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ABSTRACT Cotton harvest can be increased by having real-time information on the state of cotton aphid
populations. However, traditional cotton aphid monitoring relies on ground sample methods supported by
models such as linear regression, resulting in low forecast accuracy. Therefore, this paper purposes to
enhance the precision of the remote sensing prediction model by investigating the cotton aphid prediction
model construction approach. We explored the effectiveness of the XGBoost algorithm combined with the
GWO algorithm and SVR method for cotton aphid prediction relying on vegetation indices derived from
UAV multispectral photography. Originally, 12 indices related to cotton aphids were calculated by UAV
multispectral reflectance. Additionally, the optimal index combination for pest prediction was determined
utilizing analysis of correction and two-way ANOVA, combined with the XGBoost algorithm. Furthermore,
a pest prevalence prediction model for cotton aphids was constructed via the SVR methodology associated
with the optimal catalog combination, and the model was optimized using the GWO algorithm. Compared
with the seven algorithms, experimental results demonstrate that the MSE and MAE of the XGBoost-
GWO-SVRmodel are reduced by 90.20% and 70.36% (SVR), 90.14% and 70.26% (XGBoost-SVR), 7.47%
and 0.14% (XGBoost-GA-SVR), 5.80% and 0.11% (XGBoost-PSO-SVR), 12.06% and 58.95% (LR), and
84.77% and 89.22% (BPNN), whereas the R2 is increased by 22.5% (SVR and XGBoost-SVR), 0.3% (LR),
and 12.51% (BPNN). The R2 of the prediction model of XGBoost-SVR combined with GWO, PSO, and
GA is not significantly different. Among these models, the XGBoost-GWO-SVR obtained the highest R2 of
0.980 and the lowest MAE of 2.838.

INDEX TERMS Cotton aphid, support vector regression, unmanned aerial vehicle, XGBoost algorithm,
integrated pest management, grey wolf optimizer.
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I. INTRODUCTION
Xinjiang is the largest cotton-producing region in the coun-
try. Pests inhibit cotton development throughout the year,
resulting in 10-15% yield loss, and pest stress is continuously
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growing due to global climate change and insufficient eco-
logical and natural management of cotton fields [1]. Cot-
ton aphids are common pests in the cotton industry. Aphid
damage results in early leaf development, slow growth, and
a delayed growth cycle, all of which affect the quality and
yield of cotton [2]. Aphis gossypii Glover (cotton aphid),
Aphis atrata Zhang, and Acyrthosiphon gossypii Mordviko
are the three aphid species that cause damage to cotton plants
in Xinjiang. Cotton aphids can cause the greatest damage and
incidence, and they have a high capacity to migrate, resulting
in rapid pest outbreaks [2], [3].

Cotton aphids are migratory, movable, with rapid out-
breaks and rapid spread, susceptible to environmental
changes, with unstable population development and random
distribution in cotton fields. Furthermore, they are affected
by many characteristics with extensive coupling relation-
ships. Thus, it is challenging to construct a general model
for reliable prediction. Existing assessments and forecasts
of the degree of cotton aphid infestation rely on human
ground surveys, and prediction models built from field sur-
vey data offer higher accuracy but are challenging to pro-
mote for large-scale applications [4]. Intelligent information
processing techniques are crucial for accurately predicting
the dynamics of cotton aphid occurrence, understanding the
changing patterns of cotton aphids in cotton fields over time,
recognizing abnormal changes in cotton aphids, and provid-
ing early warnings [5], [6], [7]. Remote sensing technology
detects insect activities by detecting damage inflicted by
the insects such as sooty deposits, plant defoliation, color
changes, and geometric deformation of plant tissue shapes
[8], [9], [10]. Field pests can be recognized, studied, and
forecasted using precise spectral information from airborne
aerial and satellite sensors, as well as vegetation indicators
[4], [11], [12]. Several signal processing techniques, machine
learning methods, and pattern recognition algorithms have
been continuously applied tomodels used in continuousmon-
itoring, as UAV data and pest monitoring have improved,
and machine learning models have seen widespread usage
in pest detection [13], [14], [15]. In recent years, several
researchers have employed hybrid models generated from
several methodologies to make predictions, indicating that
merging different models may improve the prediction per-
formance [16], [17]. Despite tremendous progress, certain
unavoidable limitations remain, such as a weak model gener-
alization capacity, local optima, and under- and over-learning.
The use of UAV multispectral data, vegetation index data,
and machine learning approaches to target cotton aphids is
received relatively little attention in prior research. In this
paper, we employ a support vector regression (SVR, table 1
presents a cross-reference of phrases and abbreviations used
in the text) model to predict the cotton aphid population
status, integrating the benefits of XGBoost and numer-
ous different optimization techniques, which may address
issues such as the low accuracy of traditional cotton aphid
prediction.

TABLE 1. Phrase abbreviation cross-reference table.

SVR is a unique small-sample learning approach that is not
based on chance or the law of large numbers. In comparison
to other statistical approaches, SVR produces superior results
for representative slice fitting, and it is better adapted to the
current situation of a long time span and small sample size
for cotton aphid pests [18]. Therefore, SVR has been widely
used in many fields, such as in predicting vegetation cover-
age in desert areas [19], estimation capability of cotton leaf
nitrogen [20], accurate temperature forecasting in the field
of waterfowl breeding [21], predicting chlorophyll-a in water
bodies [22], predicting surface temperature [23], estimating
farmland surface soil moisture [24], and predicting lithium
battery life [25]. However, the SVR model has a complex
network and overfitting owing to the enormous variety of
parameters, and the uncertainty of coefficientC and tolerance
coefficient ϵ affect the model accuracy, which must be opti-
mized. The XGBoost method is a data screening method that
can effectively reduce overfitting and computational effort in
wheat stripe rust prediction feature screening and parthenium
weed classification [26]. The optimization algorithms of the
SVR algorithm are the GA algorithm, PSO algorithm, and
GWO algorithm, in which the GWO algorithm can quickly
solve the optimal solution of coefficient C and tolerance
coefficient ϵ. It has been applied to ship identification, data
filtering, and path planning optimization [27], [28], [29].

The main contributions of this paper are as follows:
• An improvedXGBoost-GWO-SVR cotton aphid predic-
tion model is proposed. It can estimate cotton aphid pop-
ulations accurately and expand avenues for informative
cotton aphid monitoring.

• Based on the information on vegetation spectral char-
acteristics after the occurrence of pests and diseases,
several new vegetation index algorithms are improved,
such as the MSAVI-SAVI ratio index and the Simple
ratio Green/Blue Vegetation Index.

• Compared with other algorithms, experimental results
demonstrate that the XGBoost-GWO-SVR model can
obtain better performance in prediction accuracy, and the
combination of the GWO-SVR model and the XGBoost
algorithm can enhance the prediction accuracy of cotton
aphids.
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TABLE 2. Field measurement activities in 2021.

The rest of this paper is organized as follows. Thematerials
collection and research methods are described in Section II.
Experimental results are provided in Section III. The exper-
imental results are discussed in Section IV. Finally, we con-
clude our work in Section V.

II. MATERIALS AND METHODS
A. FIELD PREPARATION
The study was anchored on a 63-acre research field
(41◦11′25.1091′′ N, 82◦51′37.9317′′ E; elevation: 896 m),
located in Gülbargh Town, Shayar County, Xinjiang Uygur
Autonomous Region, China. Potassium, phosphorus, and
plant growth regulators were not administered in the cotton
fields to achieve uniform field management guidelines. Fig.1
shows that cotton was planted at approximately 16,700 seeds
per acre on April 19, 2021. Twelve plots (≈ 68m long× 36m
wide [12 columns]) were arranged in a randomized complete
block design (three replicates per treatment) with resident
populations of cotton aphids (Aphis gossypii Glover). Cotton
aphids are perennial cotton pests in Gülbargh, and their pop-
ulations develop normally in late May. The number of cotton
aphids peaked during late June and early July (Table 2).

B. DATA COLLECTION
1) GROUND INVESTIGATION
The arthropod populations were monitored from May 20 to
July 16, 2021. We monitored the cotton aphid population at
288 sample point locations in 12 plots starting with the intro-
duction of cotton aphids into cotton fields, without the appli-
cation of any chemical insecticides. Under natural conditions,
enemies of aphids, such as ladybugs, lacewings, syrphid flies,
and suppress aphid reproduction.

Ground-truthing data were collected by sampling aphids
at 5-day intervals (Table 2). The GPS locations and aphid
populations were recorded for all spots showing symptoms
of aphid infection. Five cotton plant sites were randomly
selected from each sample point, a sample of 10 leaves (third
mainstem node leaf from the top of the plant) was counted,
and individuals were counted directly under natural condi-
tions (without destroying the cotton) using 4×magnification.
The accumulated aphid days for the period after treatment
was estimated using the aphid populations.

TABLE 3. All vegetation indices for the sensitivity analysis.

2) UAV IMAGERY ACQUISITION
The low-altitude UAV camera system platform consisted of
an M300 multi-rotor aircraft (DJI, Shenzhen, China) and
a RedEdge-MX airborne multispectral imager (MicaSense,
Seattle, WA, USA). The camera had a spatial resolution of
8 cm@120 m altitude hover-scan imaging, and five channels
in the 400-900 nm band range were selected: blue (475 nm,
40 nm bandwidth), green (560 nm, 20 nm bandwidth), red
(668 nm, 10 nm bandwidth), red edge (717 nm, 10 nm band-
width), and near-infrared (840 nm, 40 nm bandwidth). The
horizontal field of view was 47.2◦. Flight data were collected
during simultaneous ground collection efforts from June 8 to
July 16, 2021. Table 2 describes the cotton seeding date, and
the first detection of aphids date, and also records information
on the time of the drone data collection on days 50, 66, 73,
and 88 from seeding. Flight data were used to correspond to
a range of arthropod populations and cotton growth statuses.
Images were acquired under clear and cloud-free conditions,
and the sensor was calibrated using calibration plates before
and after the flight. During the flights, the altitude of the
UAV was maintained at 70 m over the ground, with an image
resolution of 5 cm. The flight data were preprocessed using
the Pix4DMapper software, and the resulting ortho-images
were georeferenced and indexed using ArcGIS Pro software
before being produced as single-band TIFF grayscale images.
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FIGURE 1. The research area is located in the county of shayar. Note: 70% of the sampled data is utilized for modeling, whereas 30% is employed
for validation.

In addition, a linear resampling method was utilized to
handle the UAV multispectral and cotton aphid survey data,
and the resampled data were used for subsequent analyses.

C. VEGETATION INDEX EXTRACTION
Vegetation indices computed with help of spectrally suscep-
tible bands can facilitate the prediction of crop pests. In this
paper, 12 vegetation indices sensitive to cotton aphids were
computed as initial features of the model aiming to the appli-
cation of those indices in cotton aphid prediction on the basis
of the features of cotton aphid damage [4]. Table 3 lists the
indicator names, formulae, and references.

The reflectances of green (G), blue (B), red (R), near-
infrared (NIR), and Red Edge (RE) were chosen to create the
vegetation index based on the features of the Red Edge-MX
sensor. Because the proposed indices, such as ARI, TCARI,
and SAVI, are based on hyperspectral or MERIS remote

sensing data, and the reflectance of the required central wave-
lengths, such as 700 nm and 800 nm, are not available in UAV
multispectral images, the nearest neighboring wavelengths
are used to generate the updated indices instead.

D. METHODS
1) THEORETICAL BASIS OF SUPPORT VECTOR REGRESSION
SVR is a support vector machine regression problem exten-
sion [41]. Comparedwith othermachine learning approaches,
SVR offers the benefits of using fewer samples, obtaining
better global optimum solutions, and producing better out-
comes when handling multidimensional nonlinear problems
[27], [42].

For the nonlinear case, for a given aphid training sam-
ple D = [(x1, y1), (x2, y2), . . . , (xn, yn)], x ∈ Rn are the
input parameters and y ∈ R are the output parameters.
The functional expression of the SVR corresponding to the
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optimization problem is described following:

min
w,b,ξn,ξ∗

n

1
2
||w||

2
+ C ·

m∑
i=1

(ξn, ξ∗
n ) (1)

s.t.


f (xn) − yn ≤ ϵ + ξn

yn − f (xn) ≤ ϵ + ξ∗
n

ξn, ξ
∗
n ≥ 0

(2)

where w and b are the weights and biases, respectively, and
the penalty factor C > 0 and the non-negative relaxation
variables ξn, ξ∗

n , ϵ are insensitive loss function parameters.
To improve the generalization ability using formula (1),
and reduce the error using formula (2), by introducing the
Lagrange function, we can obtain formula (3) as follows:

f (x) =

m∑
n=1

(an − a∗
n)K (xn, x) + b∗ (3)

where K (xn, x) = ψ(xn) · ψ(x) is the kernel function,
an ≥ 0 and a∗

n ≥ 0 are Lagrangian function multipliers.
The goal of the kernel function is to compute the inner
product of the original low-dimensional space vector in a
high-dimensional space following a particular transforma-
tion. The polynomial, radial basis, and sigmoid kernels are
examples of common kernel functions.

2) IMPROVED XGBOOST-GWO-SVR MODEL
CONSTRUCTION AND EVALUATION
We utilized the SVR method for cotton aphid data with a
long-time span, small sample size, remarkable randomness,
and nonlinearity, which is more suitable for cotton aphid data
analysis and prediction because of its small sample size, high
accuracy, high generalization capacity, and good resilience.
However, the SVR model is hampered by plenty of features
in the dataset, which leads to overfitting or low fitting accu-
racy. Consequently, we utilized an appropriate optimization
approach to address SVR’s weaknesses of SVR.

First, the classic SVR technique is not ideal for large
datasets because of its poor performance when the number
of features per data stage exceeds the number of training
data specimens, or when the dataset contains more noise. The
natural habitat in which the cotton aphids were found in this
study contained a variety of information. If all gathered data
are entered into the SVRmethod, the precision of themodel is
compromised. Therefore, we employed the XGBoost method
for input data screening to minimize the total of features in
the training data samples and to increase the accuracy and
execution efficiency of the SVR model. XGBoost utilizes a
decision-tree-based integration technique that employs a gra-
dient boosting algorithm to minimize the loss of previously
created decision trees and generate new trees to construct
the model, thereby ensuring the dependability of the final
decision [43], [44]. The XGBoost algorithm provides the
emphasis score of each feature in each iteration to improve
the performance of a training process to generate a new tree,

indicating the significance of each feature in the model being
trained and providing a rationale for constructing a new tree
by its orientation in the following iteration [45].

Therefore, this paper is inspired by the idea in the previous
work with the RBF [46]. However, the RBF penalty coeffi-
cient C and tolerance coefficient ϵ can significantly affect the
classification accuracy. The GWO method is a cluster intelli-
gence optimization approach that creates optimum solutions
without the need for any input parameters by utilizing multi-
ple built-in functions [47]. The optimal penalty coefficient C
and tolerance coefficient ϵ obtained from the GWO algorithm
were substituted into the SVR for the construction of the
XGBoost-GWO-SVR prediction model.

The fundamental idea of the cotton aphid predictionmodel,
XGBoost, is utilized as a precursor data processing system for
SVR, and the target dataset (UAV multispectral reflectance
data, vegetation index data, and cotton aphid survey data) was
screened for features, and the feature data were normalized
by feature screening. Second, the SVR penalty coefficient
C and tolerance coefficient ϵ are adjusted using GWO, and
the tuning parameters are fed into the SVR algorithm. Fig.2
shows the construction process of The XGBoost-GWO-SVR
prediction model.

To better evaluate the advantages of the XGBoost-GWO-
SVR algorithm in the prediction model, two classical algo-
rithms (LR and BPNN) and four SVR algorithms (SVR,
XGBoost-GA-SVR, XGBoost-PSO-SVR, and XGBoost-
SVR) were compared with the XGBoost-GWO-SVR
algorithm. Seven prediction models for cotton aphids were
constructed by combining two sets of features with seven
combinations of the methods. A fold cross-validation method
is performed to assess the accuracy and stability of the pre-
dictive models. In this methodology, the cotton aphid samples
are subdivided into 10 subsets of similar size that are repelled
by each other. Three data subsets are assigned as the test set
and the remaining seven subsets are dedicated as the training
set. Finally, the prediction model’s reliability was assessed
by using MSE, MAE, and coefficient of determination (R2)
of prediction results [48].

MSE =
1
n

·

n∑
i=1

[yi − g(xi)]2 (4)

MAE =
1
n

· |yi − g(xi)| (5)

R2 = 1 −

∑
[yi − g(xi0]2∑
[yi − ȳ]2

(6)

where yi is the actual value, g(xi) is the predicted value, ȳ is
the mean value, and n is the number of samples.

According to the preceding equation, the MSE represents
the average square of the difference between the anticipated
and actual values. The MAE represents the real situation of
the inaccuracy of the predicted values, and R2 is the criterion
for assessing the goodness of the model.
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FIGURE 2. Workflow diagram of cotton aphid prediction model based on
XGBoost-GWO-SVR.

III. RESULTS
A. OPTIMAL FEATURE SELECTION AND ANALYSIS
Previous research depended on the relevance of vegetation
indicators in identifying the presence of vegetation pests,
Fig.3 illustrates the determination squares of the correlation
coefficients of vegetation index and multispectral reflectance
data with cotton aphids. To establish confidence levels (p)
for the healthy and sick subjects in the 12 vegetation indi-
cators and five band reflectances, a t-test for each sample
and two-way ANOVA were utilized. Cotton aphids exhibited
a considerable potential in the p corresponding to each of
the vegetative indicators throughout the figure (p < 0.001).
The data in Fig.3 show that the R_Blue band has the lowest
coefficient of determination value, indicating the significant
relationship between R_Blue and the prevalence of cotton
aphids, and the vegetation indices GNDVI and ARI have the
ability to indicate aphid occurrence. Relying on the initial val-
ues of vegetation indices and UAV multispectral reflectance
data, 12 vegetation indices and five reflectance data were
discovered to better reflect cotton aphid pest incidence (p <
0.001), and these indicators were utilized as the shortlisting
factors for later studies.

As shown in Fig.4, aphid data, UAV multispectral
reflectance data, and vegetation indices have a random distri-
bution; therefore, we employ the XGBoost method to com-
pute data error values in order to categorize the relevance of
the original feature variables. The better the element priority
level, the further significant the feature [49]. Fig.4 shows
that different indicators define aphids differently, with ARI
having the most fantastic relevance score among the 19 indi-
cators, owing to the aphids’ ability to drain nutrients from
leaves, resulting in unusually high anthocyanin concentra-
tions [39]. Considering that selecting too many or too few
features affects the model’s accuracy and stability, we test
various values to figure out the optimal number of features

FIGURE 3. Determination coefficients of selected vegetation indices and
cotton aphid. Note: ** indicates confidence levels p < 0.001.

(N ) based on the results of the information gain listing, and
we decide on the final selected value through comparing
the consequences of various attributes on the model’s MAE
value. Table 4 illustrates the results of assessing the impor-
tance of the features and combining them with MAE as the
evaluation index, demonstrating that the influence of MAE
worsens when N > 12. This study determines that the best
combinations of environmental variables were ARI, GBI,
GLI, TCARI, R_NIR, RRI, MSR_re, MSAVI_SAVI, ARVI,
GNDVI, and SAVI.

FIGURE 4. Depicts the random distribution of aphid data.

B. MODEL ANALYSIS AND VALIDATION
Table 5 exhibits the findings of each model, including the
MSE and MAE of various types of cotton aphid prediction
models that combine the feature selection methods. Accord-
ing to the statistics in Table 5, XGBoost-SVR reduces MSE
and MAE by 0.078% and 0.35%, respectively, when com-
pared to a single SVR, and the model’s efficiency is improved
by reducing the number of features from 20 to 12. It can
be observed that XGBoost can increase the efficiency of the
algorithm by lowering the quantity of data supplied to the
SVR to a certain level, and it can lessen the influence of
irrelevant data on SVR accuracy.

Although XGBoost can improve the SVR efficiency to
some extent, it cannot address the issue of insufficient SVR
accuracy, which requires an optimization technique. The
GWO technique is a heuristic optimization algorithm inspired
by the prey hunting behavior of grey wolves, with a good
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TABLE 4. Topn feature MSE.

FIGURE 5. XGBoost feature importance score result.

TABLE 5. The effect of XGBoost feature filtering on SVR model accuacy.

convergence capability, limited parameters, and a simple
implementation [47]. The GWO method was utilized to opti-
mize the penalty coefficient C and tolerance coefficient ϵ
of SVR to increase the prediction accuracy and prediction
speed of SVR by selecting the global optimal parameters
for a total of 50 rounds with 10 rounds each; the addressing
ranges of the penalty coefficient C and tolerance coefficient
ϵ are (0,1000] and (0,10], respectively. The implementation
results of XGBoost-GWO-SVR are given in Table 6. The
optimum scale values using XGBoost-GWO-SVR are listed
in Table 7. The above-mentioned data analysis and algorithm
programming were conducted in Python 3.7.

Table 8 displays the outcomes of each model, including the
performance assessment indices for the proposed XGBoost-
GWO-SVRmodel and the six comparator models. The cotton
aphid prediction model employing the XGBoost algorithm

TABLE 6. Implementation results of XGBoost-GWO-SVR.

TABLE 7. Results of optimum scale values using XGBoost-GWO-SVR.

in conjunction with the GWO algorithm combined with the
SVR method had the lowest MSE and MAE as well as the
highest R2. The findings revealed that the XGBoost screen-
ing features as input variables paired with the GWO-SVR
method could successfully forecast the incidence of cotton
aphids; however, the SVR prediction model had the low-
est accuracy and stability, and the MAE of BPNN was the
poorest. When compared to the LR method, the combined
XGBoost-GWO-SVR prediction model exhibits a 12.06%
and 58.93% reduction in MSE and MAE, respectively, and
improved R2 by 0.3%. Compared with the BPNN model,
the MSE and MAE were reduced by 84.76% and 89.21%,
respectively, and R2 was increased by 12.5%. Moreover, for
the same variables, the XGBoost-GWO-SVR model had the
best accuracy and correctness, the LR model had the second
highest accuracy and correctness, and the BPNN model had
the lowest accuracy and correctness. Therefore, the strat-
egy used to construct a prediction model has a substantial
impact on the accuracy of cotton aphid prediction. In com-
parison to LR and BPNN, XGBoost-GWO-SVR is based on
a radial basis kernel function that addresses the problems of
small sample size, randomness, and nonlinearity in cotton
aphidmonitoring. Furthermore, the accuracy of the prediction
model was significantly improved by optimizing the penalty
coefficientC and tolerance coefficient ε using theGWOalgo-
rithm. Overall, the cotton aphid prediction models developed
using the LR, BPNN, SVR, XGBoost-SVR, XGBoost-PSO-
SVR, and XGBoost-GA-SVR algorithms outperformed the
XGBoost-GWO-SVR model.

Furthermore, the performance of GWO, GA, and PSO in
optimizing the cotton aphid prediction SVR algorithm after
XGBoost-filtered features were compared in this work. The
model accuracy and efficiency of the three optimization algo-
rithms are significantly improved when compared with those
of the SVR and XGBoost-SVR algorithms. The R2 of the
models obtained by all three optimization algorithms reached
0.980, while the MSE and MAE of the models were signif-
icantly reduced, indicating that the optimization algorithms
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FIGURE 6. Effect of different optimization algorithms on SVR model
performance.

TABLE 8. Table comparing the performance of several cotton aphid
prediction models.

can improve the model accuracy of SVR. Compared to the
XGBoost-SVR method, the MSE and MAE of the XGBoost-
GWO-SVRmodel decreased by 90.18% and 70.25%, respec-
tively, while its R2 was improved by 22.5%. Table 8 shows
that the MSE and MAE of the GWO method outperformed
the other two optimization procedures, indicating that the
GWO algorithm was more suitable for optimizing the SVR
cotton aphid predictionmodel than the other two optimization
strategies. Meanwhile, Fig.6 illustrates that the GA is less
stable than the GWO and PSO methods.

The combined aphid population prediction model of
XGBoost-GWO-SVR is compared with LR, BPNN, SVR,
XGBoost-SVR, XGBoost-GA-SVR, and XGBoost-PSO-
SVR to confirm the performance of the model described
in this study. A collapsed cross-validation procedure was
utilized in this study to evaluate the precision and robustness
of the prediction models. Cotton aphid samples were split
into ten mutually exclusive subgroups of identical size using
this procedure. A training set of seven subsets of data and a
test set of three subsets were employed. Finally, the cotton
aphid prediction model’s performance has been evaluated
utilizing the results of MSE, MAE, and R2. Fig.7 illustrates
the results of the experiments; the accuracies of the XGBoost-
GWO-SVR model outperforms that of the LR and BPNN
strategies, while SVR and XGBoost-SVR had the lowest
accuracy, and the curve of the XGBoost-GWO-SVR model
was closest to the true value. As a result, the XGBoost-
GWO-SVR model has an excellent prediction effect and can
reliably estimate the aphid population based on the given
parameters.

In conclusion, we discovered that the enhanced XGBoost-
GWO-SVR approach may overcome the shortcomings
of the standard support vector regression methodology,
such as overfitting, low accuracy, and slow response.

The experimental findings demonstrate that the 11 index fac-
tors screened by XGBoost increase SVR efficiency to some
amount, but cannot solve the problem of insufficient SVR
accuracy. As a result, optimization procedures are required
to increase the accuracy and resilience of the SVR model.
The GWO method has the best stability among the three
optimization algorithms utilized in this study, whereas the
GA algorithm has the poorest. When compared to previ-
ous prediction models, the XGBoost-GWO-SVR model has
excellent stability and high accuracy, and it can predict the
dynamic distribution of cotton aphid populations in near
real-time using UAV multispectral data.

IV. DISCUSSION
The goal of this research is to investigate a generic tech-
nique for cotton aphid infestation prediction that is inde-
pendent of ground surveys to take advantage of the benefits
of remote sensing in monitoring broad regions while also
reducing human and financial investment in ground surveys.
In this study, several improved vegetation indices are pro-
posed based onUAVmultispectral data and the characteristics
of cotton aphids. First of all, suitable remote sensing index
feature factors are screened using feature screening methods,
the SVR model is algorithmically optimized, and finally,
the XGBoost-GWO-SVR model applicable to cotton aphid
prediction is obtained. The experimental results show that the
11 index factors screened by XGBoost improve the efficiency
of SVR to a certain extent, but they cannot solve the problem
of insufficient SVR accuracy. Optimization algorithms can
significantly increase the accuracy and robustness of the SVR
model, and among the three optimization algorithms used
in this study, the stability of GWO and PSO is approxi-
mated. However, the stability of the GA model is weaker.
Compared with the LR and BPNN methods, the proposed
XGBoost-GWO-SVR model has strong stability and high
accuracy; thus, it is more suitable for prediction analysis
of small samples and nonlinear data, such as cotton aphid
infestation. The cotton aphid prediction model XGBoost-
GWO-SVR, which combines the benefits of the XGBoost,
GWO, and SVR algorithms, has strong cotton aphid pre-
diction ability and may be used in cotton field production
management.

The vast majority of vegetation indices employed in
this study are broadband vegetation indices, which are less
constrained by atmospheric conditions and loads than nar-
rowband vegetation indices, and may be acquired from mul-
tispectral aerial or satellite imagery. However, the small-scale
UAV multispectral data utilized in this study only include
sensors from visible to NIR range of wavelength, with the
SWIR band omitted, making identifying water-stress signs
in cotton problematic. Vegetation indices, including those in
the short-wave infrared band, could be considered in future
studies to obtain better results. Furthermore, the adaptability
of large-scale remote sensing data and its indexes in the
XGBoost-GWO-SVR model must be investigated in future
research.
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FIGURE 7. Comparison of the different cotton aphid prediction models.

V. CONCLUSION
In this work, the XGBoost-GWO-SVR model on the basis
of UAV multispectral data was implemented to predict the
occurrence level of cotton aphids. The model was combined
with GWOand SVR algorithms to develop a predictivemodel
via feature selection of vegetation indicators employing the
XGBoost feature selection algorithm. We can obtain the fol-
lowing conclusions.

1) The precision of the model obtained by the XGBoost
features extraction method outperforms the models
without the selection algorithm, demonstrating that the
combination of XGBoost algorithms can provide better
prediction of pests.

2) XGBoost was employed as the method of selecting
features, the prediction accuracies of the GWO-SVR
algorithm and the MSE, MAE, and R2 of cotton aphids
reached 196.567, 2.838, and 0.980, respectively, which
are better than those of SVR, LR, BPNN, XGBoost-
SVR, XGBoost-GA-SVR, and XGBoost-PSO-SVR
for predicting cotton aphids. This observation shows
that the combination of the GWO-SVR model and
XGBoost algorithm can enhance the prediction accu-
racy of cotton aphids effectively, and it can provide
a reference of methodology and technology for the
treatment of early cotton aphids.

Furthermore, when comparing the three distinct SVR
model optimization approaches, the GWO algorithm-
optimized prediction model has the highest accuracy, and the
GA algorithm has the minimum accuracy. The findings show
that the XGBoost-GWO-SVR model has excellent accuracy
and performance, which can be useful in aphid prediction
situations that require high precision and efficiency, as well
as in cotton pest treatment.
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