However, RMV cannot be considered to be the only
goodness-of-fit measure for feature relationships. A higher
RMV is an indicator of the variation in the dependent vari-
able explained by the model, but it does not indicate how
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far the data points lie from the regression line. Moreover,
the standard deviation of the RMV with kCV for a specific
scenario must also be low. The analysis ahead explores these
dimensions.

2) RESIDUAL STANDARD DEVIATION (RSD)
The ability of a feature relationship model to make accu-
rate predictions is highly desirable for the model to be
deployed in real-world network performance management.
Thus, residual error, or RSD, is a measure of precision of
the model’s predictions and should ideally be low for a
robust CIR.

A higher residual error is observed in twice as many
LTE-U scenarios compared to LAA scenarios (5% mar-
gin of error). On average, LTE-U scenarios have a 6%
higher RSD than LAA. Further, average residual error in all
LTE-WiFi-Predictor network configurations is lower for
LAA when compared to LTE-U. Thus, LAA models seem to
be more precise in their ability to predict coexistence network
performance, regardless of the response variable (Capacity
or SINR).

3) GAIN AND STANDARD DEVIATION IN RMV
It is important to note the standard deviation (SD) in the
validity of the CIR model when subjected to kCV, especially
after LOF outlier removal. While outlier reduction yields
higher RMVs, the Gain in RMV should be accompanied
with low SD in RMV, averaged across all kCV runs. Thus,
we consider highGain and lowSD as characteristics for stable
CIR models.

LTE-U fares much worse than LAA in terms of both Gain
and SD. LAA outperforms LTE-U by 47.67% in Gain and
registers a 24.5% lower SD, averaged across all scenarios.
A similar trend can be observed in LTE-WiFi-Predictor com-
binations as well. Thus, LAA has a higher gain after outlier
removal along with a lower SD, which demonstrates the
robustness of the LAA CIR models.

4) OUTLIERS
For a network system, the outlier % may be considered
to be a good indicator of the degree of fluctuation in net-
work performance, and consequently the ability of a network
to deliver the promised Quality of Service (QoS). How-
ever, selecting the outlier detection algorithm is a subjective
choice. Although this work steers clear of making inferences
based on outliers, we compare the outliers in the LTE-U and
LAA data detected by the LOF algorithm with the outliers
detected by ‘‘Minitab,’’ a standard tool for data analysis [29].
Minitab’s outlier detection algorithm labels samples with
extreme ‘‘leverage points’’ and ‘‘large residuals’’ as outliers.
As expected, the percentage of data points labeled as outliers
is different in LOF andMinitab. However, LTE-U has a higher
fraction of outliers compared to LAA in both LOF (by 9.11%)
and Minitab (by 5.14%).

The reason for the high fluctuation in LTE-U can be
attributed to the greater susceptibility of an LTE-U node to the
unpredictable interference from Wi-Fi APs in its proximity.
This primarily occurs during the LTE-U ON state, as there
are no energy detection thresholds in LTE-U. Unlike LTE-U,
Wi-Fi considers the energy threshold as −62 dBm and the
preamble detection threshold as −82 dBm. Similarly to
Wi-Fi, the LBT mechanism in LAA has an energy threshold
of −72 dBm, making it less vulnerable to interference from
Wi-Fi APs, and ensuring fewer extreme network performance
fluctuations. Thus, LAA seems to offer more reliable perfor-
mance from the perspective of end-user QoS experience.

5) CONTEXT IN LTE-LAA VS LTE-U: A FEATURE
RELATIONSHIP PERSPECTIVE
The analysis of various parameters of the data model under-
scores the relevance of the network context. The residual
error, standard deviation in RMV, and % of outliers in LTE-U
is higher than LAA, while the gain in RMV after outlier
removal is lower. This is true for the majority of test scenarios
regardless of the choice of Wi-Fi variant, predictor variable,
and bandwidth allocated. Thus, CIR in LTE-LAA networks
is qualitatively better in terms of the spread of data along
the expected curve fit. This implies that LAA offers greater
consistency in network performance and lower fluctuations
in system variables, such as signal strength or throughput at
the end-user device.

The impact of the network context has a strong correlation
with macrolevel industry trends as well. The Global Mobile
Suppliers Association (GMSA) report states that 38 opera-
tors in 21 countries have made investments in LAA com-
pared to only 11 operators investing in LTE-U. In terms
of global deployments, 30 operators are planning to deploy
or are actively deploying LAA networks in 18 countries,
in contrast to LTE-U, which is being deployed in only
3 countries. Furthermore, LTE-U deployments are designed
with an upgrade path to LAA and eLAA [30]. Clearly, LAA
is the preferred choice of industry for LTE unlicensed net-
works. From the perspective of network data analysis, this
appears to be reasonable as LAA machine learning models
indicate a more robust network performance and context
than LTE-U.

A detailed data-driven network context analysis is pre-
sented in [9]. It includes a comparative analysis of coexisting
Wi-Fi standards and the impact of factors such as network
bandwidth, the choice of predictor, and the optimization
goal. The findings in [9] had hinted at three aspects that
are relevant to the context and performance of unlicensed
coexistence networks. These are resource block allocation,
physical cell id (PCI), and control vs. user data. The impact
of PCI on network performance and context has already
been extensively demonstrated [7], [8], [31]. In the next
section, we focus on the two remaining unexplored factors
that influence the context and performance of an unlicensed
network.
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FIGURE 5. Impact of signaling data on network feature relationships.

V. ADDITIONAL FACTORS THAT IMPACT CONTEXT
Feature relationships between networks variables are shaped
by several other factors. In a public unlicensed cellular
deployment, parameters such as Physical Cell ID, Resource
Block (RB) allocation, Channel Quality Indicator, etc. often
lead to more reliable data-driven network models. This is
demonstrated in recent works on performance analysis and
optimization of LAAoperator deployments [7], [8]. However,
these recent studies have not explored the impact of RB allo-
cation. Additionally, while both [7], [8] present data-driven
cell selection solutions, the impact of control signaling is not
evaluated. Thus, this section expands on the comprehensive
analysis of CIR presented in Section IV. It investigates two
additional dimensions unique to this work, which are (a) vari-
ation of CIR in control signaling compared to control-plus-
data transmission, and (b) impact of resource allocation on
CIR. These aspects are explored ahead through data analysis
and ML-based modeling of data gathered through 8 new test
scenarios (TSi, where i ∈ {33 . . . 40}).

A. NFRs IN CONTROL VS Control+Data
In the recent data-driven cell selection solutions presented for
LAA deployments [7], [8], [31] both control data and user
data are considered, referred to as DC+U . It remains to be seen
whether the NFRs differ in the scenario in which only control
signaling data packets are transmitted (DC ). Furthermore, it is
pertinent to study the variation of LAA and LTE-U NFRs
in the two scenarios, namely, DC+U and DC . Because a
significant variation in the parameters of the ML model can
render the solutions derived from DC+U less effective for cell
attachment and handover.

1) RESULTS AND ANALYSIS
To investigate these two challenges, additional experiments
were conducted for both LTE-U and LAA. The experiments
are run with coexisting Wi-Fi 802.11n/ac for the 20MHz
band. The new eight control-only scenarios (TSi, where

i ∈ {33 . . . 40}) are compared with the respective DC+U test
scenarios.

The scenario-specific comparative analysis is presented
in Figure 5(a), with LAA scenarios highlighted to contrast
with LTE-U scenarios. It is evident that signaling-only and
signaling-plus-user data models are qualitatively different,
leading to feature relationships that differ significantly. This
variation is quite prominent in terms of RMV, for both LTE-U
and LAA. However, for LTE-U there is a greater fluctuation
in the difference in RMV between the DC+U and DC models.
In addition, the difference in residual error is also higher for
most test scenarios compared to LAA.

Network configuration level analysis for ML models with
Capacity and SINR as the response variable is presented in
Figures 5(b) and 5(c), respectively. The comparative anal-
ysis of LAA and LTE-U further consolidates the findings
presented in Section IV. The difference between ML model
parameters such as RMV, standard deviation in RMV, resid-
ual error, and outliers, between the DC+U and DC models,
is much more pronounced in LTE-U than in LAA. Fur-
ther, for both SINR and Capacity models, LAA NFRs show
lower variation between signaling-only and signaling-plus-
user data.

2) EXPLANATION AND RELEVANCE
Both LTE-U and LAA transmit the control channel infor-
mation over PUCCH, PDCCH, and PBCCH. Typically,
LTE-U requires less control signaling than LAA. Due to its
ON-and-OFF duty cycle mechanism, there is a lesser need
for signaling information in PUCCH because there is no need
to sense the medium for load, interference, etc. On the other
hand, LAA needs to sense the medium for contention through
CWmin and CWmax which vary, depending on the nature of
the traffic.

Channel sensing in LAA ensures fair transmission and
limited interference, enabling an operator to identify a better
interface and select the ideal PCI for transmission. The fact
that the signaling vs. signaling-plus-data feature relationships
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FIGURE 6. Probability distribution of network variables.

TABLE 2. Distribution analysis of network variables.

in LAA are comparable is desirable for data-driven cell selec-
tion. In sharp contrast, LTE-U experiences more interference
with WiFi transmissions. The LTE-U ON message will inter-
fere with nearby unlicensed band transmissions such asWi-Fi
or other LTE-U, leading to more retransmissions at the MAC
layer (in terms of resource allocation) and RLC (in terms of
queue and HARQ) by using additional radio resources. This
explains a greater variation in network feature relationship
parameters in signaling vs. signaling-plus-data compared to
LAA transmission.

B. RESOURCE ALLOCATION IN UNLICENSED
COEXISTENCE
Resource Block (RB) allocation is an important network
parameter that can influence network feature relationships
such as CIR. In unlicensed LTE (LTE-U or LAA), the 20MHz
channel consists of 100 RBs, which are transmitted in the
sub-frame within an interval of 1ms duration. Depending on
the nature of traffic, the scheduler allocates the number of
RBs necessary to satisfy the QoS/QoE. To investigate the
distribution and impact of resource allocation two experi-
ments were conducted for LTE-U and LAA, respectively.
Thereafter, the probability density function (PDF) of the RB,
SINR, and Throughput distributions in LTE-U and LAA is
generated using kernel density estimation with a bandwidth
estimator of 0.8. The results are presented in Figure 6.

We begin by exploring the characteristics of the distribu-
tions of the three network variables. It can be ascertained
that except for SINR, the other two distributions for both
unlicensed variants are skewed. For LTE-U, the RB distri-
bution is left-skewed, while the Throughput distribution is
right-skewed. In contrast, for LAA, both RB and Throughput

distributions are left skewed. Thus, in LTE-U the SINR dis-
tribution seems to be influencing the Throughput distribution
more than RB allocation.

Statistical analysis of the distribution is presented in
Table 2. It is discernible from the statistics that the RB alloca-
tion is higher in LTE-U than in LAA. Taking into account the
probability distribution, 87.53% samples in LTE-U have an
RB allocation of 80 and higher, i.e., P(RB ≥ 80), compared
to 54.70% in LAA. However, there is a drastic difference
between the two standards and LAA performs much better.
For example, P(SINR ≥ 15dBm) or SINR equal to or greater
than 15dBm is true for only 2% of the LTE-U samples
compared to 67.3% samples in LAA. When combined, these
results lead to an interesting Capacity distribution. Despite a
higher allocation of RB, LTE-U offers much lower through-
put values compared to LAA, with only 9.9% samples above
30Mbps compared to 96.4% samples in LAA.

A possible explanation is that, despite better RB allocation,
high interference with coexisting Wi-Fi signals during the
LTE-U On mode leads to increased packet retransmission.
Corrupted symbols/bits over the air transmission render the
RB utilization inefficient. Thus, poor SINR causes the LTE-U
small cell to transmit a lower number of bits at a lower
modulation coding scheme (MCS). Poor SINR combined
with lower MCS results in a low overall system throughput
or network capacity. Inefficient resource utilization may pose
additional challenges in the fair sharing of the spectrum in the
unlicensed band. On the other hand, LAA small cell are able
to leverage the RB allocation more effectively to maximize
network capacity.

Thus, features such as RB allocation and MCS have a
clear impact on network feature relationships and, in turn,
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FIGURE 7. Network feature relationship based optimization.

on the network context. Including these features in the data
models is likely to offer improved feature relationships and
greater gains in optimization accuracy [9]. However, appli-
cation to network optimization must be done with caution,
as constraints with additional features may lead to longer con-
vergence times. Thus, accuracy-speed trade-off is a crucial
aspect that must be considered in NFR-based optimization.
This paper covers it at length in Section VII.

VI. UTILIZING FEATURE RELATIONSHIPS FOR NETWORK
OPTIMIZATION
Optimal performance or resource allocation in a wireless
network can be achieved through three broad frameworks,
which are (a) optimization models, (b) machine learning
techniques, and (c) a hybrid approach that combines the two
called data-driven optimization [20], [32]. Although machine
learning algorithms are commonly used for prediction and
classification problems, feature relationships are particularly
useful to reduce the computational overhead of unlicensed
network optimization [33], [34].

A. NETWORK FEATURE RELATIONSHIP BASED
OPTIMIZATION
This work leverages the NFRs to enhance network perfor-
mance, through the proposed Network Feature Relationship
based Optimization (NeFRO) technique [9].
NeFRO is a data-driven approach which adopts the hybrid

optimization methodology. As illustrated in Figure 7, NFRs
learned from the network data serve as constraints in a model
that aims to optimize dense unlicensed networks.The NeFRO
framework overcomes the reliance on arbitrary assump-
tions and heuristics to relax complex theoretical constraints.
NeFRO uses ML-based network feature relationship equa-
tions that reflect the ambient state of a wireless network.

The first step entails collecting data from network deploy-
ments at predetermined epochs. Next, low-cost machine
learning algorithms are used to learn NFRs for each epoch.

Robust NFRs from relationship models with high R-sq
(RMV) are fed to constraint selector module, which chooses
the constraints necessary for optimization formulation. Typ-
ically, the selector module is designed to compare the NFR
learned for a feature vector {f1, f2, . . . , fn}with the theoretical
constraints associated with the feature vector. The rationale
behind this step is that since the NFRs capture the ambient
network environment, they can be used ‘‘as is’’ in the model,
doing away with the need for arbitrary constraint relaxations.
Despite its suitability, an NFR is tested for convergence time
viability, by comparing its complexity and expected run-time
vis-a-vis the theoretical constraint. Owing to its data-driven
optimization approach, NeFRO is able to significantly reduce
time costs of optimization while delivering results that are
close to the values derived from theoretical constraints.

Although the illustration highlights the process-flow for a
coexistence network, the NeFRO approach will apply simi-
larly to network optimization in all wireless networks, with
minor modifications, if required.

Benefits of the NeFRO Approach The proposed NeFRO
framework offers several advantages over conventional net-
work optimization. First, NFRs are learned from empirical
data through ML algorithms for a given epoch. Thus, they
reflect the ambient network environment better than theoreti-
cal constraints that involve similar network variables. Second,
NFRs can be used ‘‘as is’’ in optimization without making
any assumptions, unlike theoretical constraints, which often
require context-specific relaxations and assumptions. Finally,
if the data-driven NFRs are less complex than the correspond-
ing theoretical constraints, the problem of arbitrary or forced
relaxation of theoretical constraints is automatically solved.
Even when the learned NFRs result in computational over-
heads comparable to theoretical constraints, they ensure an
informed network optimization process grounded in network
data.

B. IMPLEMENTATION AND VALIDATION OF NeFRO
1) EVALUATION OF NEFRO
This work improves the metrics used for evaluation in [9].
Three simplified metrics are considered to evaluate NeFRO,
viz., ‘‘Accuracy’’, ‘‘Speed’’, and ‘‘Optimization Gain’’.
Accuracy of the NeFROmodel demonstrates the closeness of
the ‘‘NeFRO-optimal output’’ to the optimal value generated
by the baseline optimization model. Thus,

2) LOSS IN ACCURACY
can be defined as the ‘‘(%) difference in the optimal value
generated by the baseline model and the NeFRO-optimal
value’’. The second parameter is the reduction in conver-
gence time achieved by the NeFRO model to arrive at the
NeFRO-optimal value. It is named Speed. Thus,

3) GAIN IN SPEED
can be defined as the ‘‘(%) reduction in convergence time
achieved by NeFRO compared to the baseline model’s
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FIGURE 8. NeFRo performance in LAA capacity and SINR optimization.

FIGURE 9. NeFRO performance in LTE-U capacity and SINR optimization.

TABLE 3. Performance trends in test scenarios.

convergence time’’. Together, the first two indicators are used
to derive the ‘‘Accuracy Speed Trade-off’’ (Trade-off). In,
this work Trade-off is defined in terms of Optimization Gain,
where,

Optimization Gain (%) = Gain in Speed (%)

−Loss in Accuracy (%)

For example, if the baseline model outputs an optimal solu-
tion of 100 and takes 10ms to converge, and the NeFRO
generates 95 as the optimal solution and requires 9ms to arrive
at the NeFRO-optimal value, then the Optimization Gain is
5%, and the Trade-off is acceptable.

A positive Optimization Gain justifies the Trade-off
involved, especially when faster convergence time is highly
desirable, such as an AR service communicating on an LAA
or LTE-U channel. However, the lower the Loss in Accuracy,
the lower the Trade-off, and more suitable is the optimization
formulation. Thus, NeFRO uses data-driven NFRs to achieve
the twin objectives of gain in Speed through convergence
time reduction and high Accuracywith respect to the baseline
optimization model. Please note that the Accuracy Speed
Trade-off in dense network performance optimization is a
major challenge in itself [26], and is addressed at length in

Section VII. Next, the baseline optimization models and the
validation methodology are discussed.

4) BASELINE UNLICENSED NETWORK
OPTIMIZATION MODELS
The proposed NeFRO framework is validated through four
recent state-of-the-art studies that seek to optimize coex-
istence network performance. These include two studies
that optimize end-user throughput or network capacity,
and the remaining two works attempt to provide opti-
mal signal strength to end-user equipment (UE). The LAA
capacity optimization model presented in [35], is based on
optimal resource allocation in an unlicensed coexistence net-
work [35]. An LBT-compliant channel access solution is
proposed in [36] for both LTE-U/LAA in the 5GHz band
with the aim of maximizing network capacity through inter-
ference mitigation in the LTE-WiFi system. The two base-
line capacity optimization models are denoted as COM1 and
COM2, respectively in the discussion ahead. Regarding signal
strength, the optimization solution proposed in [37] improves
network signal quality through strategic placement of nodes
in the LTE-U and LAA networks. Next, the solution pre-
sented in [38], considers efficient spectrum usage of Wi-Fi
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APs along with optimal placement of nodes, for enhanced
signal strength. The signal strength optimization models are
henceforth denoted as SOM1 and SOM2, respectively.

5) MODELING OF UNLICENSED NETWORK OPTIMIZATION
The General Algebraic Modeling Language (GAMS) [39],
tool effectively models an unlicensed coexistence environ-
ment through the use of constraints. The SINR-related con-
straints account for the impact of LAA/LTE-U transmission
on Wi-Fi APs and vice versa. Constraints concerning the
number of active users connected to the LAA/LTE BS or
Wi-Fi AP prevent the network from overloading. Similarly,
constraints with respect to the user association threshold, such
as an RSRP of −108 dBm, limit packet loss. Constraints
concerning the placement of the BS or APs ensure that there
are no blind spots or coverage holes in the network. Finally,
resource allocation constraints are vital for modeling fairness
in the coexistence system. For LAA and Wi-Fi, these include
the sensing duration of LTE-LAA (LBT) andWi-Fi (CSMA),
ED thresholds (−62 dBm for Wi-Fi and −72 dBm for LAA)
and the corresponding opportunities for data transmission.
Similarly, for LTE-U, the duty cycle ON and OFF constraints
are based on the number of contending nodes in the network.

6) VALIDATION METHODOLOGY
The methodology adopted to validate NeFRO entails the
following steps. First, the four baseline unlicensed network
optimization models are implemented in GAMS [39], for
each of the test scenarios. That is, the implementations con-
form to the system configurations and network specifications
considered. Second, baseline optimal value of the network
parameter (SINR or Capacity) and the convergence time taken
by the optimal baseline solution are recorded. The third
step applies the NeFRO process to the baseline solutions.
Thus, the complex theoretical constraints related to signal
strength and/or network capacity in a baseline formulation are
replaced with the data-driven CIR equations learned through
ML algorithms. It is worth mentioning that baseline network
capacity optimization formulations viz., COM1 and COM2,
are considered for test scenarios where SINR is the pre-
dictor in the network ML model, and vice versa. Fourth,
NeFRO-optimal values and NeFRO convergence time are
recorded. In the fifth step, the NeFRO performance indicators
are determined, viz., Gain in Speed, Loss in Accuracy, and
Trade-off, from the observations made for baseline models
(step two) and NeFRO models (step four),

Finally, NeFRO is assessed for its ability to reduce conver-
gence timewhile ensuring a high Accuracy vis-a-vis the base-
line optimization models. Therefore, a high Gain in Speed,
a low Loss in Accuracy, and a positive Trade-off will validate
the NeFRO hypothesis.

C. OPTIMIZATION RESULTS AND NeFRO EVALUATION
The NeFRO validation is performed through second-degree
non-linear CIR models as the SINR-Capacity relationship in
wireless networks is shown to be quadratic [21].

The results of the optimization simulations run in
GAMS are presented in Figure 8 and Figure 9, for
the LAA and LTE-U test scenarios, respectively. Further,
Figures 8(a), 8(b), 9(a), and 9(b), present results for test sce-
narios where the objective is to optimize network capacity.
The remaining figures show results for signal strength opti-
mization test scenarios.

It can be discerned that NeFRO performs remarkably well
by reducing the required convergence times while delivering
NeFRO-optimal values very close to the optimal results of the
respective baseline models. A scenario-specific evaluation of
NeFRO can be performed by observing the difference in the
length of bars of ‘‘Loss in Accuracy’’ and ‘‘Gain in Speed’’
for a particular test scenario. The greater the difference, the
lower the Trade-off and the better the NeFRO performance.
Two points are noteworthy. First, in LAA scenarios, NeFRO
offers a significant reduction in convergence time, while in
LTE-U scenarios, the Gain in Speed is somewhat subdued.
Network optimization in LTE-U is inherently more challeng-
ing due to its channel access mechanism. Hence, it is more
computationally intensive and requires a longer convergence
time. Second, for LAA scenarios, the difference in NeFRO
performance for capacity optimization and SINR optimiza-
tion is negligible.

However, in LTE-U, there appears to be a noticeable differ-
ence in NeFRO performance for these two objectives. In par-
ticular, the Gain in Speed for SINR optimization in LTE-U
is rather low, and for two specific SOM2 test scenarios viz.,
TS13 and TS15, it is lesser than the Loss in Accuracy, leading
to a negative Trade-off. The average performance of NeFRO
across all test scenarios for the four optimization models is
presented in Table 3. Despite these specific instances, for both
SOM1 and SOM2, the average Gain in Speed of NeFRO is
higher than its average Loss in Accuracy, leading to an overall
positive Trade-off.

In general, NeFRO outperforms the baseline model across
all test scenarios and both unlicensed LTE variants by sig-
nificantly reducing the convergence time (large Gain in
Speed). The average Loss in Accuracy, as shown in Table 3,
is also very low. Further, NeFRO seems to perform better
in LTE-LAA scenarios compared to LTE-U, which can be
expected based on the discussion and findings presented in
this work. Thus, the NeFRO framework stands validated.

Please note that these state-of-the-art optimization models
are implemented for small-scale dense unlicensed coexis-
tence scenarios on an experimental testbed. We expect that
in a real-world network of much higher scale and density, the
performance enhancement demonstrated by NeFRO will be
far more pronounced.

VII. ACCURACY SPEED TRADE-OFF IN DATA-DRIVEN
OPTIMIZATION
The primary contribution of this work is context-aware
data-driven optimization. Developing an understanding of
the Accuracy-Speed Trade-off is the first step in that
direction.
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FIGURE 10. Impact of the degree of NFR on LTE-U capacity and SINR optimization.

FIGURE 11. Impact of the degree of NFR on LTE-U capacity and SINR optimization.

Within the hybrid optimization paradigm that leverages
machine learning, Accuracy-Speed Trade-off implies that it
is challenging to achieve high Accuracy while delivering
results at high Speed. Although NeFRO is designed to deliver
optimal results with high Accuracy and high Speed, essen-
tially overcoming the Trade-off, its performance is invariably
linked to the NFRs used as constraints. Multiple relation-
ship models can be learned for a set of network features,
depending upon objective criteria such as R-sq, outlier thresh-
old, higher-order terms, etc. For example, a polynomial
NFR of nth degree with statistically significant higher-order
terms (no overfitting) may represent the relationship more
accurately through a higher R-sq. Strong NFRs lead to
better results when used in tasks such as rate adaptation
or throughput enhancement [16], [20]. Thus, the R-sq of
an ML model trained on network data can be consid-
ered to be an indicator of its ability to optimize network
performance. However, the use of a higher-order feature
relationship in NeFROmay lead to a significantly longer con-
vergence time. Hence, not all relationship models for a given

feature-set are suitable for dense unlicensed optimization
through NeFRO.

These factors make the selection of an appropriate NFR for
ML-based optimization a challenging problem. Thus, a prime
objective of this work is to study convergence time and
accuracy trade-off in using feature relationships of different
degrees in data-driven optimization. In addition, it proposes a
practical context-aware approach to selecting the appropriate
NFR for the right use case.

A. TRADE-OFF EVALUATION IN METHODOLOGY
The first step in this process is the evaluation of the
Trade-off in data-driven optimization. To that end, the anal-
ysis in this section considers multiple network models for
capacity-interference relationship (CIR) of different degrees
(influences Speed) and R-sq (influences Accuracy).

1) GENERATING CIRS OF VARYING DEGREES
Kernel functions are varied in the ML algorithms discussed
in Section III-B, to generate feature relationship models of
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FIGURE 12. Trade-off analysis at the level of network configuration.

multiple degrees. A kernel function K (x, x′) allows us to
compute the dot product in an arbitrary large space without
the need to explicitly project features in high-dimensional
space. In particular, K (x, x′) is defined as exp(−γ ||x − x′

||
2)

and γ (x⊤x′
+ r)d for radial basis function and the polynomial

kernel, respectively. Here, γ , r , and d are kernel-specific
parameters. In particular, d controls the complexity of the
decision function f , i.e., setting d = 1, 2, 3 corresponds to
learning a linear, quadratic, and cubic boundary in the case of
the polynomial kernel. In practice, we prefer the polynomial
kernel, as it can be easily plugged into the optimization
routine, whereas the RBF kernel would require certain mod-
ifications. Nevertheless, the results are reported with both
radial basis function (RBF) and polynomial kernel (MPR) for
completeness.

SINR-Capacity relationship has been theoretically shown
to be non-linear [12], [21], hence the analysis presented
considers CIR polynomials of degrees 2 and 3. Please note
that data-driven CIRs can also be linear for specific network
scenarios, e.g., when only a relatively linear section of the
overall non-linear CIR curve is applicable to a system. In such
scenarios, linear CIRs can have a high RMV or R-sq and may
yield a better optimization performance, i.e., a lower Trade-
off [20]. Since the experiments in this study were performed
for the entire SINR range, linear models are not considered
in the Trade-off analysis.

2) EVALUATION METHODOLOGY
A comparative Trade-off analysis is performed for 2nd and
3rd degree polynomial CIRs through the baseline models
that seek to maximize coexistence network performance
through network capacity optimization (COM1 and COM2)
and signal strength optimization at the UEs (SOM1 and
SOM2). Next, as previously described (Figure 7), the theo-
retical constraints in the baseline models are replaced with
the 2nd and 3rd NFRs learned from the feature relationship
analysis. The NeFRO-optimal values and the convergence

times are noted for the optimization objectives. Finally, the
NeFRO-optimal and baseline-optimal values are compared to
determine (a) Loss in Accuracy and (b) Gain in Speed.

B. RESULTS AND ANALYSIS
The optimization simulation experiments are run in GAMS
and the results are evaluated at the level of individual test
scenarios and at the level of network configuration.

1) SCENARIO-SPECIFIC TRADE-OFF EVALUATION
The scenario-specific results are presented in Figure 10 and
Figure 11, for LAA and LTE-U, respectively. For each test
scenario, the ‘‘Degree’’ shows the order of the polynomial
CIR used in NeFRO.

It is evident from the scenario-specific assessment that
for NFRs of both polynomial degrees, NeFRO reduces run
times while converging on NeFRO-optimal values that are
extremely close to the baseline-optimal values. This is true
for most test scenarios. Except in a few cases, even NFRs
with ‘‘Degree=3’’ offer better overall performance than the
baseline optimization models. In LAA scenarios, generally
the magnitude of Optimization Gain decreases as the degree
of the non-linear NFR increases from 2 to 3. Further, there
is no unfavorable Trade-off in 2nd degree polynomials and
negative Optimization Gain in only two scenarios for 3rd

degree CIR.
Comparing 2nd and 3rd degree CIRs, the relative perfor-

mance trends seem different for Capacity and SINR optimiza-
tion models. In the former, as shown in Figure 10(a), 2nd

degree CIRs seemmore suitable than 3rd degree CIRs, except
in one instance, TC25. Since 3rd degree CIRs perform slightly
better for both optimization models in TC25, the ‘‘context’’
of the scenario seems important. For signal strength opti-
mization models (Figure 10(b)), the case is somewhat similar.
In 6 of 8 test scenarios, 2nd degree CIRs appear to be the
better choice. However, for TC07 and TC14, 3rd degree CIR
SOM1 outperforms 2nd degree. This, too hints at the fact
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FIGURE 13. Context aware network feature relationship based optimization.

that for a specific ‘‘context,’’ network configuration, and the
optimization objective, a higher degree CIRmay offer a lower
Trade-off.

In contrast to LAA, LTE-U optimization Trade-off trends
are significantly different. Although NeFRO offers a positive
Optimization Gain for both capacity and signal strength mod-
els for most scenarios, the distinction between CIR of 2nd and
3rd degrees is not very pronounced. In capacity optimization
(Figure 11(a)), 2nd degree CIRs seem slightly more suitable
and have a negative Optimization Gain for half the number
of test scenarios. However, in LTE-U SINR optimization, the
performance of CIRs of 2nd and 3rd degrees varies depending
on the network configuration and optimization formulation.
A possible reason for this could be that network optimization
in LTE-U is often more complex owing to its duty-cycle-
based channel access mechanism, leading to longer conver-
gence times, regardless of the degree of NFR.

These findings highlight the importance of the network
context and choosing the right NFR based on that context.

2) NETWORK CONFIGURATION LEVEL EVALUATION
To investigate the relevance of context, it is important to see
if the above Trade-off patterns are reflected at the macrolevel.
Thus, the results of the network configurations are presented
in Figure 12. It is evident that, averaged across all test sce-
narios, NeFRO always ensures a positive Trade-off, for both
LTE-U and LAA and all four baseline models, i.e., Gain
in Speed is invariably higher than the Loss in Accuracy.
On average, the Loss in Accuracy, is higher for LAA than
it is for LTE-U, e.g., 2.98% and 4.7% for LTE-U and LAA
SINR optimization, respectively. However, the average Gain
in Speed, and as a result, the magnitude of average positive
Trade-off, is higher for LAA than it is for LTE-U.

A comparison of 2nd and 3rd degree CIRs, offers great
insight into the role of network context in NeFRO per-
formance. The network context, as conceptually applied to

this work, can be defined as ‘‘the sum total of the ambient
network environment, network configuration, and the opti-
mization objective.’’ Looking at LAA optimization models
in Figure 12, it is discernible that 2nd degree CIRs offer a
somewhat lower Accuracy but a much higher Speed, leading
to a much higher overall Trade-off. Thus, at the configuration
level, 2nd CIRs lead to a higher Optimization Gain than 3rd

degree CIRs. However, considering Loss in Accuracy alone,
the 3rd degree CIRs perform much better, e.g., they offer one
fifth the loss for LAA SOM1, compared to 2nd degree CIRs.
Thus, navigating the Trade-off becomes highly contextual.
In scenarios where high Accuracy is important, despite the
overall higher Optimization Gain, 2nd degree CIRs may not
be suitable.

The impact of context with respect to network configura-
tions is more clearly brought out in LTE-U signal strength
optimization. Here, for both LTE-U SOM1 and LTE-U
SOM2, the 3rd degree CIRs show better Accuracy and higher
Speed. Therefore, it seems to make more sense to use 3rd

degree CIRs for this network configuration and 2nd degree
CIRs for other configurations.

In general, it can be inferred that the NeFRO approach
improves the baseline models regardless of the type or degree
of the NFR. Furthermore, it seems to benefit the LAA-WiFi
coexistence optimization more than LTE-U. Most impor-
tantly, the NFR for data-driven optimization must be chosen
based on the network context. This finding underscores the
importance of the awareness of network context, which is a
nontrivial problem, and a practical solution is presented in the
next section.

VIII. CONTEXT AWARE OPTIMIZATION
The findings of Trade-off analysis have highlighted that
data-driven optimization of unlicensed coexistence network
performance requires context awareness. The network con-
text has several components. A major aspect of the network
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FIGURE 14. Accuracy-Speed Trade-off analysis in Data-driven optimization.

context is the nature of the traffic requested by the UE,
such as voice, video, live streaming, file download, etc. Each
traffic type has a different QCI index, EPS bearers, and
channel access priority. Mobile network operators distinguish
between different types of traffic to ensure high QoS at
the UE and prioritize data traffic based on these parame-
ters. Thus, voice traffic has high priority, and the packets
need to be transmitted more frequently to avoid performance
degradation, e.g., voice quality. Similarly, a file download
service/application demands higher resource block allocation
at the MAC layer to maintain an excellent data rate. Another
aspect of context can be the number of users connected to
base station as that shapes the traffic load, congestion, and
resource allocation.

The awareness of the context for network optimization is
easily understood through cell selection mechanisms [31].
Data-driven cell selection is increasingly becoming the norm
in industry [31], [40], [41] and solutions to improve the cell
selection process have also been presented in recent aca-
demic studies [7], [8]. A context-aware optimization of signal
strength would enhance the efficiency of the cell association
process. For example, the context, i.e., ambient radio (LTE-U

or LAA) condition and data demand, can guide the operator
cell selection mechanisms in deciding which PCI needs to be
enabled as an additional carrier for carrier aggregation or dual
connectivity.

The discussion in this section proposes a context-
aware NFR-based optimization framework (CANeFRO). The
hypothesis is then validated through context-aware optimiza-
tion choices made through decision matrix analysis [42].

A. CONTEXT AWARE NeFRO
A high-level schema of the context-aware NFR-based opti-
mization framework (CANeFRO) is presented in Figure 13.
CANeFRO introduces an element of context awareness in the
NeFRO approach discussed in detail earlier. It also provides
for an improved selection of NFR through context validation.
In this work, decision matrix analysis (DMA) or the Pugh
method is used to calibrate the network context on a weighted
scale [42]. The important aspects of CANeFRO illustrated in
Figure 13 are discussed below.

A strong network feature relationship is reflected in the
highR-sq of theMLmodel and is likely to improve the perfor-
mance of the data-driven optimization model [16], [20], [31].
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Since the CIR is non-linear, a higher-order CIR often offers
a better regression fit, thereby ensuring a higher RMV or
R-sq. Therefore, it seems desirable to utilize it in a NeFRO
model for enhanced accuracy. However, a higher-order CIR
will also increase the time cost of the optimization model that
utilizes it. Thus, the choice of NFR should be motivated by
the context. For example, a high-performance use case, such
as remote surgery using a virtualized digital twin will prefer
Accuracy over Speed [43], while high Speed will be preferred
in on-the-go video streaming.

To reflect a varying context, a decision matrix is consid-
ered. On the X-axis, weights are assigned to Loss in Accu-
racy and Gain in Speed for each individual test scenario.
Thus, context can be defined as C → (X , ϒ) | X →

WeightAcc, ϒ → WeightSpd , where C is the network context,
X is the weight assigned to Loss in Accuracy, ϒ is the weight
assigned to Gain in Speed, WeightAcc ∈ [1, 0], WeightSpd ∈

[0, 1]. Thus, the context changes from the use case (e.g.,
remote surgery) where Accuracy takes the highest priority
and Speed takes the lowest priority, i.e., C → (1, 0) to the
use case (e.g., live streaming) where Speed takes the highest
priority andAccuracy takes the least priority, i.e.,C → (0, 1).
All other network contexts or use cases fall between these two
extremes.

Subsequently, the decision score S(Ck ) for a given context
is computed as follows.

S(Ck ) =

n∑
i=1

XTSi1− AccuracyTSi + ϒTSi1+ SpeedTSi

n

where 1− refers to loss, 1+ refers to gain, Ck is the k th net-
work context, X is the weight assigned to Loss in Accuracy,
ϒ is the weight assigned to Gain in Speed, TSi is the ith

test scenario, n is the number of test scenarios in a network
configuration, and k is the number of contexts.

Finally, the decision scores for each network context are
computed for LAA and LTE-U, for both optimization objec-
tives, for CIRs of 2nd and 3rd degrees, and all four baseline
optimization models.

B. EVALUATION OF CONTEXT AWARE NeFRO
The results of the decision matrix analysis for context-aware
NeFRO are presented in Figure 14. It can be noticed that the
context has an immense bearing on data-driven optimization
and the choice of NFR. Given the multitude of test scenarios
considered in this work, for simplicity, the decision scores
are averaged across individual test scenarios for a single
unlicensed coexistence standard, viz., LTE-U and LAA.

For both standards, the optimization objective, i.e., pro-
viding maximum SINR and Capacity to the UE, and the
optimization formulation, viz., SOM1, SOM2, COM1, and
COM2, determine the best NFR for the context, shaping the
overall decision score. For example, 2nd degree LAA SOM2
CIR outperforms 2nd degree SOM1. However, the reverse is
true for 3rd degree CIRs in LAA signal strength optimization
(Figure 14(a)). Moreover, the performance difference stays

more or less constant for 2nd degree NFRs for all use cases,
but for 3rd degree the decision scores converge for high-Speed
use cases, viz., (0.1, 0.9) and (0.0, 1.0). Similar contextual
variability can be observed in other plots as well.

We now focus on the performance variation between
LTE-U and LAA. For LAA, the performance of the signal
strength and capacity optimization models follows a similar
pattern (Figures 14(a) & 14(b)). 2nd degree NFRs outperform
3rd degree NFRs as for all use cases where weight assigned
to speed (faster convergence times) is ≥0.3. Furthermore,
3rd degree NFRs are the clear choice in use cases where no
compromise in optimization accuracy is tolerable.

In sharp contrast, LTE-U demonstrates different trends for
signal and capacity optimization goals, and there is a greater
contextual variation in the choice of NFR. The first point
of marked difference is that the decision score for LTE-U
models is lower than LAA by up to 42%. This holds true
for all four NeFRO optimization models. Second, for both
SINR optimization models (Figure 14(c)), 3rd degree NFRs
are a better choice, for all use cases. Thus, regardless of the
priority class of the traffic type and latency requirements
of the use case, 3rd degree NFRs outperform 2nd degree
NFRs. Further, the trends in the decision score presented in
Figure 14(d) reveal that both types of CIR perform better
in capacity optimization models for almost equal number of
use cases. Therefore, 3rd degree NFRs are more suited in
quadrant 3 use cases, where high accuracy is desirable and
2nd degree NFRs are dominant in quadrant 2 use cases where
high convergence speed is desirable.

From the above analysis, the impact of network context
on data-driven optimization is evident. Thus, data-driven
optimization solutions for real-world LAA deployments
ought to consider the network context for a better end-user
experience.

IX. CONCLUSION AND WAY FORWARD
Unlicensed cellular networks and spectrum-sharing mech-
anisms face new challenges that require data-driven solu-
tions for network optimization. An unexplored problem
in the data-driven optimization of unlicensed networks is
the Accuracy-Speed trade-off. This work took advantage
of machine learning to improve the performance of clas-
sical network optimization techniques in dense unlicensed
networks. It highlighted the relevance of network con-
text in mitigating the trade-off by considering multiple
higher-order network feature relationships. A context-aware
network feature relationship-based optimization framework
(CANEFRO) was proposed and validated through decision
matrix analysis. CANEFRO showed that the network context
influences the choice of the feature relationship model and
the optimization goal. It also demonstrated how network data
and machine learning can be used to enhance the capabilities
of classical network optimization. The next step would be to
investigate the performance of mobile AR applications on
cellular networks and apply CANEFRO at the application
layer to enhance the end-user experience.

VOLUME 11, 2023 7889



S. M. Kala et al.: Mitigating Trade-Off in Unlicensed Network Optimization

REFERENCES
[1] Ericcson Mobility Report, Ericcson, Stockholm, Sweden, 2021.
[2] K. Apicharttrisorn, B. Balasubramanian, J. Chen, R. Sivaraj, Y.-Z. Tsai, R.

Jana, S. Krishnamurthy, T. Tran, and Y. Zhou, ‘‘Characterization of multi-
user augmented reality over cellular networks,’’ in Proc. 17th Annu. IEEE
Int. Conf. Sens., Commun., Netw. (SECON), Jun. 2020, pp. 1–9.

[3] V. Sathya, S. M. Kala, M. I. Rochman, M. Ghosh, and S. Roy, ‘‘Standard-
ization advances for cellular and Wi-Fi coexistence in the unlicensed 5
and 6 GHz bands,’’ GetMobile, Mobile Comput. Commun., vol. 24, no. 1,
pp. 5–15, Aug. 2020.

[4] V. Sathya, S. M. Kala, and K. Naidu, ‘‘Heterogenous networks: From small
cells to 5G NR-U,’’ Wireless Pers. Commun., 2022, doi: 10.1007/s11277-
022-10070-z.

[5] L. Ho and H. Gacanin, ‘‘Design principles for ultra-dense Wi-Fi deploy-
ments,’’ in Proc. IEEE WCNC, Barcelona, Spain, Apr. 2018, pp. 1–6.

[6] Y. Shi, J. Zhang, K. B. Letaief, B. Bai, and W. Chen, ‘‘Large-scale con-
vex optimization for ultra-dense cloud-RAN,’’ IEEE Wireless Commun.,
vol. 22, no. 3, pp. 84–91, Jun. 2015.

[7] S. M. Kala, K. Dahiya, V. Sathya, T. Higashino, and H. Yamaguchi,
‘‘LTE-LAA cell selection through operator data learning and numerosity
reduction,’’ Pervas. Mobile Comput., vol. 83, Jul. 2022, Art. no. 101586.

[8] S. M. Kala, V. Sathya, E. Yamatsuta, H. Yamaguchi, and T. Higashino,
‘‘Operator data driven cell-selection in LTE-LAA coexistence networks,’’
in Proc. Int. Conf. Distrib. Comput. Netw., Jan. 2021, pp. 206–214.

[9] S. M. Kala, V. Sathya, K. Dahiya, T. Higashino, and H. Yamaguchi,
‘‘Optimizing unlicensed coexistence network performance through data
learning,’’ inMobile and Ubiquitous Systems: Computing, Networking and
Services. Cham, Switzerland: Springer, 2022, pp. 128–149.

[10] S. Abadal, A. Mestres, J. Torrellas, E. Alarcon, and A. Cabellos-Aparicio,
‘‘Medium access control in wireless network-on-chip: A context analysis,’’
IEEE Commun. Mag., vol. 56, no. 6, pp. 172–178, Jun. 2018.

[11] K.-L. A. Yau, P. Komisarczuk, and P. D. Teal, ‘‘Reinforcement learning for
context awareness and intelligence in wireless networks: Review, new fea-
tures and open issues,’’ J. Netw. Comput. Appl., vol. 35, no. 1, pp. 253–267,
2012.

[12] S. M. Kala, M. P. K. Reddy, R. Musham, and B. R. Tamma, ‘‘Interference
mitigation in wireless mesh networks through radio co-location aware
conflict graphs,’’Wireless Netw., vol. 22, no. 2, pp. 679–702, Feb. 2016.

[13] G. Cheung, J. Lee, S.-J. Lee, and P. Sharma, ‘‘On the complexity of system
throughput derivation for static 802.11 networks,’’ IEEE Commun. Lett.,
vol. 14, no. 10, pp. 906–908, Oct. 2010.

[14] D. Chafekar, V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and
A. Srinivasan, ‘‘Capacity of wireless networks under SINR interference
constraints,’’Wireless Netw., vol. 17, no. 7, pp. 1605–1624, Oct. 2011.

[15] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, ‘‘Impact of interference
on multi-hop wireless network performance,’’ Wireless Netw., vol. 11,
no. 4, pp. 471–487, Jul. 2005.

[16] A. Abedi and T. Brecht, ‘‘Examining relationships between 802.11n physi-
cal layer transmission feature combinations,’’ in Proc. 19th ACM Int. Conf.
Model., Anal. Simul. Wireless Mobile Syst., Nov. 2016, pp. 229–238.

[17] L. Kriara, M. K. Marina, and A. Farshad, ‘‘Characterization of 802.11n
wireless LAN performance via testbed measurements and statistical anal-
ysis,’’ in Proc. IEEE Int. Conf. Sens., Commun. Netw. (SECON), Jun. 2013,
pp. 158–166.

[18] S. Biswas, J. Bicket, E. Wong, R. Musaloiu-E, A. Bhartia, and D. Aguayo,
‘‘Large-scale measurements of wireless network behavior,’’ in Proc. ACM
Conf. Special Interest Group Data Commun., Aug. 2015, pp. 153–165.

[19] L. Kriara and M. K. Marina, ‘‘SampleLite: A hybrid approach to 802.11n
link adaptation,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 2,
pp. 4–13, Apr. 2015.

[20] S. M. Kala, V. Sathya, S. Winston K. G., and B. R. Tamma, ‘‘CIRNO:
Leveraging capacity interference relationship for dense networks optimiza-
tion,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), May 2020,
pp. 1–6.

[21] P. Gupta and P. R. Kumar, ‘‘The capacity of wireless networks,’’ IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[22] A. M. Cavalcante, E. Almeida, R. D. Vieira, S. Choudhury, E. Tuomaala,
K. Doppler, F. Chaves, R. C. D. Paiva, and F. Abinader, ‘‘Performance
evaluation of LTE and Wi-Fi coexistence in unlicensed bands,’’ in Proc.
IEEE 77th Veh. Technol. Conf. (VTC Spring), Jun. 2013, pp. 1–6.

[23] B. Bojovic, L. Giupponi, Z. Ali, and M. Miozzo, ‘‘Evaluating unli-
censed LTE technologies: LAA vs LTE-U,’’ IEEE Access, vol. 7,
pp. 89714–89751, 2019.

[24] H. Zhang, X. Chu, W. Guo, and S. Wang, ‘‘Coexistence of Wi-Fi and
heterogeneous small cell networks sharing unlicensed spectrum,’’ IEEE
Commun. Mag., vol. 53, no. 3, pp. 158–164, Mar. 2015.

[25] S. M. Kala, V. Sathya, W. K. G. Seah, H. Yamaguchi, and T. Higashino,
‘‘Evaluation of theoretical interference estimation metrics for dense Wi-
Fi networks,’’ in Proc. Int. Conf. Commun. Syst. Netw. (COMSNETS),
Jan. 2021, pp. 351–359.

[26] M. Kamel, W. Hamouda, and A. Youssef, ‘‘Ultra-dense networks: A sur-
vey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522–2545, 4th
Quart., 2016.

[27] E. Amaldi, A. Capone, M. Cesana, I. Filippini, and F. Malucelli, ‘‘Opti-
mization models and methods for planning wireless mesh networks,’’
Comput. Netw., vol. 52, no. 11, pp. 2159–2171, Aug. 2008.

[28] K. P. Murphy,Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

[29] Minitab Release 17: Statistical Software for Windows, Minitab, State
College, PA, USA, 2014.

[30] GSM Association. (2020). LTE Unlicensed Reports. [Online]. Available:
https://gsacom.com/technology/lte-unlicensed/

[31] S. M. Kala, V. Sathya, K. Dahiya, T. Higashino, and H. Yamaguchi, ‘‘Iden-
tification and analysis of a unique cell selection phenomenon in public
unlicensed cellular networks through machine learning,’’ IEEE Access,
vol. 10, pp. 87282–87301, 2022.

[32] Q. Mao, F. Hu, and Q. Hao, ‘‘Deep learning for intelligent wireless net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 4, pp. 2595–2621, 4th Quart., 2018.

[33] B. Bellalta, ‘‘IEEE 802.11 AX: High-efficiency WLANs,’’ IEEE Wireless
Commun., vol. 23, no. 1, pp. 38–46, Feb. 2016.

[34] M. A. Hirzallah, ‘‘Protocols and algorithms for harmonious coexistence
over unlicensed bands in next-generation wireless networks,’’ Ph.D. thesis,
Dept. Elect. Comput. Eng., Univ. Arizona, Tucson, AZ, USA, 2020.

[35] Q. Chen, G. Yu, and Z. Ding, ‘‘Enhanced LAA for unlicensed LTE deploy-
ment based on TXOP contention,’’ IEEE Trans. Commun., vol. 67, no. 1,
pp. 417–429, Jan. 2019.

[36] V. Valls, A. Garcia-Saavedra, X. Costa, and D. J. Leith, ‘‘Maximizing LTE
capacity in unlicensed bands (LTE-U/LAA) while fairly coexisting with
802.11 WLANs,’’ IEEE Commun. Lett., vol. 20, no. 6, pp. 1219–1222,
Jun. 2016.

[37] V. Sathya, A. Ramamurthy, and B. R. Tamma, ‘‘On placement and dynamic
power control of femtocells in LTE HetNets,’’ in Proc. IEEE Globecom,
Austin, TX, USA, Dec. 2014, pp. 4394–4399.

[38] A. M. Baswade, K. M. R. Shashi, B. R. Tamma, and F. A. Antony,
‘‘On placement of LAA/LTE-U base stations in heterogeneous wireless
networks,’’ in Proc. 19th Int. Conf. Distrib. Comput. Netw., Varanasi, India,
Jan. 2018, pp. 4–7.

[39] GAMS. (Mar. 2019).General AlgebraicModeling System. [Online]. Avail-
able: http://www.gams.com

[40] V. Huang, A. Bertze, and S. Corroy, ‘‘Adaptive cell selection in heteroge-
neous networks,’’ U.S. Patent 10 264 496, Apr. 16, 2019.

[41] G. L. Masini and A. Centonza, ‘‘Neighbor selection for handover in a radio
access network,’’ U.S. Patent 9 294 963, Mar. 22, 2016.

[42] V. Belton and T. Stewart, Multiple Criteria Decision Analysis: An Inte-
grated Approach. Berlin, Germany: Springer, 2002.

[43] H. Laaki, Y. Miche, and K. Tammi, ‘‘Prototyping a digital twin for real
time remote control over mobile networks: Application of remote surgery,’’
IEEE Access, vol. 7, pp. 20325–20336, 2019.

SRIKANT MANAS KALA (Graduate Student
Member, IEEE) received the M.Tech. degree
in computer science and engineering from IIT
Hyderabad, India. He is currently a Doctoral
Researcher at the Mobile Computing Laboratory,
Osaka University, Japan. His research interests
include domain of extended reality, unlicensed
and 5G networks, applied AI/ML, venture capital
investment analysis, and thermal comfort predic-
tion. In 2020, he received the IITH 10/10 Award

and was recognized as a Future Visionary Leader for his work in startups and
venture capital. He was awarded the Employee Excellence Award by Infosys
and IIT Hyderabad Research Excellence Award, in 2016 and 2017, respec-
tively. He led his startup team to the semifinals of the Ericsson Innovation
Awards 2020 and the Impact Summit of Hult Prize 2021.

7890 VOLUME 11, 2023

http://dx.doi.org/10.1007/s11277-022-10070-z
http://dx.doi.org/10.1007/s11277-022-10070-z


S. M. Kala et al.: Mitigating Trade-Off in Unlicensed Network Optimization

VANLIN SATHYA received the B.E. degree in
computer science engineering and the M.E. degree
in mobile and pervasive computing from Anna
University, Chennai, India, in 2009 and 2011,
respectively, and the Ph.D. degree in computer sci-
ence and engineering from the Indian Institute of
Technology (IIT) Hyderabad, India. He continued
his career at IITHyderabad, where hewas a Project
Officer of the Converged Radio Access Network
(RAN) Project. He is currently a System Engineer

at Cleona Inc., USA. Prior to this, he was a Postdoctoral Scholar at The
University of Chicago, Chicago, IL, USA, where he worked on the issues
faced in the 5G real-time coexistence test bed when LTE-unlicensed and
Wi-Fi try to coexist on the same channel. His primary research interests
include interference management, handover in heterogeneous LTE networks,
device to device communication (D2D) in cellular networks, cloud base
station and phantom cell (LTE-B), and LTE in unlicensed and private
5G (CBRS).

KUNAL DAHIYA received the B.Tech. and
M.Tech. degrees from IIT Hyderabad, where he
worked on large-scale visual computing applica-
tions. He is currently a Research Scholar at IIT
Delhi and a Research Intern at Microsoft Research
India, where he works on deep extrememulti-label
learning. His work has not only led to publications
in leading conferences, such as ICML, CVPR,
and WSDM, but has found applications in various
real-world, including query recommendations and

ads benefiting millions of users and small businesses. His research inter-
ests include extreme multi-label learning, Siamese networks, representation
learning, imbalanced classification, and 5G and LAA network operator data
analysis.

TERUO HIGASHINO (Senior Member, IEEE) is
currently a Professor and the Vice President at
Kyoto Tachibana University, Japan. He is also
a Specially Appointed Professor at the Graduate
School of Information Science and Technology,
Osaka University, Japan. He has been studying
algorithms, software, and design methodologies
concerning with localization/behavior estima-
tion of pedestrians/crowds, the development of
ultra-low power consumption IoT devices, CPS

research for future smart and connected communities, and IT technology for
disaster mitigation. Since 2018, he has been serving as a PI for the Society
5.0 Project of the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT), Japan. Society 5.0 is the motto of the Japanese Government
for constructing future super-smart societies, and their project aims to con-
tribute to life-design innovation through research and development. He was
a member of the Science Council of Japan (SCJ), from 2014 to 2020, and
a Vice President of the Information Processing Society of Japan (IPSJ),
from 2016 to 2018. He is a fellow of IPSJ.

HIROZUMI YAMAGUCHI (Member, IEEE)
received the B.E., M.E., and Ph.D. degrees in
information and computer science from Osaka
University, Osaka, Japan, in 1994, 1996, and 1998,
respectively. He is currently a Full Professor at
Osaka University, where he is leading the Mobile
Computing Laboratory. He has been working in
mobile and pervasive computing and networking
research areas. He has published papers in top-
quality journals, such as IEEE TRANSACTIONS and

Pervasive and Mobile Computing (Elsevier). He has served on ICDCN2021
and Mobiquitous 2021 as the General Co-Chair, and at many conferences,
such as IEEE PerCom, as a Technical Committee Member. He was awarded
the Commendation for Science and Technology by theMinister of Education,
Culture, Sports, Science, and Technology, in 2018.

VOLUME 11, 2023 7891


