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ABSTRACT Promoting engagement and participation is vital for online social networks such as community
Question-Answering (cQA) sites. One way of increasing the contribution of their members is by connecting
their content with the right target audience. To achieve this goal, demographic analysis is pivotal in deci-
phering the interest of each community fellow. Indeed, demographic factors such as gender are fundamental
in reducing the gender disparity across distinct topics. This work assesses the classification rate of assorted
state-of-the-art transformer-based models (e.g., BERT and FNET) on the task of gender identification across
cQA fellows. For this purpose, it benefited from a massive text-oriented corpus encompassing 548,375
member profiles including their respective full-questions, answers and self-descriptions. This assisted in
conducting large-scale experiments considering distinct combinations of encoders and sources. Contrary to
our initial intuition, in average terms, self-descriptions were detrimental due to their sparseness. In effect,
the best transformer models achieved an AUC of 0.92 by taking full-questions and answers into account
(i.e., DeBERTa and MobileBERT). Our qualitative results reveal that fine-tuning on user-generated content
is affected by pre-training on clean corpora, and that this adverse effect can be mitigated by correcting the
case of words.

INDEX TERMS Gender identification, community question-answering sites, engagement and participation
in online communities, transformers.

I. INTRODUCTION
The term demography is universally understood as the study
of human populations and their changes. It seeks to describe
people in relation to characteristics, such as gender, age
and religion. Therefore, demographic analysis is vital for
identifying audiences and adapting content to their interests,
levels of understanding, attitudes, and beliefs. In the case of
cQA platforms, an audience-centered approach is crucial for
maintaining an engaged community. It assists not only in
encouraging increased participation by delivering attractive
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and targeted content according to personalized interests and
motivations, but also in establishing effective connections
between recently asked questions and community peers that
can produce appropriate and timely responses. Intuitively,
one form of achieving this is by designing landing/home
pages tailored to each specific demographic segment and
personality type.

Along with this, as might be expected, having easy access
to demographic variables is useful to detect identity theft,
fraud, to enforce terms of service and local laws, filtering
and banning fake profiles. Simply put, these factors are par-
ticularly useful for properly dealing with assorted malicious
activities. Incidentally, cQA sites also suffer from gender
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differences since they tend to reflect our daily lives. One
way these differences manifest is in the disparities in the
number of female andmale authors across their distinct topics
[1]. Gender analysis plays a pivotal role in ensuring to their
members the opportunity of a fair gender representation in
categories with biased participation.

Like most of the websites that require membership, online
social networks ask their newcomers to fill out a form with
their personal information, when registering. In these forms,
fields such as age and gender are optional. To a great degree,
people choose ‘‘rather not say’’ due to discretion and/or they
just want to get through the registration process as fast as
they can. To help with user profiling, the last two decades of
advances in machine learning and Natural Language Process-
ing (NLP) have made it possible to infer informative patterns
from textual content.

In the last couple of years, transformers have aroused
intense interest due to their effectiveness in language under-
standing, vision and reinforcement learning [2], [3]. Conse-
quently, extensive research has been undertaken to improve
this class of models over the past few years in terms of its
adaptation, efficiency and generalization. As a result, a rich
variety of architectures currently exists, some of which have
been devised to work well under certain conditions and to
target specific tasks.

In short, this work enhances the existing body of knowl-
edge on cQA platforms by assessing assorted state-of-the-art
encoders for text-based gender recognition. More precisely,
our study makes the following contributions:

1) Fine-tuning state-of-the-art pre-trained models, capa-
ble of gender identification from writing on cQA sites.

2) By benefiting from a massive automatically annotated
dataset, we conduct a comprehensive empirical assess-
ment of a wide variety of pre-trained transformers.

3) Experimental evidence showing that dataset similarity
between the pre-trained architecture and downstream
task influences the outcomes. Via NLP processing,
transfer learning can be improved by updating the tar-
get dataset to increase its similarity with the dataset
utilized for pre-training the encoder.

Our results suggest that each gender has its own distinctive
patterns of interaction within cQA platforms, and that most of
these differences are expressed in a way that is recognizable
using natural language understanding techniques.

The remainder of this paper is organized as follows.
Section II discuss related works. Sections III and IV present
the research questions and methods, respectively. Section V
discusses the experiments, results and findings. Finally, Sec-
tions VI and VII draw conclusions, limitations and outline
future work.

II. RELATED WORK
First and foremost, the primary goal of this study is to com-
pare the performance of various state-of-the-art transformers
for automatically recognizing genders across cQA users. Due
to the multifariousness of the human behavior, community

fellows engage with these platforms in different ways and
exhibit varying levels of activity. For instance, some partic-
ipants use the site to ask questions and others interact with
the site mainly to answer questions. Therefore, this work
fine-tunes and assesses frontier encoders on several com-
binations of textual inputs, namely questions, answers and
self-descriptions.

A. PRE-TRAINED DEEP NEURAL NETWORKS
The latest developments in neural networks allow the training
of very deep architectures that can adequately copewith a vast
variety of NLP tasks, such as text classification and machine
translation. Beyond a shadow of a doubt, transformer models
represent a significant breakthrough in this field [4], [5].
Their underlying idea has proven simple but very power-
ful. It consists of pre-training language model objectives
on large networks with massive amounts of unlabeled data,
and adjusting these networks to downstream tasks afterwards
[6], [7]. OpenAI GPT and BERT are two pioneers of this
approach [8], [9]. Since their inception, new variants have
been devised to improve this first generation of encoders from
different perspectives, including their adaptability, efficiency
and generalization [10], [11], [12], [13].

Although these pre-trained models (PTMs) have achieved
promising results in numerous difficult tasks, and thus turned
into the ipso facto architecture for NLP [10], they still face
many challenges: designing effective architectures, utilizing
rich contexts, improving computational efficiency, and con-
ducting interpretation and theoretical analysis [14]. It is an
accepted fact that PTMs represent knowledge as real-valued
vectors in contrast to symbolisms used by human beings.

It has been discovered that architectures such as BERT,
capture linear word order and phrase-level information in
their lower layers [15]. In particular, deeper tiers are needed to
model long-distance dependencies (e.g., subject-verb agree-
ments) [16]. Attention weights have shown to be weak indica-
tors of subject-verb agreements and reflexive anaphora [15].
While there is a wide consensus in studies with different
tasks, datasets, and methodologies that syntactic informa-
tion is most prominent in the middle layers [17], there are
some disagreements regarding semantic features. Some stud-
ies suggest that semantic features are encoded at the top,
whereas others suggest that throughout the entire model [18].
In juxtaposition, surface features are codified at the bottom.
Essentially, these models have been observed to imitate tra-
ditional tree structures [16] to represent the steps of the tra-
ditional NLP pipeline [18]. However, it is yet to be seen how
well these findings transfer to domains with higher variability
in syntactic structures (e.g., noisy user-generated content)
and/or with more flexible word orders, as in morphologically
richer languages [16].

Despite enabling important breakthroughs in various con-
ventional NLP benchmarks, an increasing number of studies
are revealing that their language skills are not as impressive as
initially thought [17]. For example, it has been demonstrated
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that they depend on shallow heuristics when classifying texts
[19]. Although it is true that large PTMs are capable of
holding a vast amount of knowledge, they typically fail if any
reasoning is required on top of their stored facts [20], [21].
Moreover, some of this knowledge is lost after fine-tuning
because of network capacity or under-representation of prob-
ing facts. Therefore, forgetting is not necessarily or signif-
icantly lessened by capitalizing on additional information
harvested from larger corpora [22].

B. GENDER IDENTIFICATION ON cQA PLATFORMS
There are only a few studies addressing the detection of
genders across cQA users, as evidenced by numerous recent
surveys in this area [23], [24], [25], [26], [27]. Most of these
studies relate to image processing, more specifically, to learn
gender-informative visual patterns from profile avatars. For
instance, heuristic methods have been utilized for automati-
cally guessing genders on Stack Overflow [28]. Here, non-
facial avatars pose a tough challenge even for ocular inspec-
tions [28]. Therefore, image-based pre-trained neural net-
work models have also been evaluated using multifarious
profile pictures [29].

On the opposite side of the spectrum, the research of
[1] address the problem of automatically discriminating the
gender of who asked a question using the question texts and
metadata, demographics, and web searches. By building a
wide diversity of high-dimensional vector spaces and exploit-
ing the genders entered when the user signed up, they trained
three supervised approaches on top of a large-scale corpora.
They discovered that age, industry and second-level question
categories were salient features of gender of an asker. Inter-
estingly, the best text-only models sought to infer the same
characteristics from semantic and dependency analyses.

On Yahoo! Answers, the investigation of [30] found some
relationships between gender demographics and sentiment
analysis, namely its synergy with attitude (i.e., inclination
towards positive or negative sentiments) and sentimentality
(i.e., number of sentiments). Women and men exhibited dif-
ferent attitudes across prompted questions and given answers:
males were more neutral, whereas women were more positive
in their questions and responses and were more sentimental
when answering questions. Some gender differences across
question types were found by [31] using data from the graphic
design community on Stack Exchange andQuora.Women are
more likely to respond questions seeking for opinions, while
men produce more answers to factual questions on Stack
Exchange. At both sites, responses from men had a more
negative tone than women’s answers, although this difference
was not statistically significant.

Gender information cooperates in reducing the male-
female inequality as it relates to their participation across
distinct cQA categories. In this regard, it has been reported
that females, who encounter other members of the same
gender, are more likely to engage sooner than those who do
not in Stack Overflow [32]. Another significant discovery

discloses a stronger tendency among women to post more
questions, whereas males to yield more answers, resulting
in fewer thumb-ups for them, giving raise to lower average
reputation scores for females [33], [34], [35]. Working under
these findings, they designed a reputation strategy to lessen
the gender gap that rewards points for publishing questions
and answers to the same level. Along the same lines, the
research conducted by [36] revealed that feminine users
receive lower scores when responding, despite exhibiting
higher efforts in their contributions, revealing some gender
bias in the scoring of answers on sites like Stack Overflow.
This bias, combined with the fact that gamification strategies
such as scores and badges are more appealing to men than to
women [33], supports the need to devise alternative strategies
to promote women’s participation in cQA sites, especially
when anonymity is allowed, and gender information is not
available.

Overall, recent studies point towards automatic gender
identification as strategically vital to keep community mem-
bers engaged with cQA websites.

III. RESEARCH QUESTIONS
By leveraging the power of transfer learning, we quantify
and juxtapose the classification rate of assorted frontier
pre-trained models, when fined-tuned for text-based gender
detection. To this end, we analyzed the performance of these
state-of-the-art encoders, by considering distinct combina-
tions of the different textual contents found across mem-
ber profiles (i.e., question titles and bodies, answers and
self-descriptions).

Essentially, our predecessors have dealt with this subject
by conducting analyses at the level of isolated questions
only [1], or targeting profile avatars [29]. In this work,
we extend this notion to all texts within his/her profile, that
is, to consider all questions posted by the same community
peer together with all his/her answers and self-descriptions.

Specifically, our primary goal is answering the following
three research questions:

• RQ1: Is it possible to automatically detect gender across
cQA members based on their textual interactions within
the cQA site?

• RQ2: Are there any key differences in the performance
among distinct encoders using similar input signals?

• RQ3: Are there any differences in the performance of
the same model using different information?

• RQ4: What are the factors that influence the results
obtained by the models?

IV. METHODOLOGY
In essence, our primary aim was to analyze and compare
the performance of assorted PTMs on the task of automatic
gender recognition on cQA websites.

One of the pioneers, and at the same time, one of the most
widely used architectures is BERT (Bidirectional Encoder
Representations from Transformers) [8], [9]. It is based on a
multi-layer bidirectional transformer, trained on clean plain
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text (i.e., the English Wikipedia and the BookCorpus) for
masked words and next sentence prediction [6], [9]. BERT is
able to understand the meaning of any word within a sentence
in relation to ‘‘the company it keeps’’ [37], that is to say, all
the remaining terms embodied within the same context. Its
architecture consists of twelve transformer blocks and twelve
self-attention heads with a hidden state of 768. To classify
textual content, it represents an entire sequence by the final
hidden state h of its first token [CLS]. Then, a softmax
classifier is appended to its top as a means of predicting the
odds of a category.

Thus, BERT has been a source of inspiration for many
other architectures. From this perspective, we considered the
most representative models in our empirical settings. These
are briefly described below:

• ALBERT (A Lite BERT) modifies his predeces-
sor in two substantial ways: a factorized embedding
parametrization and it introduces a strategy for sharing
cross-layer parameters [38]. The former facilitates the
growth of the hidden size without markedly increasing
the parameter number of the vocabulary embedding. The
latter thwarts the number of parameters to escalate in
tandem with the depth of the network. Both proposals
reduce the memory consumption and the training time
of BERT.

• DeBERTa (Decoding-enhanced BERT with disen-
tangled attention) represents words via a vector that
encodes their content and another vector its position.
In addition, attention weights among terms are com-
puted using disentangled matrices on their contents and
relative positions. To predict masked tokens during pre-
training, a mask decoder is utilized instead of an output
softmax layer to incorporate absolute positions in the
decoding layer. Furthermore, a new virtual adversarial
training method were used for fine-tuning to improve
generalization on downstream tasks [39].

• DistilBERT leverages knowledge distillation during
pre-training to reduce the size of BERT, while maintain-
ing almost all its language understanding capabilities.
By using a triple loss, this reduction makes this model
60% faster, and through distillation via the supervision
of a larger transformer, it is competitive on many down-
stream tasks [40].

• DistilRoBERTa is a distilled version of RoBERTa-base,
obtained by training the model as DistilBERT. It has six
layers, 768 dimensions, and twelve heads, decreasing the
number of parameters from 125 to 82 million. On aver-
age, it is twice as fast as its predecessor.

• ELECTRA (Efficiently Learning an Encoder that
Classifies Token Replacements Accurately) pre-trains
a discriminator (transformer) that determines whether
every token is an original or a replacement, instead of
only masking a fraction of tokens within the input [41].
A generator, another neural network, masks and sub-
stitutes tokens to generate corrupted samples. In prac-
tical terms, this model trains much faster than BERT,

requiring significantly less compute, while at the same
time, accomplishing a competitive accuracy on several
downstream tasks.

• FNET replaces self-attention sub-layers with a simple
unparameterized Fourier Transform on input tokens.
It rivals efficient encoders while being much faster and
lighter in memory demands. Because of its speed, the
Fourier Transform demonstrated to be an efficient mix-
ing mechanism [42].

• Longformer tackles the quadratic explosion caused by
self-attention, when increasing the sequence lengths.
As a substitute, his attention mechanism scales lin-
early via a drop-in replacement that amalgamates a
locally windowed attention with a task motivated global
attention, making it easier to process much longer
documents [43].

• MobileBERT is a thin version of BERT that is equipped
with bottleneck structures and a carefully designed bal-
ance between self-attentions and feed-forward networks.
It trains a specially designed teacher model, an inverted-
bottleneck incorporated BERTmodel that enables effec-
tive layer-wise progressive knowledge transfer [44].

• RoBERTa is a robust strategy for training BERT mod-
els [45]. In short, it uses longer training times and
sequences, bigger batches, and one order of magnitude
more data than BERT for training. This battery of design
choices additionally removes the goal of guessing the
next sentence and dynamically changes the masking
pattern employed on the training data.

• XLNet is a generalized autoregressive pre-training strat-
egy that learns bidirectional contexts. Instead of exploit-
ing a fixed forward or backward factorization order,
it maximizes the expected likelihood over all permuta-
tions of the factorization order [46].

• XLM RoBERTa is a transformer-based multilingual
masked language model that is pre-trained on texts
harvested from one hundred languages. This encoder
achieves state-of-the-art performance in cross-lingual
classification, sequence labeling and question answer-
ing, and strong improvements have been observed when
coping with low-resource languages. Interestingly, these
outcomes have been achieved while remaining compet-
itive with frontier monolingual models [47].

We benefited from the pre-trained models supplied by
Hugging Face1 as detailed in table 1. We utilized the Simple
Transformers2 library for fine-tuning. All encoders used their
default parameter settings to level the grounds. The number
of epochs was maintained at two so that a maximum training
time of ten days was imposed. In practice, no substantial
increase was experienced when going beyond one epoch, but
we opted to give all transformers sufficient time to converge.
The maximum sequence length was set to 512, and sliding
windows considered a 0.95 stride. The batch size was set to

1huggingface.co
2github.com/ThilinaRajapakse/simpletransformers
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FIGURE 1. Illustrative excerpts from four automatically annotated profiles within our study corpus. On the left, two community members
identified as masculine (i.e., ‘‘James L’’ and ‘‘Daniel E’’), whereas on the right two individuals recognized as feminine (i.e., ‘‘Emily’’ and
‘‘Jocelyn’’). Light blue and light yellow indicate self-descriptions and questions, respectively. Light purple signals answers, and in bold,
question titles. Most relevant cues to guess genders are underlined.

ensure that the GPU3 memory was fully utilized. We used
a batch size of eight except for large models (xlnet, xlm-
roberta, deberta, etc.), where a batch size of 128 was required
to allow convergence.

V. EXPERIMENTS
To construct our dataset, we used 657,805 member profiles
distilled from Yahoo! Answers, a corpus that was previously
utilized in [48] and [49] (see figure 1) for age analysis. For
annotation purposes (i.e. male or female), we capitalized on
a series of heuristics [28]. First, we checked for user aliases
contained in any of a group of seven publicly available gen-
der by name collections including WGND4 and Howarder.5

As a means of improving the matching, nicknames were
lowercased, trimmed at their first space, hyphen, at, under-
score or dot. Accordingly, ASCII characters outside the range
from 97 to 122 were removed. In the event of no alignments,

3Nvidia DGX A100 2 × 40gb GPUs.
4github.com/lizhi1104/nlp_data
5data.world/howarder/gender-by-name

the end of the alias was systematically trimmed one character
at a time until a match was found, or its length was five
characters. The final decision was made by counting the
overall frequency of each gender.

Second, lowercased n-grams6 were extracted from all tex-
tual content by substituting numbers with a placeholder and
ranked in conformity with their entropy afterwards. After
a manual inspection of low-ranked elements, almost 1,500
gender indicative phrases were compiled, and later used to
revise the previous frequency counts, thus a final label was
assigned to 548,375 (83.36%) out of the 657,805 fellows in
the corpus (see statistics on table 2). The overall distribution
was as follows: 343,661 (62.67%) are women and 204,714
(37.33%)men. The dataset was divided into 329,025 training,
109,675 evaluation and 109,675 testing instances using a ran-
dom stratified sampling strategy, maintaining on each set the
proportions of women and men. From the 109,675 instances
in the test set, 68,676 (62,6%) were women and 40,999
men (37.4%). Every piece of text used by the heuristics was

6stanfordnlp.github.io/CoreNLP/
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TABLE 1. Pre-trained models used in the experiments.

removed from the respective profile of the user. Note that
held-out evaluations were carried out in all our experiments
by preserving these splits unchanged. The following abbrevi-
ations denote different empirical settings, designed to allow
the identification of the individual contribution of each piece
of information to classifier performance:

• T (question titles only)
• TB (questions titles and question bodies)
• TBA (full questions and answers)
• TBAD (full questions, answers and self-descriptions)
Finally, we took advantage of the test samples exclusively

to make an unbiased assessment of the final model fit on the
training/evaluation instances.

To answer RQ1 & RQ2, we fine-tuned several pre-trained
transformers 1 using each of the four datasets described
earlier, namely TBAD, TBA, TB and T. Our outcomes point
towards MobileBert and DeBERTa as the best options for this
task, since both achieved a superior performance regardless of
the metric and configuration (see tables 3, 4 and 5). Adding
self-descriptions does not improved significantly the quality
of classification of MobileBert and DeBERTa. It is worth
stressing here that only about 7% of the members within
this corpus provide a self-description. We conjecture that this
low proportion of examples is, in part, one of the reasons
for the observed effect on the performance. Overall, these
two fine-tuned encoders achieved anAccuracy, F1-Score, and
AUC greater than 86.4%, 0.894, 0.921, respectively.

TABLE 2. General description of the corpus.

The worst performance can be, most of the time, attributed
to one out of the three following models: XLNet, BERT
and ELECTRA. In particular, XLNet obtained the lowest
scores when trained on question titles (73.82%) and on TBAD
(74.15%). Our results suggest that one reason to this may
be their sensitivity to the distinct input signals. Interestingly,
these three alternatives are more competitive under a TBA
configuration, but on the other hand, their performance signif-
icantly drop when considering self-descriptions or when dis-
carding answers. For the most part, the gap between the best
and the worst systems is the narrowest when fine-tuning using
full questions and answers (approximately 6.6% accuracy).
In contrast, training solely on full questions brings about the
widest gap (approximately 14.92% accuracy).

Furthermore, Table 3 indicates that the average accuracy
was 0.8051, with a maximum of 86.66% (DeBERTa) and a
minimum of 69.93% (ELECTRA). Our dataset was imbal-
anced because of that, in addition to accuracy, we reported
the f1 metric (Table 5) and AUC Score (Table 4), because
those metrics are appropriate to compare classifiers in pres-
ence of imbalanced data [50]. Table 4 shows that the aver-
age AUC score was 0.8562, ranging from 0.6745 (XLNet)
to 0.9069 (MobileBERT). Overall, these results show that
it is possible to detect gender differences across commu-
nity peers using textual interactions within the cQA site.
They also revealed that models designed for efficiency and
that are case insensitive such as MobileBert obtain the best
average results (AUC: 0.9069). To be more specific, this
cost-efficiency was observed when juxtaposing the classi-
fication rates accomplished using the following settings:
DeBERTa (TBA) with an AUC value of 0.9247, closely
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FIGURE 2. Confusion Matrices (MobileBERT).

FIGURE 3. Confusion Matrices (DeBERTa).

followed by MobileBERT (TBAD) and (TBA) with AUC
scores of 0.9223 and 0.9217, respectively.

For error analysis, figures 2 and 3 show confusion matrices
in the test set for MobileBERT and DeBERTa (i.e., TBAD,
TBA, TB, T). MobileBERT TBAD classified correctly a
91,4% of feminine profiles (62,773 of 68,676), while the

highest number of masculine samples correctly classified
was achieved by TBAD and TBA models (78%, 31.979 of
40,999). To further analyze the effect of dataset imbalance
on model learning and classification performance, we trained
MobileBERT uncased on two balanced versions of the TBAD
dataset, with a 1:1 feminine/masculine proportion, created
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TABLE 3. Results in terms of accuracy obtained by each transformer under each of the four different pre-defined settings (test set).

TABLE 4. Outcomes in terms of AUC (Area Under the Curve) accomplished by each combination of encoder and input (test set).

TABLE 5. F1 scores for each transformer vs. each pre-defined configuration (test set).

using random oversampling and random undersampling [51].
Bothmodels achieved andAUC score of 0.92 and an accuracy

of 0.85 on the balanced test set, similar to MobileBERT
trained on the imbalanced dataset.
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TABLE 6. Case analysis for DistilBERT, DistilRoBERTa, XLM-RoBERTa and DeBERTa. The star denotes the use of CoreNLP case corrector when fine-tuning.

FIGURE 4. ROC Curves (MobileBERT).

FIGURE 5. ROC Curves (DeBERTa).

In summary, testing assorted fine-tuned transformers is
pertinent to gender recognition across cQA platforms, as our
experiments revealed a high variability in the classification
rates among distinct encoders under the same input signals.
We deem this to be a result of their sharply different special-
ized designs with different vocabulary sizes. Owing to their
architectural differences, there is no rule for determining the
right transformer and configuration for a particular down-
stream task.

To answer RQ3, the data in Tables 3, 4 and 5 show that
the best results were obtained using a combination of ques-
tions and answers (TBA, TBAD), but the best results on
average were obtained using only question titles, question
bodies and answers on TBAmodels (AUC: 0.8819, accuracy:
0.8293, F1: 0.8683). Thesemodels achieve a balance between
accuracy, precision and recall. Models that included question
bodies performed 5% better than models trained on question
titles only (AUC: 0.8651 vs AUC: 0.8184). With the inclu-
sion of answers, the models exhibited an average increase of
2% in performance (AUC: 0.8819). The inclusion of profile
descriptions led to a decrease in the average performance
(AUC: 0.8594), although some models exhibited a small
positive effect. Considering that only 7% of the profiles had
descriptions, these results suggest that the inclusion of profile
descriptions may be omitted without significantly affecting
performance.

Regarding RQ4, uncased models (mobilebert-uncased,
fnet-base) tend to perform better in our cQA dataset, which
suggests that the writing of questions and answers in the cQA
site is different from that in clean corpora, where most mod-
els were originally trained (e.g., BookCorpus and English
Wikipedia), and perhaps less formal. The use of uncased
models appears to mitigate some of the differences in writing
between the datasets. Table 6 shows a comparison of the
results obtained by the cased and uncased versions of the
models with higher average performance, trained on the raw
dataset and a corrected case dataset (true case). Distilbert-
base-uncased performed slightly better than its cased coun-
terparts on the raw dataset. When the case is corrected,
the distilbert-base-cased model performs better than when
trained on the raw dataset but is still below the performance
of distilbert-base-uncased. This pattern also occurs on distil-
roberta and xlm-roberta, the models performed better when
trained on the dataset with the corrected case.

The results obtained using the deberta-base cased model,
require further analysis. Deberta results may be explained
because is trained on OpenWebText and STORIES. Open-
WebText is a corpus generated from reddit, a social media
platform, where users can add their own content, and other
users can qualify that content, probably leading to writing
more similar to a cQA site. This relative similarity in content
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may lead to deberta to produce a language representation that
might be best suited to learning how to represent the cQA
content. The Deberta-base model does not perform signifi-
cantly better when trained on the true case dataset. The AUC
of the TBA model did not improve in relation to the raw
dataset, and the TBAD model performance improved from
0.921 to 0.926. The Deberta-base model trained on the true
case dataset achieved the best score of all trained models,
with an average AUC of 0.9085, slightly above that of the
mobilebert-base model trained on the raw dataset, with an
AUC of 0.9069. Nevertheless, the complexity of Deberta is
five times larger than that of MobileBert.

Figure 3 shows confusionmatrices for deberta-base trained
on the true case dataset. Their error rates are very similar to
the ones of MobileBERT, only the TBmodel shows a 1% per-
cent increase on their female detection capability. Regarding
ROC Curves, Figures 5 and 4 shows that the performance of
both models is indistinguishable.

Based on these results, we selected mobilebert-uncased
TBA as themodel with the best balance between performance
and complexity.

A. VISUALIZATION AND EXPLANATION OF MODEL
BEHAVIOR
Explainable AI (XAI) [52], [53], [54] and explainability of
transformers [55], [56], [57], [58], [59], [60] are active areas
of research. There are multiple approaches to construct expla-
nations for transformer models, many of them relying on the
use of attention weights. To understand the classifications
provided by our models, we analyzed the mobileBERTmodel
(T and TB versions) to explain the classification of samples
for users Daniel and Emily shown in figure 1, that were not
included in the samples used for training.

We selected the sample for Daniel because was misla-
beled by the T model but correctly classified by the TB
model, allowing us to analyze the reason behind the improve-
ment. The sample for Emily was correctly classified by
both models and allow us to analyze if the reason for
classification changed between the T and TB models. For
model understanding we used attention visualization [55],
[57], [58] and attribution [56] using the python package
transformers-interpret.7

Figures 6 and 7 show the attention weights in the first
layer of mobileBERT T model for head 1 (Top) and head 2
(Bottom). On both figures we see two common attention
patterns [58], head 1 has a heterogeneous pattern and head 2 a
diagonal pattern. The heterogeneous pattern of head 1 suggest
that the model learned semantic relations, like the relation
between the word ’is’ with words ’weird’ and ’interesting’,
on figure 6. The diagonal pattern appears when attention is
between previous, current and next words, like the relation
between ’am’ and ’pregnant’ on head 2 depicted in figure 7.
The sample for the masculine user was incorrectly clas-

sified by the mobileBERT T model and correctly classified

7https://github.com/cdpierse/transformers-interpret.git

FIGURE 6. Attention for the sample of user Daniel.

by the TB model. To explain the difference, Figure 8 shows
the attribution scores [56] of the T model (Top) and TB
model (Bottom). Highlighted in green are the words that
influenced the conclusion reached by the model, while in
red are the words supporting the other option, discarded by
the model. The T model classified the masculine sample as
feminine based mainly in the use of the word interesting
and the emoticon :) (attribution 0.16 and 0.32, respectively).
This behaviour is concordant with previous analyses [30]
that found and association between female interventions and
positive sentiments. The TB model did the correct classifica-
tion as masculine, influenced by words met, girl and baseball
(attributions 0.53, 0.39 and 0.23). For the feminine sample,
the words healthy, pregnancy and pregnant (attributions 0.28,
0.28 and 0.47) influenced the classification on both models,
while the words period and couple (attributions 0.20 and
0.34) complemented the decision on the TB model. These
behaviors are more related with the topic discussed by the
users, and the use of certain words when talking about some-
thing (meeting a woman, pregnancy) or when referring to
self (pregnant). In both cases, the results suggest that models
learned a relationship between some topics and gender, based
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FIGURE 7. Attention for the sample of user Emily.

on the information inside the corpus used for training. Pre-
vious works had found topic and intent differences between
masculine and feminine participants in cQA sites [31].

B. CAVEATS
Genders were assigned according to how members identified
themselves on the website. As a rule of thumb, we manually
assessed 100 randomly chosen labelled profiles, and obtained
an error rate of 10%. Aside from errors attributed to the
intrinsic shallow nature of our heuristics, some individuals
run fake profiles. Our preliminary manual inspection did
not find that other sexual orientations made up a substantial
share of this dataset. Owing to their discretion and/or low
participation, it is also difficult to compile a comprehensive
list of their typifying names and phrases.

VI. LIMITATIONS AND FUTURE RESEARCH
Apart from the aforementioned considerations, there are
some additional aspects that must be weighed carefully.
First, self-descriptions suffer severely from data-sparseness,
namely a low percentage of the members (7%) provides this

FIGURE 8. Attribution for sample of user Daniel.

FIGURE 9. Attribution for sample of user Emily.

short biography on Yahoo! Answers. Intuitively, one can
expect a great probability of finding pieces of information
conveying demographics across this sort of text. Therefore, its
real impact should be quantified by studying platforms, where
their users are more likely to describe themselves. Here, one
could think on services such as Reddit and Stack Exchange.
In the same spirit, different ways of integrating this class of
input into a, probably joint, model can be further explored in
future works.

Second, if significant computational power and mas-
sive cQA collections are accessible, one could think about
pre-training frontier transformers on user-generated cQA
texts. Doing this poses several exciting challenges, for
instance to clean or not to clean the corpus? When these
resources are inaccessible, the transfer of knowledge can
still be improved by means of resolving community jar-
gon, spellings, aliases, entities and acronyms. Additionally,
we conjecture that pre-training title-only models will be
beneficial, but this will need special adjustments, since the
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grammar exhibited in question titles is sharply different to
what we can find across question bodies and answers.

Lastly, we also envision that exploiting multi-lingual archi-
tectures and texts written in different languages can help to
enhance the gender detection rate, especially across users
linked to very few questions and answers posted in English.
On top of that, multilingualism might assist in dealing with
the data-sparseness in self-descriptions. In the case of Yahoo!
Answers, extra biographies can be harvested from some
Spanish speaking members. Recall that our study focused
its attention only on textual content in English, which was
singled out via a language detector.

VII. CONCLUSION
Regarding RQ1, we concluded that it is possible to infer
the gender of a community peer on a cQA site from
their interactions with the site. Better results were obtained
by models using full questions (title and body) combined
with the answers provided by the person. Uncased models
(i.e., Mobilebert and FNET) and models trained on varied
datasets like Deberta, performed better than models trained
on clean corpora such as BookCorpus or English Wikipedia,
showing that the use of any pre-trained model does not
lead to the same classification results (RQ2, RQ3). Another
important conclusion is that the addition of more information
does not always lead to better results, because some TBA
models performed better than their TBAD counterparts. The
differences in results may be explained by differences in
writing across datasets (RQ4), because the correction of the
case of the words improved the results in cased models. This
affirmation could be further investigated on future works,
by training the models with an updated dataset where mis-
spelled words are corrected to ease the transfer learning from
the clean corpus.

Model selection appears to be an important issue in the
context of natural language understanding applied to cQA
sites. We summarize our findings in the following guidelines
for model reuse:

• To improve transfer learning, select a model trained on
a dataset with the closest similarity in writing (formal,
informal) to the dataset used for the downstream task.

• If the selected model is cased, preprocess the dataset to
correct case before training.

• When using a model pre-trained on a clean corpus,
consider fine-tuning the model using a dataset where
misspelled words are corrected.

We conclude that gender recognition based on writing may
be helpful in profiling users in cQA sites, and as a tool
to design interventions to promote equal engagement and
participation in online communities.
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