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ABSTRACT Space situational awareness (SSA) system requires recognition of space objects that are varied
in sizes, shapes, and types. The space images are challenging because of several factors such as illumination
and noise and thus make the recognition task complex. Image fusion is an important area in image processing
for various applications including RGB-D sensor fusion, remote sensing, medical diagnostics, and infrared
and visible image fusion. Recently, various image fusion algorithms have been developed and they showed
a superior performance to explore more information that are not available in single images. In this paper,
we compared various methods of RGB and Depth image fusion for space object classification task. The
experiments were carried out, and the performance was evaluated using 13 fusion performance metrics.
It was found that the guided filter context enhancement (GFCE) outperformed other image fusion methods
in terms of average gradient (8.2593), spatial frequency (28.4114), and entropy (6.9486). additionally, due
to its ability to balance between good performance and inference speed (11.41 second), GFCE was selected
for RGB and Depth image fusion stage before feature extraction and classification stage. The outcome of
fusion method is fused images that were used to train a deep ensemble of CoAtNets to classify space objects
into ten categories. The deep ensemble learning methods including bagging, boosting, and stacking were
trained and evaluated for classification purposes. It was found that combination of fusion and stacking was
able to improve classification accuracy largely compared to the baseline methods by producing an average
accuracy of 89 % and average F1 score of 89 %.

INDEX TERMS CoAtNet, deep ensemble learning, RGB-D, image fusion, space object classification.

I. INTRODUCTION
The near-Earth space environment is known to be used for
both commercial and scientific use. Satellites are launched on
a regular basis in aid of space navigation, communication, and
weather forecasting. As technology advances, space explo-
ration and satellite launching become more feasible leading
to increased activity in the near future. In the past decades
there has been a rapid growth of space debris and objects
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measured with an estimated over 750,000 debris measuring
beyond 1 cm found within the orbit, and more than 20,000
near-Earth objects [1], [2]. Space objects are vaguely defined
to be hardware launched by man into outer space [3], [4]
while debris include artificial objects that no longer serve pur-
pose and fragments from collisions and anti-satellite tests [1].
Man-made space debris make up the majority of the objects
found within the space environment, with explosions caused
by residual energy in fuel and batteries being the largest con-
tributor [5]. Near-Earth objects (NEO) encompass asteroids
and comets whose orbit passes close, roughly 45 million
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kilometers, to the Earth’s orbit [6], [7]. These may range from
a few meters to several kilometers in size, thus while chances
are slim, regular tracking is essential. Due to the increasing
prevalence of space environment use, possible collisions or
approach of different objects should always be monitored in
order to ensure the safety of the people and secure essential
space satellites and shuttles. The field of space situational
awareness (SSA) encompasses subjects concerning space
environment, tackling the following subjects: space surveil-
lance and tracking of man-made objects, space weather mon-
itoring and forecast, and near-Earth objects monitoring [8].
In relation, efforts for space traffic management (STM) are
also in effect for safe outer space projects. Detection, iden-
tification, and surveillance of different space objects is an
important task for SSA. The use of computational methods
for this mission can result in more efficient systems for
observation as well as impact risk assessment and mitigation.

Documentation of the space environment and activity
makes use of substantial data for analysis and investigation.
Digital sky surveys are a prevalent source of data in astron-
omy. These consist of terabytes of image data with charac-
terized attributes covering a full range of wavelengths [2].
With the progression of technology, the influx of such data
opens a window for more effective digital analysis [9], [10]
presenting the application of machine learning to the subject
field. Machine learning is a branch of artificial intelligence
built on computational learning theory and pattern recogni-
tion. Due to its eficiency, machine learning has been applied
for data analysis across several aspects including computer
vision, natural language processing, and data analysis [11],
[12]. This provides aid in analyzing large-scale data and
addresses the significance of pre-processing techniques as
well as the problems pertaining to image artifacts and difficul-
ties in distinguishing certain objects. Moreover, when com-
pared to physical models, data-driven models have shown
better performance in prediction tasks and are not limited
by construction time and quality of structure [9]. Further
advancements such as deep learning brings artificial intelli-
gence to even greater heights exhibiting superior performance
against older machine learning approaches. Currently, such
models are implemented in many programs including space
navigation, astronaut assistance, and Earth observatory data
analysis with many projects under development [13]. With
many existing applications of recognition tasks across health-
care and commercial industries, machine learning for space
object recognition holds a promising opportunity that can
bear positive impact in the management of the expanding use
of satellites and space shuttles.

II. RELATED WORK
Traditional machine learning methods have been used over
the years in application of classification, detection, and data
selection. Artificial neural networks (ANNs), decision trees
(DTs) and support vector machines (SVMs) have been used
in space debris detection, galaxy morphology classification,
and identification of asteroids [14], [15], [16], [17]. Principal

component analysis (PCA) also aided in several classification
problems [16], [18] for the reduction of dimensionality of
data in which only information most essential is retained for
increased interpretability [19]. Conventional models make
use of signals extracted from sensors or features processed
from image data. Detection and classification of satellites
and space debris by Perez et al. explored traditional and
deep learning techniques. When using SVM and multinomial
SoftMax regression (MSR), the outcome was observed to
have increased performance after applying PCA and cubic
featuremapping. Overall, cubic feature vector and deep learn-
ing achieved 99.8% and 99.3% accuracy on distant objects
respectively [20].

Deep learning is advantageous to traditional methods in
many ways. Consisting of multiple layers, information is
consecutively transformed into higher abstract representa-
tions [21]. This enables the learning of complex functions
where raw data can be directly processed. However, by nature
deep learning requires high amounts of data to execute
well. This poses a challenge in space object recognition
research as datasets are limited. To resolve this, synthetic
datasets are formulated. Dung et al. [22] introduced an anno-
tated spacecraft dataset made of real and synthetic images
for detection, segmentation, and recognition tasks. Perez
et al. [20] used images of experimental setups of space
objects for machine learning. Other novel datasets include
URSO [23] and SPEED [24], [25] for spacecraft pose estima-
tion from laboratory-acquired or computer-generated images.
SPARK [26] is a more recent dataset with 11 classes for
spacecraft and debris recognition. This provides 150,000
images featuring RGB and depth data.

Currently, convolutional neural networks (CNNs) are most
frequently used in the field of computer vision [2]. CNNs are
composed of several layers made up of convolutional neurons
with each carrying out convolution of the input to output a
feature map [1]. Many studies have used CNNs for both space
object classification and detection tasks. Transfer learning
of pre trained CNNs is prevalent, using knowledge obtained
from one task on a different but related problem. These were
trained on extensive classification or detection datasets such
as ImageNet or COCO dataset, where its learned weights
can be used to train smaller datasets. Space object identifi-
cation using ResNet18 [20] obtained an accuracy of 99.96%.
Afshar and Lu [27] also implemented the same method for
satellite classification and pose estimation achieving promis-
ing results. To further resolve limited data, they also used
data augmentation to improve performance. For solar system
object detection and classification [28], the model combined
an Image Classification Network (ICN) and Tracklet Classifi-
cation Network (TCN). For ICN, using pre-trained ResNet18
was discovered to be more advantageous than training a
CNN from scratch. Other literature used well-known CNN
architectures as part of their framework. Jia et al. [29] used
ResNet50 as a backbone in feature extraction when using
Faster R-CNN for astronomical target recognition; while it
was able to surpass older frameworks, it still had lapses in
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analyzing stimulated data. A CNN based on LeNet was used
in debris classification as part of a space debris detection
algorithm proposed by Xi et al. [30]. A convolutional kernel
size of 5 × 5 was selected for testing across image classifi-
cation of varying signal-to-noise ratios. Results ranged from
86-99% in accuracy. You only look once (YOLO) is another
CNN that was used for satellite and satellite component
recognition [31]. When tested under different distances and
conditions, the model was able to have a recognition accuracy
over 90%.

Efforts for refined computer vision, incorporation of sep-
arate image data presents a promising approach. RGB infor-
mation can be restricted in two-dimensional space, limiting
information for better analysis, thus the addition of depth
information can significantly boost object recognition [32].
Multimodal models combine and analyze features obtained
from separate RGB and depth images. In a survey by Gao
et al. [32], object recognition was higher when using RGB-D
fusion techniques across hand crafted-based methods, tradi-
tional feature learning-based methods, and multimodal CNN
models in contrast to using depth or RGB images alone.
In spacecraft recognition, two studies found improved per-
formance using RGB-D-based techniques. RGB and depth
images were classified [33] wherein a pre-trained ResNet50
with a SVM classifier was applied on RGB image classi-
fication while an end-to-end CNN was utilized for depth
images; overall results measured 89% in accuracy. A separate
paper [34] discusses the improvement in spacecraft and debris
recognition using multi-modal methods combining transfer
learning of pre-trained CNNs and vision transformers on
RGB data with end-to-end CNN on depth images. The pro-
posed method was superior to models that solely used vision
transformers and CNN models.

Parallel to the improvements seen in technologies through-
out the years that have resulted in large amounts of diverse
data with greater quality and accessibility are equally signif-
icant improvements in the field of computer vision. Since as
early as 1985, image information fusion has been on the rise,
particularly for fusion of infrared and visible light images,
image fusion in remote sensing, multi-focus imaging, and
medical imaging.

Image fusion is another technique wherein images are
combined in order to come up with an output containing
information from multiple samples [35]. There are several
methods for image fusion categorized into spatial and fre-
quency domain. Spatial image fusion involves pixel manip-
ulation while frequency domain covering decomposition and
discrete transformation. A more advanced technique is using
deep learning models for image fusion. Such processes have
contributed to the improvement of medical, surveillance, and
remote sensing. Li et al. [36] illustrates the efficacy of image
fusion of RGB and infrared images using deep learning.
The study used VGG19 for feature extraction, followed by
fusion and image reconstruction. In comparison to previous
methods, the proposed model produced the best outputs in
image quality. Rather recent developments in deep learning

have enabled the creation of methods for image fusion based
on CNNs [37], [38], [39], recurrent neural networks [40],
the U-Net architecture [41], [42], and generative adversarial
networks (GANs) [43], [44], [45], [46]. Zhang et al. [46]
introduced a visible and infrared image fusion benchmark
(VIFB) containing a test set, 20 fusion algorithms with evalu-
ation results featuring 13 metrics. Experimental results show
that non-learning algorithms were superior over deep learn-
ing models with multi-scale image decomposition producing
decent results in both flight and man light image pairs.

This paper highlights an interesting challenge for the
research community. It contributes to the body of knowledge
as follows:

1) A novel space related image fusion method to gener-
ate fused images from RGB and depth images using
various image fusion algorithms. The fusion methods
were evaluated and compared in terms of 13 different
evaluation metrics.

2) The fused images generated have similar contents of
original RGB and Depth images which leads to images
that are rich of informative contents and compre-
hensive features which is significant to enhance the
decision-making tasks such as classification of space
objects.

3) To the best of our knowledge, this is the first paper that
proposes an ensemble of CoAtNets (Convolution and
Attention Networks) [50].

4) Utilization of deep ensemble learning such as bag-
ging [47], bosting [48], and stacking [49] for classify-
ing space objects into ten categories. Each weak learner
in ensemble models is based on CoAtNet.

This paper is organized as follows: Section III describes
the space objects dataset. Additionally, it discusses numerous
image fusion methods. Additionally, it demonstrates deep
ensemble learning models such as bagging, bosting, and
stacking for classification tasks. In Section IV, the experi-
ments conducted are described to analyze results in detail.
We performed an evaluation and comparison between image
fusion methods from one side and deep ensemble learning
models in other side. Finally, Section V. summarizes the
work presented in this paper by giving readers a glimpse into
potential improvements in the future.

III. MATERIALS AND METHODS
In this section, we present an overview of the dataset utilized
in this work to show the challenging contents of spacy images.
Additionally, various image fusion methods are explored to
highlight the difference between them in terms of various
metrics. Moreover, numerous ensemble learning methods
such as bagging, boosting, and stacking are demonstrated to
study their efficiency to enhance the performance of space
objects classification task.

A. DATASET OVERVIEW
A unique space object dataset was used in this research to
address the space object recognition challenge presented in
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ICIP 2021. This novel dataset is called SPARK (Spacecraft
Recognition leveraging Knowledge of the Space Environ-
ment) [26], [51], [52]. A set of 300,000 images divided
into 150,000 RGB and 150,000 depth was utilized to cat-
egorize 11 different objects classes, considering ten satel-
lite objects (each with 12,500 images) and one piece of
orbital debris [26], [51]. The debris items were classified
into different five classes (5,000 photos for each) but were
merged as one. AcrimSat, Aquarius, Aura, Calipso, CloudSat,
CubeSat, Debris, Jason, Sentinel-6, Terra, and TRMM are
the eleven classes, which were derived from 3D resources of
NASA [26], [51]. The performance of space-based imagery
was determined by several elements, including excellent con-
trast, variable lighting, and a minimum signal-to-noise ratio.

The 150,000 RGB images and another 150,000 depth
images were fused using fusion method to generate new
150,000 fused images that were distributed as follows: 60%
(90,000 photos) for training, 20% (30,000 photos) for valida-
tion, and 20% (30,000 photos) for testing [26], [51]. The RGB
images have a resolution of 1024× 1024, while depth images
have a resolution of 256 × 256. This dataset presents the
following challenges [26], [51]: (a) The objects are randomly
located inside the range of vision of a chaser’s equipment.
Additionally, the chaser model comes in a variety of angles
and distances and the earth and sun rotate randomly about
their axes. (b) The collection contains photographs of scenes
illuminated and images with increased contrast. Models of
the sun’s flares, beams, and reflective surfaces on earth from
space were created. (c) The visual backdrops are varied,
incorporating a variety of orbital settings. Spacecrafts are
positioned and oriented in a variety of ways in the back-
ground. (d) There are a variety of ranges and separations
among the chaser’s image sensor and the target spacecraft.
(e) Spaceborne photos have a substantial noise level due to
the small sensor scale and the high-definition photography.

Figure 1 illustrates several pictures from the SPARK
dataset [26], [51]. These pictures were selected to show var-
ious challenges presented in this dataset such as increased
contrast and illuminated stars, random of objects, various
object sizes, various locations, orientations, and positions of
space objects in the background, a real noise level, the earth
with clouds and oceans in the background, and a variety of
orbital settings.

B. THE PROPOSED SOLUTION
The solution proposed in this work to recognize space objects
in images includes a combination of image fusion method
and ensemble learning model. Twenty image fusion methods
have been evaluated using 13 metrics to select the best that
can balance between performance and runtime speed [46].
The outcome of image fusion block is fused images that
were applied to the inputs of ensemble learning models to
learn patterns from them. Various ensemble methods includ-
ing bagging [47], boosting [48], and stacking [49] were
implemented and evaluated. Convolution and attention net-

work [50] (CoAtNet) was used as a basic learner in each of
ensemble models. The reason behind selection of CoAtNet
is that it takes advantages of both convolutional layers and
attention mechanism. The block diagram of the ensemble of
CoAtNets connected to fusion of RGB and depth Images is
shown in Figure 2.

C. IMAGE FUSION METHODS
Image fusion was found to fuse sources images and generate
a fused image. Recently, several algorithms have been found
for fusion of visible and infrared images. To do a perfor-
mance comparison between these algorithms, VIFB bench-
mark was found with twenty most recent algorithms for vis-
ible and infrared image fusion [46]. The algorithms include
gradient transfer (GTF) [53], convolutional neural network
(CNN) [54], Anisotropic diffusion (ADF) [55], cross bilateral
filter (CBF) [56], fourth order partial differential equations
(FPDE) [57], guided filter context enhancement (GFCE) [58],
hybrid multi-scale decomposition guided filter (HMSD
GF) [58], Guided Filtering (GFF) [59], hybrid multi-scale
decomposition (Hybrid-MSD) [60], infrared feature extrac-
tion and visual information preservation (IFEVIP) [61], latent
low-rank representation (LatLRR) [62], Multi-scale guided
image filter-based fusion (MGFF) [63], multi-scale transform
and sparse representation (MST SR) [64], Laplacian pyramid
and sparse representation (RP SR) [64], nonsubsampled con-
tourlet transform and sparse representation (NSCT SR) [64],
multi-resolution singular value decomposition (MSVD) [65],
residual network (ResNet) [66], Two-scale image fusion
(TIF) [67], visual saliency map and weighted least square
(VSMWLS) [68], and deep learning framework (DLF) [36].
The algorithms were adjusted for color image fusion. Each
RGB image channel was fused with corresponding infrared
image. The algorithms were mainly divided into Multi-scale,
Deep learning (DL) based, and Hybrid. ADF [55], CBF [56],
GFCE [58], GFF [59], MGFF [63], HMSD GF [58], Hybrid
MSD [60], and MSVD [65] are multi-scale methods. On the
other hand, DLF [36], CNN [54], and ResNet [66] are DL
based methods. Additionally, MST SR [64], NSCT SR [64],
RP SR [64], and VSMWLS [68] are hybrid methods [46].

In this work, we implemented these twenty algorithms
using RGB and depth space images instead of visible and
infrared images. The aim is to extract informative details from
each of these RGB and depth images and combine them in
fused images to enhance the following stage of classifica-
tion of space object types. Figure 3 shows samples of depth
images, RGB images, and fused images for ten categories of
space objects including AcrimSat, Aquarius, Aura, Calipso,
CubeSat, Debris, Jason, Sentinel-6, Terra, and TRMM from
left to right respectively.

D. DEEP ENSEMBLE LEARNING MODELS
This section discusses the three main ensemble learningmod-
els including bagging, boosting, and stacking. These models
were utilized to recognize space objects and classify them

5092 VOLUME 11, 2023



N. Aldahoul et al.: Space Object Recognition With Stacking of CoAtNets Using Fusion of RGB and Depth Images

FIGURE 1. Few samples of RGB and depth space images with various object categories, sizes, and backgrounds from the SPARK dataset [26],
[51], [52].
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FIGURE 2. The block diagram of the proposed Solution. The images were
taken from [26] and [52].

FIGURE 3. samples of source images (depth in the first row and RGB in
the second row) and fused images (in the third row) The depth and RGB
images were taken from [26] and [52]. The fused images were generated
by the GFCE method.

TABLE 1. Learner architecture.

TABLE 2. Learner hyperparameters.

into ten categories. The input of these models were fused
images that result from image fusion block. The architecture
of each learner is shown in Table 1. All the layers in this
architecture were trained including the layers of CoAtNet0.
Additionally, the hyperparameters of each learner are shown
in Table 2. Table 3 refers to training and testing distribution
for each class.

1) CoAtNet
This network enjoys the strengths of both ConvNets and
Transformers [50]. The light version of CoAtNet, namely
CoAtNet0was utilized as a pre-trainedmodel (already trained
on ImageNet dataset [83]) and all parameters of all layers

TABLE 3. Training and testing distribution for each class.

TABLE 4. Training dataset distribution for each class in each learner in
bagging technique.

were fine-tuned with SPARK dataset. We used CoAtNet0 as
a weak learner in various ensemble learning models such as
bagging, boosting, and stacking.

2) BAGGING
In this technique, ten weak learners were used. Each learner
is CoAtNet version 0 [50]. The outputs of these ten learners
were aggregated by maximum to find the final prediction as
shown in figure 4. The experiment was run on GPU named
RTX A6000 with GPU memory = 48 GB. The dataset was
divided into ten subsets. Each learner was trained on each
subset. Table 4 clarifies the distribution of training dataset for
each class in each learner. Figure 4 represents both training
and inference phases.

3) BOOSTING
In this technique, two weak learners were used. Each learner
is CoAtNet version 0 [50]. In training phase, the distribution
of training data used with learner 1 is shown in Table 5. The
misclassified samples from the first learner were utilized to
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FIGURE 4. Ensemble learning using bagging technique.

TABLE 5. Training dataset distribution for each class for the first learner
in boosting technique.

train the second learner as shown in Table 6. In inference
phase, the outputs of two learners were aggregated by max-
imum to find the final prediction as shown in figure 5. The
experiment was run on GPU named RTX A6000 with GPU
memory = 48 GB. The architecture of each learner is shown
in Table 1. Additionally, the hyperparameters of each learner
are shown in Table 2. Figure 5 refers to each of training and
inference phases.

4) STACKING
In this technique, three weak learners were used. Each learner
is CoAtNet version 0 [50]. The outputs of these three learners
were applied to meta learner to find the final prediction as
shown in figure 6. The experiment was run on GPU named
RTXA6000 with GPUmemory= 48 GB. The architecture of
each learner is shown in Table 1. Furthermore, the hyperpa-

TABLE 6. Training dataset distribution for each class in for the second
learner in boosting technique.

rameters of each learner are shown in Table 2. The dataset was
divided into three subsets. Each learner was trained on each
subset. Table 7 clarifies the distribution of training dataset for
each class in each learner. Additionally, Table 8 indicates the
distribution of training dataset for each class in meta learner.
Figure 6 represents both training and inference phases.

The architecture of meta learner is shown in Table 9.
It includes support vector machine (SVM) [82] with regu-
larization factor C = 1 and kernel function of radial basis
function (RBF). The input of meta learner is 30 features (3
weak learners × 10 predictions of each learner).

IV. RESULTS AND DISCUSSION
This section discusses the experimental setup and results of
image fusion methods from one side and results of ensemble
learning models from the other side.
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FIGURE 5. Ensemble learning using boosting technique.

FIGURE 6. Ensemble learning using Stacking technique.

TABLE 7. Dataset distribution for each learner in stacking technique.

A. EXPERIMENTAL SETUP
For space image fusion using SPARK dataset, twenty image
fusionmethods were evaluated using thirteen variousmetrics.
The results are shown in thirteen figures (from Figure 7 to
Figure 19) and in Table 10. MATLAB program was used to

TABLE 8. Meta learner dataset distribution in stacking technique.

run these 20 methods using 54 pairs of images of RGB and
depth.

For space object recognition, the training set that were
provided with labels were divided into two sets: 80% (72,000
images) for training, and 20% (18,000 images) for validation.
On the other hand, testing dataset has 30,000 RGB images
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FIGURE 7. Quantitative comparisons of AG metric of 20 methods.

TABLE 9. Meta learner architecture.

and their correspondence of depth images. Tables 12, 13, 14
and Figure 20 refer to the results using testing dataset. In this
work, we carried out several experiments for space object
recognition using numerous ensemble learning methods such
as bagging, boosting, and stacking. Python with TensorFlow
and scikit learn frameworks were utilized for this task.

B. QUANTITATIVE RESULTS FOR IMAGE FUSION
In this work, various types of metrics [46] have been used
for RGB and depth image fusion for comprehensive quanti-
tative comparison. These metrics are classified into four cate-
gories including human perception-based such as Chen-Blum
metric (QCB) [69] and chen-varshney metric (QCV) [70],
image feature-based such as average gradient (AG) [71],
edge intensity (EI) [72], standard deviation (SD) [73], spatial
frequency (SF) [74], and gradient based fusion performance
(QAB/F) [75], image structural similarity-based such as root
mean squared error (RMSE) [76] and structural similarity
index measure (SSIM) [77], and information theory-based
such as Mutual information (MI) [78], peak signal-to-noise
ratio (PSNR) [76], cross entropy (CE) [79], and entropy
(EN) [80]. The description of 13 metrics are as follows:

1) SD measures image contrast. Higher value of SD indi-
cates better fusion method.

2) EI preserves the edge detail information and presents a
high image quality and more clearness. Higher value of
EI indicates better fusion method.

3) AG represents the amount of texture variation in the
image. Higher value of AG indicates more gradi-
ent information the image contains and better fusion
method.

4) SF measures the amount of frequency content in the
image to show the clarity or sharpness. Additionally,
it preserves high frequency content. Higher value of SF
indicates the richer edges and texture details the image
contains and better fusion method.

5) EN measures the information content in an image.
Higher value of EN indicates better fusion method.

6) CE evaluates similarity in information content between
the fused image and the source images. Lower value of
CE indicates better fusion method.

7) MI is an index that calculates the quantity of depen-
dency between source and fused images. Higher value
of MI indicates better fusion method.

8) PSNR measures the amount of noise available in the
fused image. Higher value of PSNR indicates the less
distortion the fusion process produces and better fusion
method.

9) RMSE measures the error between two images. Lower
value of RMSE indicates better fusion method.

10) SSIM is a measure of the similarity (perceptual dif-
ference) between two images. Higher value of SSIM
indicates better fusion method.

11) QAB/F is used to measure the transferred edge infor-
mation amount from source images to the fused one.
Higher value of QAB/F indicates better fusion method.

12) QCV to measure the visual performance. Lower value
of QCV indicates better fusion method.

13) QCB to measure the visual performance. Higher value
of QCB indicates better fusion method.
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TABLE 10. Average evaluation metric values for twenty fusion methods (human perception-based in light-green, image feature-based in light-blue, image
structural similarity-based in orange, and information theory-based in lavender) on 54 image pairs. The highest three values are colored in red, green and
blue, respectively. The best five methods are highlighted in grey color.

TABLE 11. RGB and depth image fusion algorithms that have been
compared in term of runtime.

To have comprehensive and objective performance com-
parison, 13 metrics that cover all four categories were used
in Table 10. The average values of 13 evaluation metrics for
the twenty methods on 54 image pairs were demonstrated.
It is obvious that the GFCE [58] gave the best values for
three metrics including entropy, average gradient, and spe-

TABLE 12. Classification report of bagging technique.

cial frequency and the second-best values of edge intensity.
Additionally, we can indicate from the Table 10 that IFEVIP
method got the best values for mutual information and struc-
tural similarity index measure and the second-best values for
cross entropy and gradient based fusion performance. On the
other hand, deep learning-based method such as DLF was
able to outperform others in terms of root mean squared error
and peak signal-to-noise ratio. Finally, LatLRR produced
the best value for cross entropy, edge intensity and standard
deviation and the second-best values of average gradient and
spatial frequency.

The results presented in this table indicate that there is no
dominant fusion method that can produce the best values of
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TABLE 13. Classification report of boosting technique.

TABLE 14. Classification report of stacking technique.

all metrics. The reason is that each method focused on spe-
cific type of information and metrics when it was designed.

To investigate more quantitative comparison between var-
ious image fusion methods, the values of 13 metrics for the
twenty methods on 54 image pairs are shown in thirteen fig-
ures from Figure 7 to Figure 19. Figure 7 shows that LatLRR
and GFCE produced the best (highest) AG for 54 image pairs.
On the other hand, GTF gave the worst AG for 54 image pairs.

Figure 8 shows that LatLRR, IFEVIP, and GTF produced
the best (smallest) CE for 54 image pairs. On the other hand,
GFCE gave the worst CE for 54 image pairs. Additionally.
Figure 9 shows that LatLRR and GFCE produced the best
(highest) EI for 54 image pairs. On the other hand, GTF gave
the worst EI for 54 image pairs.

Figure 10 shows that GFCE produced the best (highest) EN
for 54 image pairs. On the other hand, GTF gave the worst
EN for 54 image pairs. Additionally. Figure 11 shows that
IFEVIP, CBF, and NSCT_SR produced the best (highest) MI
for 54 image pairs. On the other hand, GTF gave the worst
MI for 54 image pairs.

Figure 12 shows that almost all methods produced high
PSNR for 54 image pairs. On the other hand, GFCE gave
the worst PSNR for 54 image pairs. Additionally. Figure 13

shows that IFEVIP, NSCT_SR and MST_SR produced the
best (highest) QAB/F for 54 image pairs. On the other hand,
GTF and LatLRR gave the worst QAB/F for 54 image pairs.

Figure 14 shows that GTF produced the best (highest) Qcb
for 54 image pairs. On the other hand, GFCE gave the worst
Qcb for 54 image pairs. Additionally. Figure 15 shows that
Hybrid MSD and GFF produced the best (smallest) Qcv for
54 image pairs. On the other hand, GTF gave the worst Qcv
for 54 image pairs.

Figure 16 shows that DLF and FPDE produced the best
(smallest) RMSE for 54 image pairs. On the other hand,
GFCE gave the worst RMSE for 54 image pairs. Additionally.
Figure 17 shows that Hybrid MSD and IFEVIP produced the
best (highest) SSIM for 54 image pairs. On the other hand,
GFCE gave the worst SSIM for 54 image pairs.

Figure 18 shows that GFCE produced the best (highest) SF
for 54 image pairs. On the other hand, DLF gave the worst
SF for 54 image pairs. Additionally. Figure 19 shows that
LatLRR produced the best (highest) SD for 54 image pairs.
On the other hand, GTF gave the worst SD for 54 image pairs.

C. RUNTIME COMPARISON
In this work, an experiment was carried out to compare the
runtime of image fusion algorithms as shown in Table 11.
Twenty algorithms were implemented in VIFB work [46].
We reran thesemethodswith space object dataset to fuse RGB
and depth images. As can be seen, most image fusion meth-
ods are computationally expensive. We can also infer large
variations of runtime between various image fusion meth-
ods. Moreover, the fusion methods that belong to the same
category have also varied runtimes. For example, even both
CBF [56] and GFF [59] are multi-scale methods, but the run-
time of GFF [59] is 1.28 second and the runtime of CBF [56]
is 114.41 seconds. On the other hand, deep learning-based
algorithms that used pretrained models have very long run-
time. However, ResNet [66] is the fastest deep learning-based
methodwith 9.60 seconds. Similarly, LatLRR [62] andNSCT
SR [64] are very time-consuming with 1224.84, 297.91 sec-
onds respectively.

A real-time image fusion is required in various applica-
tions. Therefore, we need to select fusion method that can
balance between speed and fusion performance. GFCE [58]
was able to get this balance. As seen in Table 11, GFCE
produced low runtime of 11.41 second and at the same time
as seen in Table 10, GFCE [58] gave the first best values for
three metrics including entropy and average gradient and spe-
cial frequency and the second-best values of edge intensity.
Therefore, in this work, GFCE was selected to fuse image
pairs to produce fused space images that were applied to the
recognition stage. The methods in Table 11 which are shown
in bold font are the best five methods in Table 10.

D. CLASSIFICATION RESULTS
The classification performance was evaluated using several
metrics, namely accuracy, recall, precision, and F1 score. The
performance indicators are as follows:
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FIGURE 8. Quantitative comparisons of CE metric of 20 methods.

FIGURE 9. Quantitative comparisons of EI metric of 20 methods.

1) Accuracy is a metric to find proportion of samples that
were predicted correctly.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

2) Recall (Sensitivity) is a metric to find the proportion of
actual positives that were predicted correctly.

Recall =
TP

TP+ FN
(2)
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FIGURE 10. Quantitative comparisons of EN metric of 20 methods.

FIGURE 11. Quantitative comparisons of MI metric of 20 methods.

3) Precision (positive predictive value) is a metric to find
the proportion of correct positive predictions.

Precision =
TP

TP+ FP
(3)

4) F1 score is a metric to summarize precision and recall
into a single metric.

F1score =
2 × precision× recall
precision+ recall

(4)
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FIGURE 12. Quantitative comparisons of PSNR metric of 20 methods.

FIGURE 13. Quantitative comparisons of QAB/F metric of 20 methods.

where TP: True Positive, TN: True Negative, FP: False Posi-
tive, FN: False Negative.

The three techniques of ensemble learning including bag-
ging, boosting, and stacking were compared as shown in Fig-
ure 20. The confusion matrix for each technique is illustrated
in Figure 20. As can be seen, the values of the main diagonal
in confusion matrix of stacking model are higher than other

ensemble learning models which leads to better classification
accuracy.

The classification report that indicates the accuracy,
recall, precision, and F1 score for each class of each
ensemble learning method including bagging, boosting, and
stacking was demonstrated in Table 12, Table 13, and
Table 14.
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FIGURE 14. Quantitative comparisons of Qcb metric of 20 methods.

FIGURE 15. Quantitative comparisons of Qcv metric of 20 methods.

The three techniques of ensemble learning including bag-
ging, boosting, and stacking were compared in term of aver-
age accuracy, average recall, average precision, and average

F1 score as shown in Table 15. It was found that stacking
model was able to outperform other ensemble learning mod-
els such as bagging and boosting in terms of accuracy, recall,
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FIGURE 16. Quantitative comparisons of RMSE metric of 20 methods.

FIGURE 17. Quantitative comparisons of SSIM metric of 20 methods.

precision, and F1 score. Stacking was able to give the highest
average accuracy of 89 % and the highest average F1 score
oof 89%.On the other hand, boosting gave the lowest average
accuracy of 83 % and the lowest average F1 score of 82 %.
The highest values are shown in bold font.

In summary, in this paper, an interesting challenge of space
object recognition was addressed using combination of image

fusion and ensemble learning models. The contributions of
this work are summarized as follows:

1) RGB and Depth images were fused using twenty image
fusion methods. The fusion methods were evaluated
and compared in terms of 13 different evaluation met-
rics.
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FIGURE 18. Quantitative comparisons of SF metric of 20 methods.

FIGURE 19. Quantitative comparisons of SD metric of 20 methods.

2) The fused images produced informative contents and
comprehensive features which can enhance the task of
space object recognition.

3) We proposed an ensemble of CoAtNets (Convolution
and Attention Networks) using ensemble learning such
as bagging, bosting, and stacking to classify space
objects into ten categories.

V. CONCLUSION AND FUTURE WORK
In this work, various image fusion algorithms have been
evaluated for task of RGB-D image fusion and they showed
superior performance to explore more information that are
not available in single images. We explored numerous
fusion methods to fuse RGB and depth images that include
space objects for recognition purposes. The experiments
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FIGURE 20. Confusion Matrix of Ensemble Learning Using bagging (on the left), boosting (in the middle), and stacking (on the right) techniques.

TABLE 15. Comparison between bagging, boosting, and sacking
techniques.

were carried out, and the performance was evaluated using
13 fusion performance metrics. It was found that the GFCE
outperformed other image fusionmethods in terms of average
gradient (8.2593), spatial frequency (28.4114), and entropy
(6.9486). Furthermore, LatLRR was able to produce the
best cross entropy (2.0937), edge intensity (78.0973), and
standard deviation (68.1338). Additionally, IFEVIP has the
best mutual information (4.3275) and structural similarity
index measure (1.0954). On the other hand, DLF was found
to outperform others in terms of peak signal-to-noise ratio
(61.9097) and root mean squared error (0.0476). However,
due to its ability to balance between good performance and
inference speed (11.41 second), GFCE was selected to fuse
RGB and depth images before feature extraction and classi-
fication of space objects existing in images.

The outcome of fusion method is fused images that were
used to train deep learning model to classify space objects
into ten categories. The deep ensemble methods including
bagging, boosting, and stacking contain several CoAtNets
models that were trained using SPARK dataset. We utilized
CoAtNet to enjoy the strengths of both ConvNets and Trans-
formers. These ensemble learning methods were evaluated
and compared for classification purposes. It was found that
stacking of CoAtNets was able to outperform other ensemble
learningmodels in terms of accuracy, recall, precision, and F1
score. Stacking was able to give the highest average accuracy
of 89 % and the highest average F1 score of 89 %.

Finally, it was found that combination of fusion and stack-
ing was able to enhance the space object recognition perfor-
mance largely which helps to improve the performance of
space situational awareness system.

Hence, we intend to enhance the performance of recog-
nition by using object detection method after image fusion
method. We expect that this can improve the detection per-
formance in comparison with previous works that targeted
RGB images only for detection purposes [81]. Addition-
ally, an ensemble of object detectors may also contribute
to enhance the detection performance in general and the
recognition specifically. Therefore, it can be a good bonus
to our future works.
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