
Received 16 December 2022, accepted 30 December 2022, date of publication 10 January 2023, date of current version 13 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3235828

LEAF: Let’s Efficiently Make Adaptive Forwarding
in Payment Channel Networks
XIAOFEI LUO AND PENG LI , (Senior Member, IEEE)
The University of Aizu, Aizuwakamatsu 965-8580, Japan

Corresponding author: Xiaofei Luo (d8202105@u-aizu.ac.jp)

ABSTRACT Blockchain technology is widely applicable to modern payment systems but has inherent
throughput limitations. Off-chain networks are proposed to solve scalability issues, which allows parties
to efficiently perform micropayments without committing all of the payments to the blockchain. Off-chain
payments with security and privacy protection requirements use the smart contract to ensure security and
reduce the risk of sensitive information leakage. Although off-chain payments avoid expensive on-chain
operations, it raises many concerns, such as the capacity limitation of payment channels and highly dynamic
channel status, lowering the throughput of payment channel networks (PCNs). In our work, we explore the
path overlap issues in PCNs and propose a decentralized payment routing scheme to improve the network
throughput and reduce the redundant traffic overhead of PCNs, thereby guaranteeing efficient payments.
The simulation results indicate that the proposed routing algorithm can achieve higher throughput than other
routing schemes while guaranteeing short payment times.

INDEX TERMS Blockchain, payment channel network, multi-paths routing, Markov approximate
algorithm.

I. INTRODUCTION
Blockchain, a distributed ledger, becomes a promising pro-
posal for building trust in decentralized environments [1].
It provides robust security and privacy protection for its par-
ticipants. As one of the most popular blockchain applications,
digital cryptocurrencies (such as Bitcoin [2] and Ether [3])
have emerged as an alternative payment way for modern
payment systems. Cryptocurrencies maintain a fully decen-
tralized ledger that updates by consensus protocols (such as
proof-of-work [4], proof-of-stake [5]) of blockchains. The
participants can make on-chain payments with other parties
but it requires expensive on-chain payment fees. Additionally,
on-chain payments are limited by the inherent throughput
challenges, which are involved to block size and consensus
of blockchain, e.g. in bitcoin consensus requires 10 minutes
to confirm the payments in 1MB block [6]. To solve the scala-
bility issues, payment channel networks (PCNs) are proposed
as the scaling network for blockchain [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chatterjee .

In PCNs, payment channels are established between par-
ties with a peer-to-peer connection and their deposits as the
channel capacity. Payers use payment channels to transfer
coins to their payees. Without a payment channel connected,
off-chain payments between two parties require a routing
path to forward. Payment channels on the routing path lock
coins for payment occurring and are updated atomically to
prevent the payer’s funds from losing. Due to the limitation
of the channel capacity, payment may fail when the payment
amount exceeds the channel capacity. A failure message is
then generated and sent back to the payer. Meanwhile, the
failed payment gradually releases the funds already locked
on payment channels among the routing path. It raises
several problems like delayed payments and overhead on
occupation and release of channel funds, which leads to lower
throughput. Additionally, the payer needs to find another
available routing path to resend the failed payment. The
repeated path searching process and channel funds re-locking
bring additional overhead, thereby decreasing the network
performance.

To achieve higher throughput in PCNs, Sivaraman et al. [8]
propose Spider which splits payments into payment units.

4194
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8258-852X
https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0002-9363-9289

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

FIGURE 1. Illustrative example of our multi-branch routing system.

Spider routes payment units over multiple edge-disjoint paths
and handles channel imbalance issues. However, this pro-
posal delays payments since it needs to wait for the payments
from the opposite direction. Wang et al. [9] split payments
across multiple probed paths. The path selection depends
on the probed information, which may be outdated before
payments are issued. Furthermore, payment splitting imposes
strict conditions on payment success, which requires all pay-
ment units to reach the destination resulting in long payment
latency. In [10] and [11], the route construction also depends
on the probe while the validity of time-sensitive probed
information cannot be promised in highly dynamic PCNs.
Bagaria et al. [12], [13] present redundant path schemes
to route payments over multiple paths, but these schemes
bring redundant resource occupation and require high collat-
eral [14]. Existing works either delay payments or bring extra
traffic loads. Moreover, they lack the reaction mechanism for
payment failures.

In this paper, we explore the payment routing problem and
propose a novel multi-path payment routing scheme, in which
the payment route is constructed as a leaf-like structure.
Payers prepare multiple available routing paths, including a
primary path and several standby paths for their payments.
Some special nodes on these paths, called fork nodes, cache
the information of standby paths during the payment process.
When a payment fails, the returned failure message can be
prior handled by fork nodes to activate the cached standby
path. The fork node forwards the payment across its cached
path to the destination. Only a portion of locking funds
requires to be released. Our scheme theoretically achieves
a higher payment success ratio than the single-path routing,
at the same time avoiding the redundancy of the multi-path
routing. In highly dynamic PCNs, it’s impractical for a payer
to track the instantaneous capacity of each channel over the
payment path. Hence, payers cannot either predict payment
failure before their payments are issued, or track payment
status during the payment process. The fork node cannot
be specified immediately when the payment fails. Instead,
a couple of nodes can be prior reserved as fork nodes, com-
bined with corresponding standby paths to construct the pay
packet.

To realize the proposed routing scheme, several challenges
require to be overcome: 1) Privacy. The payment path is
regarded as an important part of payment privacy to esti-
mate the risk in [15] and [16]. The adversary can attack

intermediate hops of a payment path to disturb the payment.
The privacy protection issue should be considered to reduce
the risk of privacy leakage. 2) Distribution. A PCN is a fully
distributed network without centralized control. Every payer
prefers to reserve standby paths asmany as possible to prevent
their payment from failing. But the capacity limitation of
fork nodes leads to the overflow of standby path information.
Therefore, the fork node selection is cortical to facilitate
resource utilization. 3) Efficiency. As the number of standby
paths increases, the probability of payment success theoreti-
cally increases. Payers prefer to select the path with a higher
payment success probability as the primary path to reduce
the opportunity of payment failure. But this path does not
ensure a short payment time. There is a trade-off between the
payment success ratio and payment time. We need to balance
the two metrics to ensure payment efficiency.

Modern PCNs like Lightning Network (LN) [17] use an
onion routing protocol to protect user privacy in payment
routing. The Basis of Lightning Technology (BOLT) reveals
the specification of LN [18]. We design a tailored onion
routing to adapt our routing scheme. Standby path informa-
tion is embedded into the onion packet as the branch of the
primary path. Upon receiving a payment packet, the standby
path information is cached on the fork node and waits for the
payment failure message to activate. To implement an effi-
cient system, we propose a distributed Markov chain-based
path selection algorithm for our multi-path payment routing
scheme. It requires payers to corporate with each other to
achieve a relatively stable network state. Payers first collect a
set of candidate paths to their destination. Each payer applies
the proposed scheme to pick a set of paths consisting of the
primary path and the standby paths as the current routing path
configuration.

Our goal is efficient utilization of the channel capacity to
increase the throughput of PCNs. We list our contributions
below:
• We reveal the path overlapping phenomenon in the
off-chain payment process and analyze the concerns of
routing schemes in current research.

• We first propose a novel multi-path payment routing
mechanism, which allows senders to prepare several
standby paths for payment routing to achieve a higher
payment success ratio and a stable latency.

• We implement a distributed Markov approximation
algorithm for efficient routing and develop a simulator
of LN to simulate the payment routing process in the
network layer.

The organization of this paper is shown as follows.We first
present path overlap issues and elaborate on our motivation
in Section II. In Section III, we give an overview of the
system design and describe our system model. Section IV
details the Markov chain-based approximate algorithm for
path selection. The system implementation is described in
Section V. We conduct experiments in Section VI to eval-
uate the performance of the proposed scheme. Section VII
concludes this paper.

VOLUME 11, 2023 4195

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

II. MOTIVATION
A payment channel network is an off-chain distributed net-
work consisting of peers and payment channels connect-
ing them. Without the participation of on-chain miners, the
implementation of off-chain payments depends on payment
channels, thereby avoiding expensive on-chain operations.
In general, payments between two peers indirectly con-
nected by payment channels require multi-hop transmission.
To guarantee the atomicity of payment, a contract called
Hash Time-Lock Contract (HTLC) is proposed. Contracts
are established on payment channels along the payment path,
at the same time partial channel funds are locked for associate
payments. In a highly dynamic PCN, concurrent payments
will lead to payment failure due to channel funds being
unavoidably competed during the shared payment channels.
In this case, all of the established contracts will be canceled.
Thus, the sender has to search a new available path to achieve
successful payments. This brings overhead on pathfinding
and contract re-establishment over overlap channels. Addi-
tionally, the prior released channel capacity can be preempted
by other payments.

In current implementations of PCNs, almost systems use
source routing mechanisms. To further increase the through-
put and payment opportunity of PCNs, many researchers
focus on the routing method and congestion control algo-
rithm. Such proposals like Atomic Multi-Path Payments
(AMP) design a routing mechanism to transfer payments
through multiple paths [12], [13]. But it requires high col-
lateral [14] that more coins would be locked in channels as
‘in-flight’ coins. The in-flight coins cannot be used by other
payments leading to reduced channel capacity. A special
multi-path routing scheme called spider was proposed in [8],
which splits payments into several units to scatter the payload
on a single path. However, the success of payment depends
on the final completed unit which induces higher payment
latency.

As one of the emerging PCNs, LN deploys a developed
Dijkstra [19] algorithm for pathfinding in a distributed net-
work. The Dijkstra algorithm employs beacon nodes as flags
of path planning. Neighbors of each beacon node broadcast
their shortest path to the beacon node to their neighbors. The
shortest path information is gradually spread outward from
beacon nodes, realizing the path discovery between any pair
of nodes. Considering the case of payment failures, senders
actually route their payments by constantly trying to use
different available paths found by the pathfinding algorithm.
These paths may overlap, resulting in repeated transfers of
failed payments through overlapping channels. To verify the
conjecture, we explore the current LN topology and sample
a set of short paths between the specified payer-payee pair.
In Figure 2, we show the overlap ratio of paths under different
numbers of available paths within different network environ-
ments. The ratio is calculated by the count of overlapping
channels and the total number of channels in the path set.
LN core/edge denotes the cropped topology close to LN’s
core/edge network. Since each payer within the core network

FIGURE 2. Change in the path overlap ratio under different numbers of
available paths within different positions of LN.

has numerous channels, the path overlap ratio is lower rela-
tively than the payer at the edge. Insufficient channel balance
causes payment failure, which leads to frequent locking and
release of resources on overlapping channels. It brings com-
munication costs on updating channel state and rapid changes
in channel balance to affect subsequent payments using the
channel.

We attempt to propose a novel routing mechanism to pre-
vent the payment from failing as well as solve the path overlap
issue. Inspired by the restoration approaches in [20] and [21],
we try to apply path restoration to the payment process so
that payments can react to the failure caused by insufficient
channel capacity.When a payment is failed at an intermediate
hop, 1) the original routing path is discarded, 2) a standby
path is activated, and 3) the payment proceeds along the
standby path. However, PCNs like LN apply source-routing
in the payment process, which gives senders full control over
their payment path within the network [18]. The payload
needs to be packaged before payment is issued. In addition,
the sender cannot track the status of their issued payments in
real-time nor update the routing strategy for the issued pay-
ment. Therefore, the payment requires an adaptive adjustment
strategy to cope with changes in the link state. A mitigation
approach is to prepare a set of standby paths in advance. The
information of standby paths cached in intermediate users
waiting for downstream payment failure message to activate.

III. SYSTEM OVERVIEW AND MODEL
A. SYSTEM OVERVIEW
In this section, we make an overview of the design of the
multi-path routing mechanism. As depicted in Figure 3, the
payload of payment is initialized at sender S and sent to
destination R. Different from the original payment routing
mechanism to find the shortest path in LN, sender S collects
a set of candidate paths to route payments. To eliminate the
redundant communication cost of the overlapping channels,
the selected paths should be pre-processed to build an inte-
grated route. It can be represented figuratively as the construct
of a leaf composed of a sender as the petiole, a receiver as
the leaf apex, the primary path as the mid-vein, and standby

4196 VOLUME 11, 2023

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

FIGURE 3. System overview. S and R are the payer and the payee,
responsively. S generates the multi-branch onion route for its payment.
The standby path information can be cached by fork nodes (like A, B) on
the route.

paths as secondary veins leading to the leaf apex. The sender
applies the multi-path routing mechanism to route payments
to the destination, which can be treated as the transportation
of nutrients from the petiole to the apex in leaves.

In our design, a fork node is a bifurcation point of two inde-
pendent paths with overlapping channels. A payment route
with multiple branches has multiple fork nodes. Senders first
transfer their payments along the primary path. Fork nodes
forward the payment along its current path and cache the cor-
responding information of its standby paths. For the example
in Figure 3, sender S forwards the payload of the payment to
the fork node A. A receives the payload and forwards it to the
next peer B along the primary path. The information of the
standby path is cached in fork node A. When payment failure
occurs, instead of immediately aborting the payment, we take
the failuremessage as a signal to activate the upstream nearest
standby path. The fork node receives the signal and removes
the primary path information of the corresponding payment.
The cached standby path information is used to rebuild a new
payment path. Then, the fork node forwards the payment to
the destination via the new path. The details of implementa-
tion are described in Section V.

B. ASSUMPTIONS
We consider each channel in the PCN has a static capac-
ity. And there are some concurrent payments with different
senders, destinations, and payment amounts. Due to the pri-
vacy protection in PCNs, each sender has no knowledge about
the route information of the payments launched by other
senders. Additionally, we assume that the set of candidate
paths is given in which each path has at least one other
path overlapping with it. Perhaps a routing table can save
the path-finding time for senders. However, it’s unfeasible
for a sender to build a large routing table to reach all nodes
of the entire network. In this paper, we assume senders can
efficiently collect a set of available short paths to use and
leave the path-finding algorithm as an interesting direction
but an orthogonal problem.

C. PROBLEM DEFINITION
As the participants of a PCN, senders prefer to reserve more
standby paths to achieve a higher probability of successful
payment. However, the decision of each sender mutually
interacts with each other. Each sender needs to measure some
factors to make their decisions. We characterize these factors
in the following.
Path Ordering: The multi-branch routing mechanism

allows senders to prepare several available paths to route
their payments. The ordering of those paths is crucial to
building the multi-branch route. Firstly, it directly determines
the primary path. After that, the sender can identify the
fork nodes on the primary path by intersecting the primary
path with each standby path. Secondly, it can be used for
fork nodes to activate the cached standby paths sequentially.
We notice that the fork node may capture multiple standby
paths for a single payment. For the example in Figure 3, fork
node A captures two standby paths and caches them in the
memory. The ordering of the standby paths is associated with
the path index in the set, like 1 : [F,G,R], 2 : [D,E,R].
The cache pops the standby path with the small index first.
Hence, the payload first chooses the standby path [F,G,R]
to reach the destinationR. In some cases, the bifurcation point
of the two alternate paths may exist independently of the
primary path. Furthermore, each path carries different prob-
abilities of successful payments, which can be used for path
ordering.
Latency: Payment latency can be regarded as a period of

time from the moment that the sender sends out a payment
to the moment that the payment result returns back to the
sender. In practice, payers prefer their payments to be com-
pleted quickly to prevent the payment from expiring. The
fast completion of payments frees up the resources locked
in the contract to be used by other payments. It makes the
resource utilization of the entire network more efficient. Pay-
ment latency can also be a factor to neutralize the impact
caused by the probability of payment success. For exam-
ple, when a payment is through across a set of payment
channels with a large capacity, the probability of successful
payment is higher, but it brings high latency. In contrast,
a short path with low channel capacity leads to a low success
ratio.
Fees: The Fees mainly represent the total forwarding fee

charged by intermediate users. In our design, we take the for-
warding fee corresponding to the longest path in the path set
used to create the multi-branch route as the total forwarding
fee. The explanation is described in Section V. It constraints
the routing mechanism to choose the path with a shorter
length and the user over the path with a lower forwarding
fee requirement. We find that the impact of fees on path
selection is similar to that of payment latency. Low latency
often indicates fewer hops on a routing path. In addition,
payment latency is a critical metric of the payment system,
but fees can be negligible since off-chain payment fees are
exceptionally low [17]. Hence, we merge the cost metrics and
only use payment latency in our system model.

VOLUME 11, 2023 4197

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

Amount: The payment amount determines whether the
selected path is available at the beginning of path selection.
Due to the distributed PCN having strong privacy protection,
each sender has no knowledge about the payment amount
of others to make a global routing path planning. Different
from the communication networks, the growing number of
payments in the forward direction leads to an increased chan-
nel deposit in the reversed direction. In general, payments
with large amounts occupy more channel capacity, thereby
decreasing the probability of successful payment. However,
senders can only get a snapshot of the instantaneous state
of a payment channel but cannot track the deposit status of
the bidirectional channel along the path in real-time. Rapid
changes in channel deposit result in a highly dynamic net-
work that invalidates some available paths. The impact of the
payment amount on the payment process is unpredictable but
can be reflected in the probability of payment success.

D. SYSTEM MODEL
To simplify the exploration, we consider a PCN can be
modeled as a graph G(V ,E), where there are N lightning
nodes in the node-set V and a set of established channels E
between them. There are a set of payment sessions S in G.
Each payment session s (s ∈ S) has different pair of payer-
payee. The network topology of our model is a subset of the
real LN. Each sender of session s collects a set of candidate
paths, denoted as Ps. The length of a single path p is the value
of |p|. Senders choose a set of paths from Ps as reserved
paths Rs (Rs ⊆ Ps) to route their payments. The reserved
paths consists of one primary path and |Rs| −1 standby paths,
|Rs| ≥ 2.

The target of the Multi-Branch Routing (MBR) problem
is to find optimal paths set for each payment session in our
system. We define a binary variable xps to denote whether the
path p (p ∈ Ps) is selected as a reserved path. It can be
denoted as:

xps =

1, if the candidate path p is selected by

session s as a reserved path.
0, otherwise.

(1)

Then, we define an integer variable yps to denote the ordering
of the selected paths in Rs, x

p
s ≤ yps ≤

∑
p x

p
s = |Rs|. The

following constraint can be obtained:

(xps − 1)yps = 0, p ∈ Rs. (2)

Furthermore, yps affects the number of overlapping channels
between two reserved paths.

The onion-routing protocol of LN specifies the maximum
number of hops allowed in an onion packet. We use 1

to denote this upper bound number of hops. The function
H (|p| , yps) is used to calculate the hops of a reversed path in
a multi-branch route. It equals the difference between |p| and
the number of overlapping channels on the reversed path p.

The condition of hop limitation can be expressed as:∑
p∈Rs

xps · H (|p|, yps) ≤ 1. (3)

Excessive cached path information on a fork node reduces
the efficiency of path switching. Hence, each fork node i
on path p maintains a buffer with a limited size to store
information on standby paths:∑

s∈S

∑
p∈Rs,i∈p

xps ≤ Bi. (4)

Each sender in G enforces the multi-branch routing mech-
anism to improve the system performance, which is measured
by the following objectives:

1). The maximum probability of successful payments. For
a candidate path of payment session s, the probability is
related to the payment amount zs and the order of this path y

p
s ,

denoted as π (zs, y
p
s). The payment success probability of

session s can be represented as:

πs =
∑
p∈Rs

E(xps · π
p
s (zs, y

p
s)). (5)

2). The minimal payment latency. We use lps to denote the
payment latency of a payment session s on path p. Similarly,
the payment latency of session s can be expressed as:

ls =
∑
p∈Rs

E(xps · l
p
s (y

p
s)). (6)

Consequently, the objective function of overall weighted
system utility can be described as:

φ = max
∑
s∈S

(πs − α||ls||), (7)

where α is a positive weighted coefficient to balance the
payment success ratio and the payment time, the ||·|| is a
normalization function.

IV. DISTRIBUTED MULTI-BRANCH ROUTING ALGORITHM
The path selection problem with resource limitation is
NP-complete [22], [23]. Since the PCN with privacy protec-
tion is fully distributed, it’s impractical for users to share the
sensitive path information to make a centralized optimiza-
tion for routing path planning. In this section, we provide a
decentralized algorithm to handle the path selection problem.
Our proposal augments the success opportunity for payments,
which reduces the risk of payment failure to achieve high
throughput for PCNs.

A. LOG-SUM-EXP APPROXIMATION
Let K be a set of all feasible configurations for the MBR
problem. A payer can obtain the local performance φs(k) of
his payment session s under a given solution k . Then, the
system objective function can be computed by aggregating
the performance of each payment session:

∑
s φs(k), (s ∈ S).

We use πk to denote the percentage of time that the available

4198 VOLUME 11, 2023

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

solution k is in use. By adopting the approximation approach
proposed in [24], our MBR problem can be approximated as:

max
∑
k∈K

πk
∑
s∈S

φs(k)−
1
β

∑
k∈K

πk logπk

s.t.
∑
k∈K

πk = 1, (8)

where β is a positive constant. The approximation approach
introduces an entropy term − 1

β

∑
k∈K πk logπk with an

enhance approximation gap bounded by 1
β
logK. As the value

of β increases, the approximated function of our MBR prob-
lem becomes more exact. We use π∗k , k ∈ K to represent
the optimal solution of the approximated function, which
can be derived via solving the Karush-Kuhn-Tucker (KKT)
conditions [25] and expressed as:

π∗k =
exp (β

∑
s∈S φs(k))∑

k ′∈K exp (β
∑

s∈S φs(k ′))
, ∀k ∈ K. (9)

Then, the MBR problem can be approximately solved
through a time-sharing manner among different configura-
tions based on π∗k .

B. MARKOV CHAIN DESIGN
We construct a time-reversible Markov Chain (MC) on which
a single state is an available configuration within the state
space, and the stationary distribution is π∗k , k ∈ K. The
transition between the two states is to replace a reserved
path or reorder the reserved paths for any payment session.
The best solution to achieve a near-optimal performance is
to train the transitions to converge to the stationary dis-
tribution π∗k . To describe the transition process intuitively,
we use a non-negative value qk,k ′ to denote the transition
rate between the two configurations k and k ′ and set it to
zero, unless the two configurations satisfy the two conditions:
1). |k ∪ k ′| − |k ∩ k ′| = 2. 2). k ∪ k ′−k ∩ k ′ ∈ Pŝ. where ŝ is
the involving payment session to make the path swapping or
ordering. Besides, theMarkov chain has to guarantee that any
two states can be reachable mutually and the detailed balance
equation π∗k qk,k ′ = π∗k ′qk ′,k ,∀k, k

′
∈ K needs to be satisfied.

For the two direct-connect configurations (k, k ′), we let the
transition rate qk,k ′ and the difference in system performance
be positively correlated. From [24] and [26], the transition
rate can be expressed as:

qk,k ′ = ω exp (
1
2
β

∑
s∈S

(φs(k)− φs(k ′)))

qk ′,k = ω exp (
1
2
β

∑
s∈S

(φs(k ′)− φs(k))).
(10)

where ω is a positive constant. We can find that transition
rates qk,k ′ and qk ′,k are symmetric. If the system performance
is improved under the configuration k ′, the performance gap
will be positive, increasing the probability of jumping to this
configuration, and vice versa.

FIGURE 4. Flowchart of the proposed distributed Markov chain-based
routing algorithm.

C. DISTRIBUTED MARKOV CHAIN BASED ROUTING
SCHEME
We show the flowchart of the proposed distributed Markov
chain-based routing algorithm in Figure 4. The detailed
implementation of our algorithm is shown in Algorithm 1.
Each payment session launches a processing thread on the
corresponding end-host of its payer. To guarantee algorithm
convergence in a distributed system, each payer needs to
share the local performance with other payers in the system.
Furthermore, the configuration of path selection is sensitive
information involving the payer’s privacy. Each payer cannot
collect it from other payers to construct the current configu-
ration of the system.

From the assumption of theMarkov approximation in [24],
the performance of the configuration requires to be prior
computed by each payer. As aforementioned, an important
metric to evaluate the system performance is the real payment
time which is unpredictable for each payment with a different
amount in fast time-varying PCN. An obverse condition for
the payment time is no longer than the expiration of the
time-lock of the first hop. The expectation of payment time
becomes longer as the number of hops augments because
of the extra transmission time. In our algorithm, we assume
that the payment time is only correlated to the transmis-
sion time of each hop on the route. Another metric is the
payment success ratio which reflects the payment success
probability and increases theoretically with the growing num-
ber of payment paths. For example, if we get two available
routing paths for payment and assume that the payment
success probability of two paths is π1 and π2, π1, π2 ∈

[0, 1], the success probability of multi-path payment can be
expressed to 1 − π1π2, which is bigger than either of the

VOLUME 11, 2023 4199

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

Algorithm 1 Online Distributed MC-Based Routing
Algorithm
1: for each s ∈ S do
2: execute Initialization()
3: execute Set-timer(s)
4: end for
5: while system is still running do
6: /*Listen to State-Transit*/
7: if Ts expires then
8: switch operation do
9: case x

10: xps ← 0
11: xp

′

s ← 1
12: case y
13: yps ↔ yp

′

s

14: execute Set-timer(s)
15: broadcast a RESET(φs(k ′)) signal with local per-

formance φs(k) to other payers
16: end if
17: /*Listen to RESET Signals*/
18: if a payer receives the RESET(φs(k ′)) signal then
19: φs(k)← φs(k ′)
20: refresh and reset the timer Ts
21: end if
22: end while

two single paths. However, the payment success probability
is corresponding to the payment amount and other network
parameters. The current LN protocol provides an estimation
method to estimate the success probability of payment on the
payment path. In this manner, we can estimate the system’s
performance.

The algorithm is executed on each distributed payer. These
payers cooperate with each other to obtain the current system
performance of the entire network. A detailed description of
our algorithm is shown as follows.
• Initialization(): The payer launches a process-
ing thread for his payment sessions. Each payment ses-
sion randomly chooses several independent paths as
reserved paths and then shuffles the ordering of the
selected paths.

• Set-timer(): For each payment session s ∈ S, the
corresponding payer first randomly selects a reserved
path p from Rs, and then selects another path p′ ̸= p
from Ps. If the path p′ is in the reserved path set Rs,
the operation of the payer is to update y by swapping
the ordering of the two paths. If the selected path p′

is not in the reserved paths, the operation of the payer
is to update x by swapping the old reserved path to a
new path. The system performance can be computed
by local performance and pre-collected performance
information from other payers. By estimating the per-
formance under the new configuration k ′, the payer can
trigger a timer Ts with an exponentially distribution for

Algorithm 2 Initialization()
Input: a payment session s ∈ S, candidate paths Ps
Output: Rs
1: launches a processing thread for s on the corresponding

payer
2: Rs← randomly chooses several independent paths from
Ps

3: shuffles the ordering of the reserved path Rs randomly

Algorithm 3 Set-timer()
Input: a payment session s ∈ S
Output: Ts,operation, p, p′

1: p← randomly chooses a reserved path from Rs
2: p′← randomly chooses a path from Ps \ p
3: if p′ ∈ Rs then
4: operation← y
5: else if p′ ∈ Ps \ Rs then
6: operation← x
7: end if
8: measures current system performance

∑
i∈S\s φi(k) +

φs(k) with the collected performance information and
local performance.

9: estimates the system performance
∑

i∈S φi(k ′) under the
target configuration that swaps p with p′

10: generates a new exponentially distributed timer Ts for the
payment session s with mean value as:

ω exp (12β
∑

i∈S (φi(k)− φi(k ′)))

|Rs| · (|Ps| − 1)
(11)

the corresponding payment session s with mean value:
ω exp (12β

∑
i∈S (φi(k)− φi(k ′))) · (|Rs| · (|Ps| − 1))−1.

The payer then broadcasts the RESET(φs(k ′)) signal
carrying the local performance φs(k ′) of payment ses-
sion s to other payers for further system performance
computation.

• State-Transit signal: If a timer expires, the
corresponding payer does the operation: (x). swap-
ping the selected reserved path p with the unreserved
path p′. (y). swapping the ordering of reserved path p
with another reserved path p′.

• RESET signal: When a RESET signal is received
by a payment session s, the corresponding payer
refreshes the timers of his payment sessions invoking the
expression (11).

The convergence of the proposed algorithm can be proved
according to the algorithm analysis in [24] and [26].

V. SYSTEM IMPLEMENTATION
In this section, we first elaborate on the design of
the multi-branch onion route in our system and then
describe the details for the implementation of the payment
routine.

4200 VOLUME 11, 2023

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

FIGURE 5. Difference of the onion-routing between our multi-branch routing mechanism and LN.

FIGURE 6. Two special cases in onion-routing.

A. ONION ROUTING
To protect the security and privacy of payments, the LN
applies the onion routing protocol to payment execution.
The source-routing mechanism allows payment senders to
complete control of the payment path within LN. It highly
adapts LN, that senders can customize some conditions (such
as ignored peers, maximum fee, and total worst-case time-
lock period) to query a satisfied routing path. The quarried
path information can be decomposed into the instructions of
each hop as per-hop payload encoding into the onion route,
as illustrated in Figure 5. The payment is successful when the
final payload reaches the payee. In our multi-branch routing
scheme, we employ the onion routing protocol to guarantee
the security and privacy features of LN. The onion packet
is encapsulated with a multi-core structure, which only has
a single core within the LN. The information on standby
paths is stored in each sub-onion packet. For the example
in Figure 5, the information of the standby path from fork
node ui to payee, is encapsulated into a sub-onion packet,
combined with the rest information of the primary path as
the payload of i-th hop. Each node opens up a buffer with a
certain size for packet caching within the proposed system.

1) POLICY UPDATE
There are two pieces of information in the payload required
to be updated against the change of the onion route:
1) Forwarding fee. In basic LN, peers use a gossip protocol
to probe the existence of payment channels with the public
charging fee [27]. The total forwarding fee is a cumulative

fee that the sender pays to intermediate users for payment
forwarding. Due to the length difference of each reserved
path, the total forwarding fees over each path are uneven.
In our scheme, we recommend the maximum forwarding
fee among the reserved paths as the total forwarding fee of
a multi-branch route. A payment carries its forwarding fee
through a reserved path with a short length incurs overflow
forwarding fees. The overflow fee is used to pay each fork
node for caching the standby path information. 2) Time lock.
The time lock is the expiry time for a payment to lock required
coins on each channel over its path. The value of the time
lock is gradually decreasing along the payment path [28].
For example, a payment sets a time lock on hop i, denoted
as ti. The time lock of previous hop i − 1 is represented
as ti−1 = ti + 1, where 1 is a positive value. In our
implementation, we assume a multi-branch route has several
branches starting at hop i. The time lock of previous hop
i− 1 is ti−1 =

∑
i∈p,p∈R(t

p
i)+1, where p are relevant paths

gathering at hop i− 1 in reserved path set R.

2) STABILITY ANALYSIS
Although the sender determines the ordering of reserved
paths, the fork node has full control over the forwarding
order of cached payloads in actual execution. If a fork node
forwards a payment along its longest path, it can not receive
the redundant fee for holding the standby payloads of this
payment. From the perspective of a fork node, forwarding
payments over a shorter path has the opportunity to get higher
forwarding fees. On the other hand, the time lock limits the
utilization of the channel funds. For a single payment, fork
nodes prefer to forward the payload with a small time lock to
efficiently utilize their funds on connected channels. These
potential factors may reduce the utility of sender decisions,
causing system instability. In general, senders can finalize the
actual payment routing path when their payment is settled.
A sender can detect whether the fork node is greedy based on
the path statistics of successful payments, thereby implement-
ing some countermeasures such as adding them to a block
list [29].

3) MULTI-BRANCH ONION PACKET
To build the multi-branch onion packet, the sender first
prepares reserved paths and prunes their overlapping hops.

VOLUME 11, 2023 4201

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

FIGURE 7. Payment initialization process in the pay routine of our
multi-branch routing scheme.

Reserved path preparation is done by the path-selecting algo-
rithm. Hop information in the packet can be obtained by
pruning overlapping hops and orderly merging the rest hops
in reserved paths. Each standby path should be a complete
and continuous path from the fork node to the destination.
There are two special cases in overlapping hops handling: a)
Multiple overlapping segments on the path. As demonstrated
in Figure 6a, the primary path (blue arrow) overlaps with
the standby path (orange arrow) at hop {[S,A], [G,R]} and
node-D. In this case, the fork node is node-A, and the standby
path is [C,D,F,G,R]. b) Forks on standby paths. The two
standby paths overlap at hop {[S,A], [A,C], [C,D], [G,R]}
as shown in Figure 6b. Here, the fork nodes are nodes [A,D],
the standby paths are {[C,D,E,G,R], [F,G,R]}.

B. CONSTRUCTION DETAILS
In this part, we describe the details of the operations in our
routing mechanism.

BOLT#04 describes the detailed onion routing protocol
within the LN including onion packet construction and for-
warding.We first update the payment initialization process as
shown in Figure 7. Lines 1-3 describe the path pre-processing
in onion-routed packet generation. The sender needs to pre-
pare tokens for failed payment to extract the standby path
on each fork node in line 4. Lines 5-6 elaborate on the
time-lock and fee initialization. According to the protocol,
an ephemeral cryptographic key should be computed for each

FIGURE 8. Decision making on the intermediate user when an upstream
Tx packet or downstream Msg is received.

hop and gathered by the sender to generate the payment
session key. It is iteratively computed from the sender, inde-
pendent of the entire path. Hence, it’s possible for the sender
to compute cryptographic keys for each standby path and
encapsulate them into the multi-branch onion packet. The
encapsulated multi-branch onion packet is then sent to the
first hop on the primary path.

We modify the forwarding logic of intermediate users as
shown in Figure 8. Upon receiving an onion packet, Interme-
diate users parse it to get the corresponding hop information
inside the onion packet. Except for route verification and fee-
charging, the intermediate users need to determine whether
they are identified as fork nodes. As shown in Decision (Tx),
if a user is a fork node, this user will hold relevant standby
path information. Then, the inside onion packet will be for-
warded along the current path. A message (Msg) carrying the
payment result is initialized and sent back to the payment
sender when the payment fails or is fulfilled. A fork node
receives the message and verifies whether the payment is
fulfilled or expired. If so, the node deletes the cached standby
path information of this payment. Otherwise, the node acti-
vates the standby path if the token carried by the failure
message is valid. Due to the message being transferred in the
opposite direction of payment routing, the fork node closer to
the message initialization node will be activated first.

VI. PERFORMANCE EVALUATION
To evaluate our multi-branch routing mechanism, we first
develop a simulator for PCNs. The details of our simulation
are described in VI-A. We then present the experimental

4202 VOLUME 11, 2023

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

results under different settings and make a comparison with
other routing schemes.

A. SETTINGS
1) SIMULATOR
We develop a Python-based simulator to model a lightning
network. The simulator is constructed with basic payment
modules that can accurately simulate the payment process.
Each node (peer) maintains a forwarding queue in which
queues received payment packets (payloads) to correspond-
ing channels. The payment initializationmodule allows nodes
to instantiate payment objects and build routed messages
as payloads. Payers send payments along the payment path
generated by the specified routing scheme. Each node can
observe the topology of the entire network to enable the
routing scheme to prepare suitable routes. We set up a buffer
for each node to cache the standby path information, enabling
the simulator to adapt to our multi-branch routing scheme.

The bi-direction channel carries certain funds deposited
by the connected peers. It delivers payments and updates its
balance by shifting the balance to the side of the downstream
node along the payment path. Payments in a channel consume
the channel funds and lock the funds as in-flight to avoid the
occupation by others until their results (settlement/failure)
are received. After the payee receives the payment packet,
it registers for payment and sends a settlement message to
the payer. Payment failure occurs when a channel over the
payment path has insufficient balance. A failure message is
then generated and sent along the reverse path, extendingwith
a field that carries a computed token to activate the cached
standby paths.

2) BENCHMARKS
We implement four routing schemes proposed within LN into
our simulator for performance evaluation.
MBR: Multi-Branch Routing scheme picks up to k paths

with overlapping channels as candidate paths. A payer can
choose multiple paths from the candidate path set to route
a payment to the payee. Except for the primary path, the
information of standby paths will be cached on fork nodes
waiting for the activation by the failure message.
LND: The routing scheme implemented in the current

Lightning Network Daemon (LND) allows payers to find
an available shortest path to route their payments. Once a
payment fails at a channel with insufficient balance, the payer
updates the local observation to ignore that channel during the
pathfinding process. The ignored channels will be reconsid-
ered in pathfinding after 5 seconds.
MPR: Multi-Path Routing scheme randomly chooses a set

of n available paths for payers to route their payments to
associate payees within the payment network. The payer first
initializes a payment session containing n payment instances
with a uniform payment hash and then assigns different
paths to these payment instances. If any instance of this
payment session reaches the payee, the payment is successful.

FIGURE 9. Comparison of different scheduling methods under different
payment density conditions.

The follow-up arriving instances with the same payment hash
will be aborted as this hash is already recorded in the payment
database.
SR: Split Routing [9] also employs multiple paths to route

payments between each pair of payer-payee. Different from
other multi-path routing schemes, SR splits a payment to
payment units and sends them out across a set of candidate
paths. Each payer collects candidate paths and records the
bottleneck capacity of each candidate path to allocate the
payment units. By dynamically adjusting the path selection,
SR places payment units to relevant paths with lower payment
fees. When all payment units arrive at the payee, the payer
gets a successful payment.

3) TOPOLOGY AND PAYMENTS
We clip a small-scale network topology from the edge of
the LN main network with 25 LN nodes and 33 payment
channels. We select 10 pairs of payer-payee to simulate the
payment process. The payment workloads with Poisson dis-
tribution are randomly generated by a procedure in the simu-
lator. The amount of each payment is normally distributed in
the range [2, 7] (USD) according to the payment size distri-
bution in [9]. The initial balance and delay of a channel are
normally distributed in the range [80, 160] (USD) and range
[0.2s, 1s], respectively. Without the re-funding operation, the
capacity of each channel is fixed. The expiry of each payment
is set to 30s. The buffer size of each node is 100, which
means each node can cache 100 standby path information
within the network applying the proposed routing scheme.
We sample available routing paths in the network to construct
the candidate path set before starting our simulation. The
candidate paths in our experiment have overlapping edges.
The weighted coefficient is set to 0.5.

B. PERFORMANCE UNDER DIFFERENT NETWORK
PARAMETER
We deploy the five routing schemes above into our simulator
and show their performance under different settings.

We use new payments initiated per second to denote the
payment density (PD) of a PCNwith 20 pays/s as default. The
delay of each channel (link delay) to route payment packets is
a constant, which samples from the range [0.2s, 1s]. We show
the change in the number of successful payments and average
payment time within 200 seconds under different payment

VOLUME 11, 2023 4203

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

FIGURE 10. Comparison of different scheduling methods under different
link delay conditions.

densities in Figure 9. Notice that our method can achieve a
higher success ratio compared with other methods as shown
in Figure 9a. As payment density increases, interactions
between concurrent payments on shared payment channels
are more frequent, especially for multi-path routing schemes
with many redundant payments. Hence, the payment success
ratio of AMP and SR is lower than the other two methods
when the payment density is higher.Without re-balancing and
re-funding for channels, unidirectional capital flows skewing
channel balance is unsustainable in PCNs. Channel balance
limits the maximum number of successful payments. There-
fore, under the current configuration, the total number of suc-
cessful payments is limited to 2K. In Figure 9b, the average
payment time of each method is relatively close when the
payment density is lower than 40 pays/s. When we improve
the payment density, the proposed method has a slightly
higher payment time than other methods.

The link delay has an impact on the system’s respon-
sibility as well as affects the payment process. We show
the performance of each routing scheme under different
network connections with the link delay as per range
{[0.2s, 1s], [0.2s, 1.5s], [0.2s, 2s], [0.2s, 2.5s]} in Figure 10.
We find the number of successful payments is limited to a
low level by applying SR. The results show that the proposed
scheme can achieve a higher payment success ratio in the net-
work with poor link connection (large delay). Additionally,
the impact of link delay on the payment time by applying each
scheme is similar. The number of available payment paths
is critical for routing schemes that employ multiple paths.
Figure 11 shows the performance of relevant routing schemes
under different numbers of available paths. We first measure
the metric on the number of successful payments as shown in
Figure 11b. The number of successful payments increases as
the number of reserved paths increases.MBR facilitates more
payments to succeed under the same conditions. We then
measure another important metric on averaged payment time
(Figure 11a). Our multi-branch routing scheme outperforms
other multi-path methods to achieve a relatively stable pay-
ment time.

The ability of large amount handling is also a critical
metric to evaluate the efficiency of routing schemes. Due
to the channel capacity limitation, the payment with large
amounts has enhanced the challenge to be transferred across
a PCN. However, off-chain network shows the advantage of
lower payment fees to encourage users to pay in an off-chain

FIGURE 11. Comparison of different scheduling methods under different
numbers of reserved paths.

FIGURE 12. Comparison of different scheduling methods under the
different payment amounts (USD).

manner. Hence, our experiment contains the analysis of
routing schemes to route payments with a large payment
amount. Figure 12 shows the comparison of different schedul-
ing methods under different payment amounts. The payment
amount is randomly sampled from each range set. We can
obtain that the number of successful payments gradually
decreases with the payment amount arguments. MBR can
achieve a relatively higher success payment ratio than others.
As the payment amount augments, the payment time of AMP
and SR becomes unstable as shown in Figure 12b. Especially
for the SR, the payment time is gradually increasing because
of the strict payment success conditions.

Figure 13a shows the change in the number of success pay-
ments with time increases. We reset the channel balance to
range [100, 200] (USD) and link delay to range [0.1s, 0.3s],
respectively. Notice that the total number of successful pay-
ments finally stabilized under different routing schemes. The
reason is that payments in the bi-direction channel are imbal-
anced, thereby leading to a unidirectional channel [30] with
no sufficient balance for further payments. Changes in funds
at both ends of a payment channel will affect its payment
forwarding capability, which is different from communica-
tion networks. The number of skewed channels gradually
increases as the payment executes, and becomes a bottleneck
restricting the overall payment success ratio [30]. The pro-
posed routing scheme can also achieve a higher payment suc-
cess ratio. It benefits from the lower collateral requirements.
Besides, the final number of successful payments is slightly
less than the SR method. Because the SR method splits pay-
ments to micro-payment units increases the liquidity [31] of
funds in low-latency networks. For example, the payer cannot
transfer 5 coins through two paths with a maximum capital
of 4. But it can be done by applying SR method. Due to the

4204 VOLUME 11, 2023

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

FIGURE 13. Two metrics comparison with different scheduling methods.

FIGURE 14. Impact of buffer size and buffer occupation.

workloads exceeding the network processing capacity under
the specified configuration, the slopes of the lines for these
methods are close. Another metric is payment time as shown
in Figure 13b. The AMP scheme achieves lower latency than
othermethods. The average payment latency ofMBR is a little
higher than others.

Through the above experiments, we found that when the
network is crowded or the network delay is large, the per-
formance of our algorithm in terms of payment success rate
is better than other routing algorithms. However, it is worth
noting that our algorithm has limitations in low latency and
non-congested networks. In contrast, the SR algorithm out-
performs other algorithms in terms of success rate, because it
can call channel resources more finely. In addition, in order to
ensure a high payment success ratio, the proposed algorithm
has a slight increase in payment time compared with others.
Because payment will constantly try each alternative routing
path to reach its destination.

C. RESOURCE UTILIZATION IN PAYMENT PROCESS
We anticipate the buffer size of the LN node to affect the
payment success ratio. A large buffer size allows LN nodes
to cache more route information for payments. Each LN node
can set up a buffer with a suitable size, which is close to the
peak of routing information to be cached. It can be affected
by the payment density and link delay. We first analyze the
buffer occupation under different link delays. The buffer size
of each node is set to a fixed value of 100. Figure 14b shows
the average buffer occupation under different link delays and
payment densities. The buffer occupation becomes higher as
the link delay and payment density increase. We find that the

network with high payment density and large transmission
delay requires a large size buffer to cache route information
for payments. In contrast, if a network with low payment
density and high responsiveness, the issued payments can
be quickly settled which cannot demonstrate the caching
advantages of our routing scheme. Figure 14a shows the
changes in the number of successful payments under different
payment densities as the buffer size increases. The link delay
is set to the range [0.2s, 1s]. A larger buffer size brings much
more successful payments. But the channel capacity limits
the network throughput reflected in the number of successful
payments. Therefore, LN nodes need to find a tailored buffer
size in crowded LN with poor link connections for payment
routing.

VII. CONCLUSION
In this work, we study the routing issues in payment channel
networks and reveal the path overlapping phenomenon in the
payment process. We elaborate on the impact of path overlap-
ping on payment routing. To offset the impact, we present a
novel multi-branch routing scheme to build an efficient route
for off-chain payments. The path selection and its ordering
are both factors to affect payment efficiency. Hence, we fur-
ther propose a Markov Chain-based routing algorithm to
solve these concerns. Payers in PCNs can obtain near-optimal
payment path planning by employing our algorithm. To ver-
ify the high performance of our algorithm, we develop a
simulator of LN to simulate the payment routing process
in the network layer. The simulation results indicate that
the proposed routing algorithm can achieve a maximum of
%15 improvement in payment success ratio compared with
other routing schemes.Meanwhile, the collateral requirement
of the proposed method is close to that of single-path routing
methods but lower than most multi-path routing schemes.

REFERENCES
[1] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, ‘‘On blockchain

and its integration with IoT. Challenges and opportunities,’’ Future Gener.
Comput. Syst., vol. 88, pp. 173–190, Nov. 2018.

[2] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Decen-
tralized Bus. Rev., p. 21260, 2008.

[3] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, ‘‘SmartCheck: Static analysis of
ethereum smart contracts,’’ in Proc. 1st Int. Workshop Emerg. Trends
Softw. Eng. Blockchain, May 2018, pp. 9–16.

[4] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, ‘‘A survey on security and
privacy issues of bitcoin,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3416–3452, 4th Quart., 2018.

[5] Proof-of-Stake Ethereum. Accessed: Dec. 2022. [Online]. Available:
https://ethereum.org/en/developers/docs/consensus-mechanisms/

[6] J. Gobel and A. E. Krzesinski, ‘‘Increased block size and bitcoin
blockchain dynamics,’’ in Proc. 27th Int. Telecommun. Netw. Appl. Conf.
(ITNAC), Nov. 2017, pp. 1–6.

[7] A. Chauhan, O. P. Malviya, M. Verma, and T. S. Mor, ‘‘Blockchain and
scalability,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion
(QRS-C), Jul. 2018, pp. 122–128.

[8] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mittal,
G. Fanti, and M. Alizadeh, ‘‘High throughput cryptocurrency routing in
payment channel networks,’’ in Proc. 17th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2020, pp. 777–796.

VOLUME 11, 2023 4205

X. Luo, P. Li: LEAF: Let’s Efficiently Make Adaptive Forwarding in Payment Channel Networks

[9] P. Wang, H. Xu, X. Jin, and T.Wang, ‘‘Flash: Efficient dynamic routing for
offchain networks,’’ in Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol.,
Dec. 2019, pp. 370–381.

[10] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, ‘‘CoinExpress: A
fast payment routing mechanism in blockchain-based payment channel
networks,’’ in Proc. 27th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2018, pp. 1–9.

[11] H. Xue, Q. Huang, and Y. Bao, ‘‘EPA-route: Routing payment channel
network with high success rate and low payment fees,’’ in Proc. IEEE 41st
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2021, pp. 227–237.

[12] V. Bagaria, J. Neu, and D. Tse, ‘‘Boomerang: Redundancy improves
latency and throughput in payment-channel networks,’’ in Proc. Int. Conf.
Financial Cryptogr. Data Secur.Malaysia: Springer, 2020, pp. 304–324.

[13] (2018). AMP: Atomic Multi-Path Payments Over Lightning. [Online].
Available: https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-
February/000993.html

[14] C. Egger, P. Moreno-Sanchez, and M. Maffei, ‘‘Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel
networks,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 801–815.

[15] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, ‘‘Silentwhis-
pers: Enforcing security and privacy in decentralized credit networks,’’
Cryptol. ePrint Arch. Tech. Rep., 2016.

[16] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, ‘‘Privacy preserv-
ing payments in credit networks,’’ in Proc. Netw. Distrib. Secur. Symp.,
2015, pp. 1–15.

[17] (2016). The Bitcoin Lightning Network: Scalable Off-Chain Instant Pay-
ments. [Online]. Available: https://lightning.network/lightning-network-
paper.pdf

[18] Basis of Lightning Technology Documents. Accessed: Dec. 2022. [Online].
Available: https://github.com/lightningnetwork /lightning-rfc

[19] The Current Path-Finding Implementation in LN. Accessed:
Dec. 2022. [Online]. Available: https://github.com/lightningnetwork/lnd/
blob/master/routing/pathfind.go

[20] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, ‘‘Fast
failure recovery for in-band openflow networks,’’ in Proc. 9th Int. Conf.
Design reliable Commun. Netw. (DRCN), Jun. 2013, pp. 52–59.

[21] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, ‘‘Open-
Flow: Meeting carrier-grade recovery requirements,’’ Comput. Commun.,
vol. 36, no. 6, pp. 656–665, 2013.

[22] Z. Wang and J. Crowcroft, ‘‘Quality-of-service routing for supporting
multimedia applications,’’ IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, Sep. 1996.

[23] X. Yuan, ‘‘Heuristic algorithms for multiconstrained quality-of-service
routing,’’ IEEE/ACM Trans. Netw., vol. 10, no. 2, pp. 244–256, Apr. 2002.

[24] M. Chen, S. C. Liew, Z. Shao, and C. Kai, ‘‘Markov approximation for
combinatorial network optimization,’’ IEEE Trans. Inf. Theory, vol. 59,
no. 10, pp. 6301–6327, Oct. 2013.

[25] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[26] H. Huang, S. Guo, W. Liang, K. Li, B. Ye, and W. Zhuang, ‘‘Near-optimal
routing protection for in-band software-defined heterogeneous networks,’’
IEEE J. Sel. Areas Commun., vol. 34, no. 11, pp. 2918–2934, Nov. 2016.

[27] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
‘‘Flare: An approach to routing in lightning network,’’ Bitfury Group, The
Netherlands,White Paper (Version 1.0), 2016.

[28] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi, ‘‘Con-
currency and privacy with payment-channel networks,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 455–471.

[29] Y. Kano and T. Nakajima, ‘‘A novel approach to solve a mining work cen-
tralization problem in blockchain technologies,’’ Int. J. Pervasive Comput.
Commun., vol. 14, no. 1, pp. 15–32, Apr. 2018.

[30] R. Khalil and A. Gervais, ‘‘Revive: Rebalancing off-blockchain pay-
ment networks,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 439–453.

[31] D. Piatkivskyi and M. Nowostawski, ‘‘Split payments in payment net-
works,’’ in Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Barcelona, Spain: Springer, 2018, pp. 67–75.

XIAOFEI LUO received the master’s degree
from the Department of Computer Science and
Information System, The University of Aizu,
Aizuwakamatsu, Japan, in 2018, where he is
currently pursuing the Ph.D. degree with the
Computer Organization Laboratory. His research
interests include blockchain, reinforcement learn-
ing, computer networks, and payment channel
networks.

PENG LI (Senior Member, IEEE) received the
B.S. degree from the Huazhong University of Sci-
ence and Technology, China, in 2007, and the
M.S. and Ph.D. degrees from The University of
Aizu, Japan, in 2009 and 2012, respectively. He is
currently an Associate Professor with The Univer-
sity of Aizu. He has published over 100 technical
papers on prestigious journals and conferences.
His research interests include cloud/edge comput-
ing, the Internet of Things, machine learning sys-

tems, and related wired and wireless networking problems. He won the
YoungAuthor Award of IEEEComputer Society Japan Chapter, in 2014, and
the Best Paper Award of the 2016 IEEE TrustCom. He supervised students to
win the First Prize of IEEE ComSoc Student Competition, in 2016. He is an
Editor of IEICE Transactions on Communications and IEEE OPEN JOURNAL
OF THE COMPUTER SOCIETY.

4206 VOLUME 11, 2023

