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ABSTRACT The use of artificial intelligence (AI) in sensor analytics is entering a new era based on the use
of ubiquitous embedded connected devices. This transformation requires the adoption of design techniques
that reconcile accurate results with sustainable system architectures. As such, improving the efficiency of AI
hardware engines as well as backward compatibility must be considered. In this paper, we present the Hybrid-
Float6 (HF6) quantization and its dedicated hardware design. We propose an optimized multiply-accumulate
(MAC) hardware by reducing the mantissa multiplication to a multiplexor-adder operation. We exploit
the intrinsic error tolerance of neural networks to further reduce the hardware design with approximation.
To preserve model accuracy, we present a quantization-aware training (QAT) method, which in some cases
improves accuracy. We demonstrate this concept in 2D convolution layers. We present a lightweight tensor
processor (TP) implementing a pipelined vector dot-product. For compatibility and portability, the 6-bit
floating-point (FP) is wrapped in the standard FP format, which is automatically extracted by the proposed
hardware. The hardware/software architecture is compatible with TensorFlow (TF) Lite. We evaluate
the applicability of our approach with a CNN-regression model for anomaly localization in a structural
health monitoring (SHM) application based on acoustic emission (AE). The embedded hardware/software
framework is demonstrated on XC7Z007S as the smallest Zynq-7000 SoC. The proposed implementation
achieves a peak power efficiency and run-time acceleration of 5.7 GFLOPS/s/W and 48.3×, respectively.

INDEX TERMS Convolutional neural networks, structural health monitoring, hardware accelerator, Ten-
sorFlow Lite, embedded systems, FPGA, custom floating-point.

I. INTRODUCTION
There is a growing demand for ubiquitous AI sensor ana-
lytics. Industry 4.0 and smart city infrastructure leverage
AI solutions to increase productivity and adaptability [1].
These solutions are powered by advances in ML, compute
engines, and big data. Hence, improvements of these should
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be considered for research, as they are the machinery of the
future.

Convolutional neural networks (CNNs) represent the
essential building blocks in 2D pattern analytics. Sensor-
based applications such as mechanical fault diagnosis [2], [3],
structural health monitoring [4], human activity recognition
(HAR) [5], hazardous gas detection [6] have been powered by
CNN models in industry and academia. CNN-based models,
as one of the main types of artificial neural networks (ANNs),
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have been widely used in sensor analytics with automatic
learning from sensor data [7], [8], [9], [10]. In this context,
CNN models are applied for automatic feature learning, usu-
ally, from 1D time series as well as for 2D time-frequency
spectrograms. CNN models provide advantages such as local
dependency, scale invariance, and noise resilience in analyt-
ics [11]. However, CNN models are computationally inten-
sive and power-hungry. This is particularly challenging for
low-power embedded applications, such as in the Internet of
Things (IoT) field.

For ML inference, dedicated hardware architectures are
typically used to enhance compute performance and power
efficiency. In terms of computational throughput, graphics
processing units (GPUs) offer the highest performance; in
terms of power efficiency, ASIC and FPGA solutions are
more energy efficient [12]. As a result, numerous commercial
ASIC and FPGA accelerators have been proposed, targeting
both high performance computing (HPC) for data-centers and
embedded systems applications.

However, most FPGA accelerators have been implemented
to target mid- to high-range FPGAs for computationally
intensive CNN models such as AlexNet, VGG-16, and
ResNet-18. The main drawbacks of these implementations
are power supply demands, physical dimensions, heat sink
requirements, air cooling, and high price. In some cases,
these implementations are not feasible for ubiquitous low-
power/resource-constrained applications.

To reduce inference hardware there are two types of
research [13]: the first one is deep compression includ-
ing weight pruning, weight quantization, and compression
storage [14], [15]; the second type of research corresponds
to a more efficient data representation, also known as
custom quantization for dedicated hardware implementa-
tion. In this group, hardware implementations with cus-
tomized 8-bit floating-point computation have been proposed
[13], [16], [17]. However, these architectures are inadequate
for embedded applications, the target devices are high-end
FPGA and PCIe devices.

Reducing the compute hardware with more aggressive
quantization such as binary [18], ternary [19], and mixed
precision (2-bit activations and ternary weights) [20] typ-
ically incur significant accuracy degradation for very low
precisions, especially for complex problems [21].

In this paper, we present the Hybrid-Float6 quantization
and its dedicated hardware design. In this concept, feature
maps are represented by a standard FP number representa-
tion and the trainable parameters by 6-bit FP. To preserve
accuracy, we present a quantization-aware training (QAT)
method. For ML compatibility/portability, the 6-bit FP can
be wrapped into the standard FP number representation.
We propose a parameterized tensor processor implementing
a pipelined vector dot-product with HF6. The proposed hard-
ware extracts the 6-bit representation automatically from the
standard FP format and performs the computation. The 6-bit
FP representation uses 4-bit exponent and 1-bit mantissa.

FIGURE 1. The workflow of our approach on embedded FPGAs.

This approach enables an optimizedMAC design by reducing
the mantissa multiplication to a multiplexer-adder operation.
We leverage the intrinsic error tolerance of ANN to fur-
ther reduce the hardware design with approximation. This
approach reduces latency, resource utilization, and power
dissipation. The embedded hardware/software architecture is
integrated with TensorFlow Lite using delegate interface to
accelerate Conv2D tensor operations. We evaluate the appli-
cability of our approach with a CNN-regression model and
hardware design exploration for sensor analytics of SHM
for anomaly localization. The embedded hardware/software
framework is demonstrated on XC7Z007S as the smallest and
most inexpensive Zynq SoC device, see Fig. 1. To the best
of our knowledge, this is the first research addressing 6-bit
floating-point quantization on CNN models and its dedicated
hardware design.

Our main contributions are as follows:
1) We present the Hybrid-Float6 quantization and its ded-

icated hardware design.We propose an optimized hard-
ware MAC by reducing the mantissa multiplication to
a multiplexer-adder operation. We exploit the intrinsic
error tolerance of ANN to further reduce the hardware
design with approximation. To preserve model accu-
racy, we present a quantization-aware training method,
which provides regularization effects.

2) We develop a custom hardware/software co-design
framework for low-power analytics on resource-
constrained embedded FPGAs. TensorFlow Lite micro
is integrated in this framework.

3) We present a customizable tensor processor as a dedi-
cated hardware for HF6. This design computesConv2D
tensor operations employing a pipelined vector dot-
product with parametrized on-chip memory utilization.
For exploration purposes, the compute engine can be
synthesized with the proposed HF6 hardware or with
Xilinx LogiCORE IPs (for standard floating-point).

4) We demonstrate the potential of our approach with
a CNN-regression model for anomaly localization in
SHM based on AE. We address a hardware design
exploration. We evaluate inference accuracy, compute
performance, hardware resource utilization, and energy
consumption.

The rest of the paper is organized as follows. Section II
covers the related work; Section III introduces the
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background for Conv2D tensor operation and floating-point
number representation; Section IV describes the system
design of the hardware/software architecture and the quan-
tized aware training method; Section V presents the experi-
mental results thorough a design exploration flow; Section VI
concludes the paper.

This work is available to the community as an open-source
project at https://github.com/YaribNevarez/tensorflow-lite-
fpga-delegate.git.

II. RELATED WORK
In the literature we find plenty of hardware architectures
for CNN accelerators implemented in FPGA. Most of the
research implements fixed-point quantization, and very lim-
ited research focuses on FP. Moreover, to the best of our
knowledge, there is no research work related to FP inference
for low-power embedded applications.

A. HYBRID CUSTOM FLOATING-POINT
In [22], Liangzhen Lai et al. proposed a mixed data represen-
tation with floating-point for weights and fixed-point for acti-
vations. This work demonstrated on SqueezeNet, AlexNet,
GoogLeNet, and VGG-16 that 8-bit floating-point quantiza-
tion (4-bit exponent and 3-bit mantissa) results in constant
negligible accuracy degradation. Similarly, in [23], Sean O.
Settle et al. presented an 8-bit FP quantization scheme, which
needs an extra inference batch to compensate for quantization
errors. However, [22] and [23] did not present a hardware
architecture.

In [17], Xiaocong Lian et al. proposed a hardware acceler-
ator with optimized block floating-point (BFP). In this design
the activations and weights are represented by 16-bit and
8-bit FP formats, respectively. This design is demonstrated
on Xilinx VC709 evaluation board. This implementation
achieves throughput and power efficiency of 760.83 GOP/s
and 82.88 GOP/s/W, respectively. However, this design is
not suitable for low-power resource-constrained embedded
FPGAs.

B. LOW-PRECISION FLOATING-POINT
In [16], Chunsheng Mei et al. presented a hardware
accelerator for VGG16 model using half-precision FP
(16-bit). This design is demonstrated on Xilinx Virtex-7
(XC7VX690T) with PCIe interface. This implementation
achieves throughput and power efficiency of 202.8 GFLOP/s
and 18.72 GFLOP/s/W, respectively. In [13], Chen Wu et al.
proposed a low-precision (8-bit) floating-point (LPFP) quan-
tization method for FPGA-based acceleration. This design is
demonstrated on Xilinx Kintex 7 and Ultrascale/Ultrascale+.
This implementation achieves throughput and power effi-
ciency of 1086.8 GOP/s and 115.4 GOP/s/W, respectively.

C. LOW-POWER
Two research papers have been reported hardware acceler-
ators targeting XC7Z007S. This is the smallest and most
inexpensive device from Zynq-7000 SoC family. In [24],

PaoloMeloni et al. presented a CNN inference accelerator for
compact and cost-optimized devices. This implementation
uses fixed-point to process light-weight CNN architectures
with a power efficiency between 2.49 to 2.98 GOPS/s/W.
In [25], Chang Gao et al. presented EdgeDRNN, a recurrent
neural network (RNN) accelerator for edge inference. This
implementation adopts the spiking neural network (SNN)
inspired delta network algorithm to exploit temporal sparsity
in RNNs.

III. BACKGROUND
A. Conv2D TENSOR OPERATION
A convolutional layer aims to learn and extract feature repre-
sentations from input layers. The convolution layer is made
of convolution kernels that are used to compute feature maps.
Each unit of a feature map is connected to a region of
neighboring units on the input maps (from previous layer).
Such a neighborhood of the previous layer is known as
the receptive field of the unit. A new feature map can be
obtained by first convolving the input maps with a learned
kernel and then applying a nonlinear elementwise activation
function to the convolved results. All spatial locations on
the input maps share a kernel to generate a feature map. All
feature maps are obtained by convolving several different
kernels [26].

The 2D convolution is performed by the Conv2D tensor
operation described in Eq. (1), where h is the input tensor
containing the feature maps, W is the convolution kernels
(known as filters), and b is the bias vector used on the output
feature maps [27].K×L×M is the receptive field size,K×L
is the 2D convolution kernel, and M is the number of input
channels or input feature maps. We denote Conv as Conv2D
operator.

Conv (W , h)i,j,o =
K ,L,M∑
k,l,m

h(i+k,j+l,m)W(o,k,l,m) + bo (1)

B. FLOATING-POINT NUMBER REPRESENTATION
The representation of every numerical value, in any number
system, is made of an integer and a fractional part. The border
that delimits them is called the radix point. The fixed-point
format derives its name from the fact that in this, the base
point is fixed at a certain position. For integer numbers, this
position is at the right of the least significant digit.

In scientific computation, it is often necessary to rep-
resent very large and very small values. This is difficult
to achieve using the fixed-point format because the bit
size/width required to maintain both the desired precision
and the desired range are very large. In such situations,
FP formats are used to represent real numbers. Each FP
number can be divided into three fields: sign S, exponent
E , and mantissa M . Using the binary number system, it is
possible to represent any FP number as:

(−1)S × 1.M × 2E−B (2)
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In FP representations the exponent is biased. This bias
depends on the bit size of the exponent field in the particular
format. This exponent bias is defined by Eq. (3), where Esize
is the exponent bit size.

B = 2Esize−1 − 1 (3)

There is a natural trade-off between small bit size requiring
fewer hardware resources and larger bit size providing higher
precision. Within a given total bit size, it is possible to assign
various combinations of sizes to the exponent and mantissa
fields, with wider exponents resulting in a higher range and
wider mantissa resulting in better precision.

The most widely used format for FP arithmetic is the IEEE
754 standard [28]. The IEEE single-precision format (32-bit)
is expressed by Eq. (2) with 8-bits for the exponent, 23-bits
for the mantissa, and B = 127, see Fig. 2(a). In FP formats,
the numbers are normalized, the leading one is an implicit bit,
and only the fractional part is explicitly stored in the mantissa
field.

FIGURE 2. Floating-point number representations.

Reduced bit size than those specified in the IEEE 754 stan-
dard are often sufficient to provide the desired precision.
Reduced designs require fewer hardware resources enabling
low-power implementations. In custom hardware designs,
it is possible to customize the FP format implemented. In later
sections, we use the term EaMb to denote FP formats, where
a and b are the exponent and mantissa bit size, respectively.
For example, E4M1means 4-bit exponent and 1-bit mantissa,
see Fig. 2(d).

There are three special definitions in IEEE 754 standard.
The first is subnormal numbers when E = 0, then Eq. (2) is
modified to Eq. (4). Infinity and not a number (NaN) are the
other two special cases but are not used in our work.

(−1)S × 0.M × 21−B (4)

IV. SYSTEM DESIGN
The system design is a hardware/software co-design frame-
work for low-power ML analytics. This architecture allows
design exploration for dedicated hardware in embedded sys-
tems. For ML compatibility, the proposed framework inte-
grates TensorFlow Lite micro.

FIGURE 3. Base embedded system architecture.

FIGURE 4. High level hardware architecture of the proposed tensor
processor.

A. BASE EMBEDDED SYSTEM ARCHITECTURE
The embedded system architecture consists of a coopera-
tive hardware-software platform. See Fig. 3. The embedded
CPU delegates low-level compute-bound tensor operations to
the TPs. The TPs employ AXI-Lite interface for configura-
tion and AXI-Stream interfaces via Direct Memory Access
(DMA) for data movement from off-chip memory. Each
TP and DMA pair asserts interrupt flags once its compute
job/transaction completes. Interrupt events are handled by
the embedded CPU to use the results and to start a new
compute job/transaction. The hardware architecture can vary
its resource utilization by customizing the TPs prior to the
hardware synthesis.

B. TENSOR PROCESSOR
The TP is a dedicated hardware module to compute tensor
operations. This implements high performance communica-
tion with AXI-Stream, direct CPU communication with AXI-
Lite, and on-chip storage utilizing BRAM. This hardware
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architecture is implemented with high-level synthesis (HLS).
The tensor operations are implemented based on the C++
TensorFlow Lite micro kernels. See Fig. 4. In this paper,
we focus on the Conv2D tensor operation that computes 2D
convolution layers.

1) MODES OF OPERATION
The TP has two modes of operation: configuration and
execution.
• In configurationmode, the TP receives the hyperparam-
eters of the tensor operation: stride, dilation, padding,
offset, activation, depth-multiplier, input shape, filter
shape, bias shape, and output shape. Afterwards in the
same data stream, the TP receives filter and bias tensors.
These are locally stored in BRAM for data re-usage. The
filter and bias tensors are transferred using standard FP
format wrapping the 6-bit FP representation, which is
extracted by the TP for local on-chip storage.

• In execution mode, the TP executes the tensor operation
according to the hyperparameters given in the config-
uration mode. During execution, the input and output
tensors are moved via DMA.

2) DOT-PRODUCT WITH HYBRID FLOATING-POINT
We implement the floating-point computation adopting the
dot-product with hybrid customfloating-point [29]. The hard-
ware dot-product is illustrated in Fig. 5 and Fig. 6(a). This
design instantiates an HF6MACwith an internal accumulator
register of 64-bit fixed-point with 23-bit fraction. During
operation, the feature map and filter values are extracted from
on-chip memory (BRAM). Both values have to be different
than zero to enable the MAC operation. The result is biased
by accumulating a denormalized bias value. Since the bias
is stored with 6-bit FP, its fractional part has to be aligned
with the 23-bit fraction of the accumulator, see Fig. 6(b).
The ReLu activation is applied to the accumulator and the
result is normalized to convert it to IEEE 754 standard FP,
see Fig. 6(c).

Rather than a parallelized hardware structure, this is
a pipelined hardware design suitable for resource-limited
devices. The latency in clock cycles of this hardware module
is defined byEq. (5), whereN is the length for the vector dot-
product. This latency equation is obtained from the general
pipelined hardware latency formula: L = (N − 1) II + IL,
where II is the initiation interval, and IL is the iteration
latency. Both II and IL are obtained from the high-level syn-
thesis results. Both the exponent and mantissa bit widths of
the filter and bias are set to 4-bit exponent and 1-bit mantissa
(E4M1), which corresponds to float6 quantization.

Lhf = N + 7 (5)

3) MULTIPLY-ACCUMULATE
The multiply-accumulate operation calculates the product of
two numbers and adds the result to an accumulator register.

FIGURE 5. Dot-product hardware module with (a) standard floating-point
and (b) Hybrid-Float6.

FIGURE 6. (a) Dot-product hardware module with Hybrid-Float6 MAC,
(b) bias accumulation, (c) activation and normalization to IEEE754.

In FP arithmetics, the area of a hardware multiplier scales
with the bit size of the mantissas. In the case of HF6, the
6-bit FP representation allows a reduced hardware multipli-
cator for mantissas. The 1-bit mantissa enables optimized
MAC implementations by reducing the mantissa multiplica-
tion to a multiplexed addition, see Fig. 7. ThisMAC produces
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FIGURE 7. Hybrid-Float6 multiply-accumulate hardware design.

denormalized results, which are accumulated in a fixed-
point accumulator. This approach reduces latency, energy
consumption, and hardware area/resource utilization.

Special cases, such as Infinity and NaN, are not considered
in this design for simplicity, since they are not expected for
CNN inference. For the subnormal case, the element-wise
multiplication is disabled when having a zero entry and is
approximated when having subnormal mantissa. The feature
map values are considered zero when the exponent is zero
(EH = 0). The filter values are considered zero when both
exponent and mantissa are zero (EF = 0 ∧ MF = 0). See
Fig. 6(a). In the 6-bit FP, the 1-bit mantissa has one subnormal
case, which is handled as a normalized case. This exploits the
intrinsic error tolerance to reduce the hardware design.

The approximation error is defined by the difference
between Eq. (2) and Eq. (4) when E = 0 andM = 2−1. The
result defines the error as e = 2−B−1. Then, from Eq. (3)
with Esize = 4, we have B = 7. Hence, e = 3.9e−3. This
error is produced when having the subnormal case E = 0 and
M = 2−1, which corresponds to the value±7.8e−3 deviated

FIGURE 8. Design parameters for on-chip memory buffers on the TP.

to ±1.17e−2. This approximation leverages the intrinsic
error tolerance of CNN to reduce hardware resource utiliza-
tion and energy consumption [11].

4) ON-CHIP MEMORY UTILIZATION
The total on-chip memory utilization on the TP is defined
by Eq. (6), where TPB and VM represent the tensor buffers
required for Conv operation and local registers required for
the logic, respectively. Eq. (7) defines the tensor buffers,
where InputM is the input buffer, FilterM is the filter buffer,
BiasM is the bias buffer. These on-chip memory buffers are
defined in bits. Fig. 8 illustrates the convolution operation
utilizing the on-chip memory buffers.

TPM = TPB + VM (6)

TPB = InputM + FilterM + BiasM (7)

The memory utilization of input buffer is defined by
Eq. (8), where KH is the height of the convolution kernel,WI
is the width of the input tensor (input feature maps), CI is
the number of input channels, and BitSizeI is the bit size
representation used by the input tensor.

InputM = KHWICIBitSizeI (8)

The memory utilization of filter buffer is defined by
Eq. (9), where KW and KH are the width and height of the
convolution kernel, respectively; CI and CO are the number
of input and output channels, respectively; and BitSizeF is the
bit size representation used by filter values.

FilterM = CIKWKHCOBitSizeF (9)

The memory utilization of bias buffer is defined by
Eq. (10), where CO is the number of output channels, and
BitSizeB is the bit size representation used by bias values.

BiasM = COBitSizeB (10)

As a design trade-off, Eq. (11) defines the capacity of
output channels based on given design parameters. The total
on-chip memory TPM determines the TP storage capacity.

CO =
TPM − VM − KHWICIBitSizeI
CIKWKHBitSizeF + BitSizeB

(11)
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The floating-point formats implemented in the TP are
defined by BitSizeF , BitSizeB and BitSizeI . The HF6 defines
6-bit for BitSizeF and BitSizeB, and 32-bit for BitSizeI . These
are design parameters defined before hardware synthesis.
This allows fine control of BRAM utilization, which is suit-
able for resource-limited devices.

C. TRAINING METHOD
The training method consists of two separate stages:
(1) training with iterative early stop and (2) quantization-
aware training.

1) TRAINING WITH ITERATIVE EARLY STOP
To achieve better performance on CNN-regression models,
we implement a training procedure with an iterative early stop
cycle. This allows to reach better local minima. This process
consists of four steps:

1) A model is obtained with an initial training with stan-
dard early stop monitoring.

2) The model is iteratively re-trained with standard early
stop. This process iteratively restarts the optimizer
moving averages to search for better local minima.

3) In case of a better local minimum, the model is saved
and used as a base for subsequent search iterations,
otherwise it is a discarded search.

4) The cyclic process stops automatically with a given
number of searches with no better local minimum,
this is denoted as stop patience. This allows to set a
maximum number of unsuccessful search trials before
the stop.

This method is described in Algorithm 1.

2) QUANTIZATION-AWARE TRAINING
The quantization-aware training (QAT) method is integrated
into the training process, this operates as a callback on
each mini-batch update. The quantization is applied on the
trainable parameters of convolution layers. This method is
implemented on the ML framework (TensorFlow/Keras), see
Algorithm 2.

The quantization method uses rounding strategy to reduce
the FP representation. This maps the full precision FP
values to the closest representable 6-bit FP values, see
Algorithm 3. This method quantizes the filter and bias ten-
sors of the convolution layers. We have observed that the
exponent bit size plays a more predominant influence on the
model accuracy than the mantissa bit size. In [22], Lai et al.
demonstrated that 4-bit exponent and X-bit mantissa is ade-
quate and consistent across different networks (SqueezeNet,
AlexNet, GoogLeNet, VGG-16). In this work, we investigate
4-bit exponent and 1-bit mantissa.

D. EMBEDDED SOFTWARE ARCHITECTURE
The software architecture is a layered object-oriented appli-
cation framework written in C++, see Fig. 9 and Fig. 10.
Description of the software layers is as follows:

Algorithm 1TrainingWith Iterative Early Stop Cycle
input: MODEL as the input model.
input: Dtrain as the training data set.
input: Dval as the validation data set.
input: NI as the stop patience for iterative training cycle.
input: NE as the early stop patience (epochs) for training.
input: Bsize as the mini-batch size.
output: MODEL as the full-precision output model.
Train(MODEL,Dtrain,Dval,NE ,Bsize)
msei← Evaluate(MODEL,Dval) // Benchmark
nI ← 0
while nI < NI do
// Iterative early stop cycle
Train(MODEL,Dtrain,Dval,NE ,Bsize)
msev← Evaluate(MODEL,Dval)
if msev < msei then
Update(MODEL)
msei← msev

else
MODEL ← LoadPreviousWeights()
nI ← nI + 1

end if
end while

Algorithm 2 OnMiniBatchUpdate_Callback
input: MODEL as the full-precision input model.
input: Esize as the target exponent bits size.
input: Msize as the target mantissa bits size.
input: Dtrain as the training data set.
input: Dval as the validation data set.
input: Nep as the number of epochs.
input: Bsize as the mini-batch size.
output: MODEL as the quantized output model.
// Quantize
MODEL ← Algorithm 3(MODEL,Esize,Msize)
if 1 < epoch then
// Update model after first epoch
msev← Evaluate(MODEL,Dval)
if msev < msei then
Update(MODEL)
msei← msev

end if
end if

• Application: As the highest level of abstraction, this
software layer implements the analytics application, this
invokes the ML library.

• Machine learning library: This software layer offers a
comprehensive high level API for ML inference. This
layer consist of TensorFlow Lite micro, this is modified
to implement the delegate software interfaces for the
proposed hardware accelerator.
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Algorithm 3 Custom Floating-Point Quantization
input: MODEL as the CNN.
input: Esize as the target exponent bit size.
input: Msize as the target mantissa bits size.
input: STDMsize as the IEEE 754 mantissa bit size.
output: MODEL as the quantized CNN.
for layer in MODEL do
if layer is Conv2D or SeparableConv2D then
filter, bias← GetWeights(layer)
for x in filter and bias do
sign← GetSign(x)
exp← GetExponent(x)
fullexp← 2Esize−1 − 1 // Get full range value
cman← GetCustomMantissa(x,Msize)
leftman← GetLeftoverMantissa(x,Msize)
if exp < −fullexp then
x ← 0

else if exp > fullexp then
x ← (−1)sign · 2fullexp · (1+ (1− 2−Msize))

else
if 2STDMsize−Msize−1 − 1 < leftman then
cman← cman+ 1 // Above halfway
if 2Msize − 1 < cman then
cman← 0 // Correct mantissa overflow
exp← exp+ 1

end if
end if
// Build custom quantized floating-point value
x ← (−1)sign · 2exp · (1+ cman · 2−Msize )

end if
end for
SetWeights(layer,filter, bias)

end if
end for

FIGURE 9. High level embedded software architecture.

• Hardware abstraction layer : This layer consist of the
hardware drivers used in the TFLite delegate software
interfaces. This software layer handles initialization and
runtime operation of the TP and DMA.

FIGURE 10. Software flowchart.

V. EXPERIMENTAL RESULTS
In this section, we present experimental results using a low-
power/low-cost sensor analytics application. As a use case,
we present a CNN-regression model to predict x- y- coordi-
nates of acoustic emissions based on piezoelectric vibrations.
We compare quantitative and qualitative aspects of the ana-
lytics using floating-point 32-bit, fixed-point 8-bit, Hybrid-
Logarithmic 6-bit, and Hybrid-Float6.

To demonstrate the proposed concept, we deploy the CNN
model in the smallest Zynq SoC device for low-power infer-
ence. We compare the performance of the TP synthesized
with standard FP (using Xilinx LogiCORE IPs) and Hybrid-
Float6 design.

A. SENSOR ANALYTICS APPLICATION
The analyticsmodel is designed to predict x- y- coordinates of
acoustic emissions on a metal plate. The metal plate is in the
presence of noise disturbance to simulate realistic conditions.
In this subsection, we present the structure for experimental
setup, data sets, and the CNN-regression model.

1) EXPERIMENTAL SETUP
The experiment uses eight piezoelectric sensors (Vallen Sys-
teme VS900) attached with magnetic holders on a metal plate
(90 cm× 86.6 cm× 0.3 cm). The VS900 devices can operate
either in active or passive mode. Six VS900 are used in
passive mode as acoustic sensors and two in active mode to
produce acoustic emissions. These acoustic emissions sim-
ulate anomalies on x- y- coordinates as well as the noise
disturbance on the system. See Fig. 11(a). To create data
sets, the samples of acoustic emissions are labeled with their
coordinates.

2) DATA SETS
The data sets are recorded applying pulses on the metal
plate, the x- y- coordinates of these pulses are used as labels.
The pulses for training and validation data sets are shown
in Fig. 11(b) and Fig. 11(c), respectively. The pulses for
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FIGURE 11. Experimental setup for sensor analytics on structural health
monitoring, all lengths are in meters (m).

training and validation data sets are mutually exclusive, this
exclusion is represented by the cross symbols in Fig. 11(c).
This creates a grid layout used to collect samples for the data
sets. This grid is 10 × 10 divisions, these are on the metal
plate area (90 cm× 86.6 cm). This grid does not consider the
four corners as they are used for magnetic holders.

In order to create reproducible acoustic emissions, we use
9-cycle sine pulse in a Hanning window with central
frequency fc (narrow-banded in the frequency domain).
We assume guided Lamb waves based on the plate struc-
ture. The narrow-band behavior also reduces the dispersion
of the acoustic emission waves [30]. The waveform can be

expressed as a function of time t as follows:

xpulse(t) =
1
2

(
1− cos

fct
5

)
A0 sin fct. (12)

To generate the data sets, we use slightly different pulse
amplitudes and frequencies for excitation. The pulse fre-
quency fc is varied in 1 kHz steps between 300 kHz and
349 kHz and the amplitudeA0 is varied in 0.1V steps between
2.6V and 3.5V. This results in 500 different pulses for each
of the excitation points.

The signals for labeled pulses and noise disturbance are
generated by arbitrary waveform generators (AWGs). The
sensor signals are recorded via a Vallen AMSY-6 measure-
ment system with a resolution of 18 bits and a sampling rate
of fS = 10MHz. The disturbance signal is gaussian noise
with amplitudes between 0-3 V. This noise is applied via the
piezoelectric device N at x = 0.227m and y = 0.828m,
see Fig. 11(a).

To obtain frequency components, the sampled pulses
are converted into the frequency-time domain using the
Short-Time Fourier Transform (STFT). This is calculated as
follows [31]:

Fγ
m,k =

N−1∑
n=0

x[n] · γ ∗[n− m1M ] · e
−j2πkn
N (13)

Here x[n] describes a discrete-time signal and γ ∗[n −
m1M ] ·e

−j2πkn
N the time- and frequency-shifted window func-

tion inside the considered interval [0,N − 1]. 1M describes
the time shift and N the transformation window. Since only
discrete frequencies and time points are considered, m =
0, 1, . . . ,M − 1 is valid. For pictorial representation, the
magnitude of the complex-valued STFT is employed in a
spectrogram Sm,k :

Sm,k =

∣∣∣Fγ
m,k

∣∣∣2 = ∣∣∣∣∣
N−1∑
n=0

x[n] · γ ∗[n− m1M ] · e
−j2πkn
N

∣∣∣∣∣
2

(14)

In addition, these spectrograms are scaled in decibels.
The spectrogram in decibels Sm,k,dB results in Sm,k,dB =

20 · log10(Sm,k ). For the conversion of the data, we use a
signal length of 400 µ s (75 µ s pretrigger and 325 µ s post
trigger). Thus, the arrival times of the pulses are included in
the spectrogram for all channels and labeled positions.We use
a Blackman window function [32], a Fast Fourier Transform
(FFT) length of 32 samples, and an overlap of 8 samples. The
spectrograms are calculated for frequencies in the range of
100 kHz to 500 kHz. This results in a spectrogram size of
8× 16 (8 frequency bins, 16 time values).

In order to generate larger data sets, we create four further
variants with time shifts of 15 µs/ 30 µs/ 45 µs/ 60 µs.
Subsequently, all spectrograms are converted to grayscale
with scaling between −100dB and −40dB, see Fig. 12.

In overall, the data set has a size of 1,440,000 images. This
is the result of 500 (pulses) · 5 (spectrograms) · 6 (listening
sensors) · 96 (excitation points).
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FIGURE 12. Spectrograms of sensors S1, S2 converted to grayscale for
pulses at x = 0.105 m, y = 0.109 m with noise disturbance.

FIGURE 13. CNN-regression model for sensor analytics.

3) CNN-REGRESSION MODEL
The data analytics is implemented with a CNN-regression
model, see Fig. 13. The structure of the model is described
below:

1) Input tensor. This is composed of spectrograms from
the sensor signals. The tensor shape is defined by
S×T×F , where S is the number of sensors, and T×F is
the time-frequency resolution of the spectrograms, see
Fig. 13(a).

2) Feature extraction. This is composed of three blocks
of convolution, batch normalization, and max-pooling
layers, see Fig. 13(b). The number of channels in the
convolution layers are defined by the hyper-parameters
A, B, and C .

3) Regression function. This is an arbitrary function
implemented with two fully connected layers and an
output layer with linear activation, see Fig. 13(c).

B. TRAINING
1) BASE MODEL
The model in Fig. 13 is trained using Adam algorithm with
iterative search. The Adam optimizer is configured with the

default settings presented in [33]: α = 0.001, β1 = 0.9,
β2 = 0.999, and ϵ = 1e−8. The training cycle patience
is 10 iterations, the optimizer is executed with early stop
patience of 10 epochs, and mini-batch size of 512 samples.
This is applied using the method described in Algorithm 1
with NI = 10, NE = 10, Bsize = 512.
The training results are illustrated in Fig. 14(a). In this

optimization, the initial and the final models achieveMSE =
0.0135m2 and MSE = 0.0122m2, respectively. The MSE
is calculated with the Euclidean distance (loss) between the
expected and the predicted coordinates. The initial model is
obtained at the first early stop (after 10 epochs). In each stop,
the moving averages of the Adam optimizer get re-initialized.
This facilitates searching for better local minima. The model
gets saved/updated when finding a better minimum.

FIGURE 14. Training results.

The final model achieves MSE = 0.0122m2, which cor-
responds to MAE = 0.0955m. See Fig. 15(a). In total,
the training takes 379 epochs in 25 cycle-search iterations.
The first search takes 43 epochs for the initial model and
subsequent search iterations take an average of 14 epochs.
The total time is 53 minutes using a PC with AMD Ryzen 5
5600H and NVIDIA GeForce RTX 3050.
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2) TensorFlow LITE 8-BIT QUANTIZATION
This optimization method converts filter and bias tensors as
well as activation maps to 8-bit integer representation, this
allows inference using integer-only arithmetic [30]. In this
research, this quantization is applied only to the convolution
layers as they are the compute bound operations. Other layers
employ 32-bit FP representation.

In the compute graph, the input and output feature maps
are glued with linear quantization at the input and output of
the Conv2D operations.
The base model is quantized using the TensorFlow Lite

library with integer-only quantization on the Conv2D tensor
operations. The filter and bias tensors are represented by
8-bit and 32-bit signed integers, respectively. The input and
output activationmaps are represented by 8-bit signed integer.
The TensorFlow quantization includes two additional vectors
(output-multiplier and output-shift coefficients), these two
vectors are the same shape as the bias vector with 32-bit
integer representation.

This model achieves MSE = 0.0126m2 and MAE =
0.0992m. See Fig. 15(b). The MAE increases 5.1% of the
base model. We attribute this degradation to the 8-bit quanti-
zation on the Conv2D layers.

3) INFERENCE OF NON-QUANTIZED MODELS ON
HF6 HARDWARE
We explore the inference of the base model without quan-
tization on the HF6 hardware. See Fig. 15(c). This obtains
MSE = 0.0188m2 and MAE = 0.1232m. The MAE
increases 29.5% of the base model. We attribute this degrada-
tion to the rounding errors of non-quantized filters and bias
in Conv2D layers.

4) QUANTIZATION-AWARE TRAINING FOR HF6 HARDWARE
The QAT is a post-training optimization. We run the QAT
during two epochs with mini-batch size of 10 samples. This a
custom floating-point quantization targeting the HF6 format:
4-bit exponent and 1-bit mantissa. This is applied to filter and
bias tensors of Conv2D layers. This method is described in
Algorithm 2 with Nep = 2, Bsize = 10, Esize = 4, Msize = 1.
The optimization results are illustrated in Fig. 14(b).
The resulting model achieves MSE = 0.0112m2 and

MAE = 0.0919m. This corresponds to an error reduction of
8.2% and 3.77%, respectively. We attribute this improvement
to the regularization effect. See Fig. 15(d). The QAT time is
185 minutes.

5) QUANTIZATION-AWARE TRAINING FOR
HYBRID-LOGARITHMIC 6-BIT
For the sake of quality comparison with logarithmic quanti-
zation, we generate the model with 6-bit logarithmic repre-
sentation on trainable parameters of convolution layers. See
Fig. 2(e). This quantization matches the bit size of HF6. The
filter and bias tensors of Conv2D layers are quantized with
the 6-bit logarithmic format: 1-bit sign, 5-bit signed exponent,

FIGURE 15. Performance of the model with different data
representations.

and 0-bit mantissa. This is applied using themethod described
in Algorithm 2 with Nep = 2, Bsize = 10, Esize = 5,
Msize = 0.
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The model achieves MSE = 0.0123m2 and MAE =
0.0968m, which correspond to an error increase of 0.82%
and 1.36%, respectively. We attribute this degradation to the
6-bit logarithmic quantization. See Fig. 15(e).
A summary of improvement-degradation of MSE and

MAE with different data representations is presented in
Fig. 15(e).

C. HARDWARE DESIGN EXPLORATION
The proposed hardware/software co-design is demonstrated
on the Zynq-7007S system-on-chip (SoC) on the MiniZed
development board. This SoC integrates a single ARM
Cortex-A9 processing system (PS) and a programmable
logic (PL) equivalent to Xilinx Artix-7 (FPGA) in a single
chip [34]. The Zynq-7007S SoC architecturemaps the custom
logic and software in the PL and PS, respectively.

In this platform, we implement the proposed hard-
ware/software architecture to deploy the sensor analytics
application. The desired model is converted to TensorFlow
Lite (floating-point) and deployed on the embedded software
as a hex dump in a C array. The Zynq-7007S SoC executes
inference with TensorFlow Lite on the PS. The computational
workload of convolution layers is delegated to the dedicated
hardware.

1) BENCHMARK ON EMBEDDED CPU
First, we explore the performance of the embedded CPU for
inference without hardware acceleration. In this case, Ten-
sorFlow Lite creates the CNNmodel as a sequential compute
graph executing all computation on the CPU (ARM Cortex-
A9) at 666MHz and power dissipation of 1, 187W.
The compute performance and run-time inference of the

CPU are shown in Tab. 2(a) and Fig. 17(a), respectively.

2) BENCHMARK ON TENSOR PROCESSOR SYNTHESIZED
WITH XILINX LogiCORE IP FOR FLOATING-POINT
COMPUTATION
For this design, we implement the TP with standard FP hard-
ware prior synthesis. The design parameters for themaximum
required accelerator on-chip size are:

• Max convolution kernel size: KW = KH = 3.
• Max input tensor width:WI = 16.
• Max input and output channels: CI = 55, CO = 60.
• Filter and bias bit size: BitSizeF = BitSizeB = 32.
• Input tensor bit size: BitSizeI = 32.

Using equations from Section IV-B4, the on-chip mem-
ory buffer utilization are InputM = 84, 480b, FilterM =
950, 400b, and BiasM = 1, 920b. Hence, the required
on-chip memory buffer size is TPB = 1, 036, 800b.

The post-implementation resource utilization and power
dissipation are presented inTab. 1(a). The complete hardware
platform utilizes 83% of BRAM, this includes the on-chip
memory requirements of the TP, DMA, and AXI intercon-
nects. The total available on-chip memory (BRAM) on the
Zynq-7007S SoC is 1.8Mb. After hardware syntheses, the

FIGURE 16. Inference acceleration and power reduction on the TP with
floating-point and HF6 vs. CPU on the Zynq-7007S SoC.

TABLE 1. Resource utilization and power dissipation on the
Zynq-7007S SoC.

estimated power dissipation of the TP is 85mW at 200MHz
(this estimation is provided by Xilinx Vivado).

The compute performance and inference schedule of
the model on this hardware implementation are shown in
Tab. 2(b) and Fig. 17(b), respectively. During run-time, Ten-
sorFlow Lite delegates computation to the TP as dedicated
hardware for Conv2D tensor operations.
The implementation of the dot-product with standard FP

engine (IEEE 754 arithmetic) utilizes proprietary multiplier
and adder FP operator cores. Vivado HLS implements FP
arithmetic operations by mapping them onto Xilinx Logi-
CORE IP cores, these FP operator cores are instantiated in
the resultant RTL [35]. In this case, the implementation of
the dot-product with the standard FP computation reuses the
multiplier and adder cores in different compute sections of the
TP. The post-implementation resource utilization and power
dissipation of the individual floating-point operator cores are
shown in Tab. 3.

3) TENSOR PROCESSOR SYNTHESIZED WITH
HYBRID-FLOAT6 HARDWARE ARCHITECTURE
To demonstrate the proposed design, the TP with HF6 hard-
ware reuses the standard FP design parameters with the fol-
lowing variation for the 6-bit representation in filter and bias:
BitSizeF = BitSizeB = 6.
Using equations from Section IV-B4, the on-chip memory

requirements for the hardware accelerator are InputM =

84, 480 b, FilterM = 178, 200 b, BiasM = 360 b. Hence, the
required on-chip memory buffer size is TPB = 263, 040 b.

The post-implementation resource utilization and power
dissipation are presented in Tab. 1(b). The complete
hardware platform utilizes 30% of BRAM, this includes
the on-chip memory requirements of the TP, DMA, and
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TABLE 2. Compute performance of the CPU and TP on each Conv2D
tensor operation. This table presents: tensor operation, computational
cost in mega floating-point operations (MFLOP), latency, throughput,
power efficiency, and estimated energy consumption as the energy delay
product (EDP).

TABLE 3. Resource utilization and power dissipation of individual
multiplier and adder floating-point (IEEE 754) operator cores (Xilinx
LogiCORE IP).

AXI interconnects. The estimated power dissipation of the TP
is 84mW at 200MHz (this estimation is provided by Xilinx
Vivado).

The compute performance and inference schedule of
the model on this hardware implementation are shown in
Tab. 2(c) and Fig. 17(c), respectively. Fig. 16 presents
a comparison of the acceleration and the reduction of
power dissipation between standard FP and HF6 hardware
implementations.

This deployment does not require model treatment for
hardware compatibility. For backward compatibility, the 6-bit
FP representation is wrapped into the standard FP. The dedi-
cated hardware design extracts the 6-bit format automatically
to perform computation.

D. DISCUSSION
1) TRAINING AND QUANTIZATION
The training with iterative early stop obtains a model with
enhanced accuracy than standard early stop. This method
iteratively resets the moving averages of Adam’s opti-
mizer, which helps to iteratively search for better local min-
ima. This iterative search is suitable for models with low
computational cost.

The TensorFlow Lite 8-bit quantization preserves the over-
all model accuracy. In some cases, the associated regu-
larization effect can improve the accuracy. However, the
error distribution in CNN linear regressions gets slightly
degraded. In particular, 8-bit quantized output layers incur
in discrete-degradation patterns, Fig. 18(b) shows this effect
on three different models. Vertical and horizontal patterns
appear in the error distribution of 8-bit fixed-point quanti-
zation. We attribute this effect to the 8-bit resolution in the

FIGURE 17. Run-time inference of TensorFlow Lite on the Zynq-7007S
SoC. (a) CPU ARM Cortex-A9 at 666 MHz, (b) cooperative CPU + TP with
floating-point Xilinx LogiCORE IP at 200 MHz, and (c) cooperative CPU +
TP with Hybrid-Float6 at 200 MHz.

activation maps. In the case of HF6 quantization, the activa-
tion maps are represented by floating-point preventing this
degradation.

The proposed 6-bit FP representation (E4M1) improves
latency, hardware area, and power dissipation, while
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FIGURE 18. 2D error distribution of three CNN-regression models.

preserving model accuracy. For comparison, in our applica-
tion, this number format produces better results than the 6-bit
logarithmic representation (E5M0). This is demonstrated in
Fig. 15(d) and Fig. 15(e).

In [22], Lai et al. demonstrated that 4-bit exponent and
X-bit mantissa preserves accuracy on SqueezeNet, AlexNet,
GoogLeNet, and VGG-16. To contribute on this, we investi-
gate 4-bit exponent and 1-bit mantissa to ALL-CNN-C [36],
this produces an accuracy degradation of 1.39% and 0.11%
with QAT. While applying 6-bit logarithmic produces a
degradation of 11.18% and 7.22% with QAT.

2) IMPLEMENTATION AND PERFORMANCE
The proposed HF6 implementation reduces on-chip memory
and DSP utilization while slightly increasing FF and LUT
compared to the standard FP implementation. See Tab. 1 and
Fig. 19. We attribute this to the HF6 logic implementation
using FF and LUT, while the FP logic implementation uses
Xilinx LogiCORE IPs mainly with DSPs.

The compute performance of the CPU and TP on each
convolution layer is presented in Tab. 2 and Fig. 16.
The peak acceleration and power efficiency of the TP
with standard FP (Xilinx LogiCORE IP) is 13× and
1, 558.13 MFLOPS/s/W, respectively. While the peak accel-
eration and power efficiency of the TP with HF6 is 48.3×
and 5, 743.29MFLOPS/s/W, respectively. TheHF6 hardware
demonstrates an improvement of 3.7× in acceleration and
power efficiency with respect to the standard FP hardware.
See Fig. 16.
The estimated power dissipation on the SoC is pre-

sented in Fig. 20. This shows a very similar breakdown of
power dissipation in both implementations. However, the
energy efficiency is increased due to the reduced latency in
HF6 hardware. A comparison of related work is presented
in Tab. 4.

FIGURE 19. Hardware resource utilization on the Zynq-7007S SoC.

FIGURE 20. Estimated power dissipation on the Zynq-7007S SoC with PS
at 666 MHz and PL at 200 MHz.

The run-time inference of TensorFlow Lite on the SoC
is illustrated in Fig. 17. This shows the convolution layers
as the compute-bound operations. The proposed embedded
platform is a cooperative system where the convolution oper-
ations are delegated to the dedicated hardware accelerator.
The ARM CPU obtains a latency of 387ms (2.58 FPS).
The platform with standard FP hardware obtains a latency
of 48ms (20.8 FPS), while the implementation with HF6
obtains a latency of 27.9ms (35.84 FPS). These represent
an overall acceleration of 8× and 13.87× over the CPU,
respectively.

This design facilitates ML compatibility/portability as the
6-bit FP is wrapped in the standard FP representation. The
dedicated hardware design extracts the 6-bit format automat-
ically and performs computation.

3) SoC DESIGN AND COMPATIBILITY
The proposed design is an alternative for high accuracy and
low-power floating-point inference. The system runs as a
cooperative hardware/software mechanism. This architecture
delegates compute-bound tensor operations to a hardware
accelerator.

The hybrid 32-bit FP and 6-bit FP quantization enables
high quality of results and backwardML compatibility. Back-
wards ML compatibility gives portability from training to
inference. This enables to run inference of HF6 quantized
models on standard FP hardware and vise versa. The pro-
posed HF6 architecture allows to compute inference of non-
quantized floating-point ML models for rapid deployment;
however, this will incur in accuracy degradation depending
on the resilience of the model, see Fig. 15(c).
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TABLE 4. Comparison of hardware implementation with related work.

4) LIMITATIONS AND DIRECTIONS FOR FUTURE WORK
In this research, we foresee three lines of future work:

• To reduce energy consumption. The proposed archi-
tecture consists of a hybrid floating-point quantization
using 32-bit activation maps. These can be represented
using lower-bit formats; for example, Bfloat16 and 8-bit
or lower custom floating-point. This would reduce hard-
ware resource utilization, memory footprint and data
transfer, while preserving backward compatibility and
accuracy (based on the dynamic value range of custom
floating-point formats).

• To increase performance. This implementation
requiresmatching higher computational throughput with
memory bandwidth. This would replace the light-weight
pipeline hardware design with a parallelized structure.
This will increase hardware area and energy consump-
tion. This can be achieved by using wider memory
channels and systolic arrays to increase throughput.

• To use in computer vision applications. This imple-
mentation is designed for sensor analytics workloads.
For computer vision applications, the hardware design
would require increased on-chip memory capacity for
larger bias and filter vectors (using equations from
Section IV-B4), and higher computational throughput in
a larger FPGA SoC.

VI. CONCLUSION
In this paper, we present the Hybrid-Float6 quantization
for floating-point CNN hardware acceleration. Feature maps
and weights are represented by 32-bit and 6-bit floating-
point, respectively. The 6-bit floating-point format is com-
posed of 1-bit sign, 4-bit exponent, and 1-bit mantissa.
The 1-bit mantissa enables low-power multiply-accumulate
implementations by reducing the mantissa multiplication to
a multiplexer-adder operation. We exploit the intrinsic error
tolerance of neural networks to further reduce the hard-
ware design with approximation. This approach improves
latency, hardware area, and energy consumption. To pre-
serve accuracy, we introduce a quantization-aware training
method that, in some cases, improves accuracy. We present a
lightweight tensor processor implementing a pipelined vec-
tor dot-product. For ML compatibility/portability, the 6-bit
FP is wrapped in the standard floating-point format, which

is automatically extracted by the proposed hardware. The
hardware/software architecture is compatible with Tensor-
Flow Lite. We evaluate the applicability of our approach
with a CNN-regression model for anomaly localization in
a structural health monitoring application based on acoustic
emissions. The embedded hardware/software framework is
demonstrated on XC7Z007S as the smallest Zynq-7000 SoC.
The proposed architecture achieves a peak power efficiency
and acceleration on convolution layers of 5.7 GFLOPS/s/W
and 48.3×, respectively.
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