
Received 9 December 2022, accepted 2 January 2023, date of publication 9 January 2023, date of current version 12 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3235397

Connectivity Enhancement of E-VANET Based on
QL-mRSU Self-Learning Energy-Saving Algorithm
YUXIANG FENG 1, YAO HUANG 1, BING LI 1, HONG PENG 1, (Member, IEEE),
JIAN WANG 2, AND WEIKAI ZHOU 1
1School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
2School of Automobile and Transportation, Xihua University, Chengdu 610039, China

Corresponding author: Bing Li (0120040053@mail.xhu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62176216.

ABSTRACT With the development of smart cities and smart electric vehicles (EVs), the problem of
improving the performance of Vehicular Ad-hoc Networks (VANETs) is gradually being emphasized.
To improve the network performance of VANETs, some scholars have considered parked vehicles as roadside
units, but have not paid attention to the energy consumption characteristics of vehicles, especially electric
vehicles. Therefore, in this paper, we propose a QL-mRSU series artificial intelligence energy saving method
to optimize the energy consumption of parked electric vehicles during communication. The method is
based on electric vehicle self-organizing networks (E-VANETs), which dynamically cluster electric vehicles
parked in parking lots by parameters such as traffic flow, number of service demands, and charging index
in reinforcement learning, select the most suitable vehicles as mobile roadside units (mRSUs), and adjust
the working mode according to environmental changes such as the number of service demands to achieve
the effects of self-learning and energy saving. The simulation experimental results show that compared with
other energy-based routing algorithms, themethod is able to make optimal choices through self-learning with
guaranteed communication quality and is more adaptable to traffic flow changes on the road, thus ensuring
the stability of energy-saving efficiency. In addition, the method significantly improves the energy structure
of electric vehicle parking clusters.

INDEX TERMS Mobile RSU, E-VANET, energy saving, artificial intelligence.

I. INTRODUCTION
Currently, with global electrification, the development
of electric vehicles is gradually being emphasized [1].
However, the development of electric vehicles has many
problems, the most important of which is the energy con-
sumption. There are many factors that affect the energy
consumption of vehicles, such as battery type and capacity,
body weight, and size [2]. Therefore, some scholars have
proposed a VANET-based electric vehicular ad-hoc network
according to the characteristics of electric vehicles, such as
energy management, communication interfaces, and energy
consumption. [3].

There are two major communication technology paths in
the VANET. One is Cellular Vehicle-to-Everything (C-V2X)
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technology based on cellular network communication; the
other is Dedicated Short Range Communication (DSRC)
technology based on Wi-Fi improvement. This is also true
in the E-VANET. However, as the number of smart electric
vehicles grows, it is clear that DSRC technology cannot meet
the communication needs of VANETs. Compared to DSRC,
C-V2X has the advantages of higher safety, wider coverage,
and more reliable communication connections, which means
that C-V2X has a higher cost and power consumption [4].
The C-V2X technology includes two types of interfaces: PC5
and UU. The former is a direct communication interface,
which enables direct communication between vehicles, peo-
ple, and road infrastructure over short distances; the latter is
a cellular network communication interface, where terminals
need to communicate with each other through a base station,
which enables long-distance and a wider range of reliable
communication.
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In addition, the Wireless Sensor Network (WSN) is also
widely used in VANET.WSNmainly through the deployment
of sensor nodes that can sense environmental information
in real time and complete intelligent data collection and
processing, is the key link between the Internet of Things
(IoT) sensing layer and the real world to achieve connectivity.
Therefore, the intelligent routing algorithm of WSN is also
very important. In this paper, we design a WSN intelligent
routing algorithm based on having clusters and cluster heads
and use parameters such as remaining power and charging
index as evaluation indicators for filtering out the most suit-
able cluster heads.

In recent years, with the continuous development of intel-
ligent transportation systems (ITS), the number of road-
side units (RSUs) and on board units (OBUs) in cities
has exploded, and the demand for VANET services has
increased [5]. In order to relieve the construction pressure of
RSUs as well as increase the connectivity of VANETs, many
researchers have chosen to use idle vehicles parked in parking
lots as mobile RSUs.

Some studies have shown that during VANET commu-
nication, the battery of the fuel car is sufficient to support
the vehicle to maintain continuous communication with other
communication devices for up to 5 days without charging [6].
Therefore, some scholars believe that the energy consumption
aspect of parked cars is negligible. However, the number of
electronic devices in electric vehicles is much larger than that
of fuel vehicles, resulting in the fact that electric vehicles
still consume a lot of power during parking. According to
the Chinese national standard GB/T-31484-2015, the electric
vehicle power battery must meet the standard that when the
capacity decays to 80% of the initial value, the cycle test
must be greater than 1000 times; or when the capacity decays
to 90% of the initial value, the cycle test must be greater
than 500 times. This also makes electric vehicles have more
stringent standards in terms of battery wear and tear, so their
energy consumption is worth noting [7].

In this paper, we study the energy consumption of
E-VANET-based electric vehicle parking clusters. The uncer-
tainty of the external environment and various parameters of
EVs may bias the results of this study. Therefore, this paper
only considers the scenarios of parking in surface parking
lots with charging facilities (CF-Parking Lots) and on-street
parking lots without charging facilities (NCF-Parking Lots).

In addition, self-learning has an important place in the
algorithm of this paper. The self-learning method selected
in this paper is reinforcement learning (RL). Reinforcement
learning is one of the paradigms and methods of machine
learning that describes and addresses the problem of learn-
ing strategies to maximize rewards or achieve specific goals
during the interaction of an intelligent body with its environ-
ment. Reinforcement learning is a reward-guided behavior in
which an intelligent body learns through ‘‘trial and error’’
and interacts with its environment with the goal of max-
imizing rewards. Since the external environment provides
little information, the reinforcement learning system (RLS)

must learn through its own experience. In this way, the RLS
gains knowledge of the action evaluation environment and
improves the action plan to adapt to it.

In fact, RSUs are not cost-effective to build in large num-
bers because they are too costly. Therefore, using parked
cars in parking lots as mobile RSUs can greatly increase the
connectivity of VANETs. However, the power consumption
of EVs increases as the length of time that parked vehicles are
involved in communication increases. When the remaining
power of an electric vehicle is too low, it may not be able
to start the vehicle. Therefore, we propose a method that can
achieve self-learning dynamic energy saving with guaranteed
quality of service (QoS), so that parking clusters can work
longer. The main contributions of this paper are as follows:
• The problem under study is modeled using a Markov
model based on parameters such as vehicles, roads, park-
ing lots, energy consumption, and traffic flow.

• To prevent the electric vehicle battery from being so
depleted that it cannot start the vehicle, this paper defines
a threshold value below which the battery charge does
not participate in the algorithm selection.

• A reinforcement learning approach is incorporated to
design separate energy-saving algorithms for park-
ing clusters of EVs parked in CF-Parking Lots and
NCF-Parking Lots.

• Based on the external environmental changes, the rein-
forcement learning algorithm QL-mRSU-Mode dynam-
ically adjusts the state of the mRSU to adapt to the
dynamic changes of the E-VANET environment.

This paper is organized as follows. Section II discusses
related work on VANET. Section III describes the problem
of energy saving in parking clusters in detail. Section IV
presents the proposed formulation and design of three
algorithms: QL-mRSU-Num, QL-mRSU-Choose, and QL-
mRSU-Mode. Section V performs simulations and analyzes
the simulation results. Section VI concludes the paper and
discusses related issues.

II. RELATED WORK
According to parking statistics from two surveys in the down-
town area of Montreal, Canada [8], 61,000 vehicles go in
search of a parking space every day in a survey area of
almost 5,500 square kilometers. The survey report shows that
people are much more likely to choose outdoor parking than
indoor parking (including garages and underground parking).
Among them, the probability of parking in on-street park-
ing is 69.2%; the probability of parking in outdoor street
parking is 27.1% and the probability of parking in indoor
parking is only 3.7%. According to another survey report [9],
the parking time of some special vehicles can even reach
23 hours per day. The number of vehicles parked in the
parking lot and the number of vehicles on the road accounted
for 95.83% and 4.17%.

In addition to this, the data for the Ann Arbor, Michigan,
USA off-street parking lot is shown in Table 1 [10]. The
two sites A and B represent two different areas of vehicle
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density. The time periods represent peak, off-peak, and all-
day periods, respectively. According to Table 1, the average
occupancy rate of parking spaces at site A is 93.5% through-
out the day; during the peak period, the occupancy rate of
parking spaces at both sites A and B is nearly 100%; during
the off-peak period, the occupancy rate of parking spaces at
site A is also as high as 79.0%. In other words, a large number
of vehicles in the city are parked in parking lots rather than
on the road.

TABLE 1. On-street parking survey in ann arbor.

As early as 2011, Liu et al. [11] pioneered the idea of
parked vehicle assist (PVA). The core idea is to use the parked
vehicles as static nodes in the VANET and to improve the
network connectivity of the VANET by communicating with
other nodes in the VANET through radio devices and using
batteries as energy sources.

Inspired by Liu et al., Sargento et al. designed a parking
cluster algorithm based on multiple aspects such as signal
strength as a scoring criterion to switch roles between vehi-
cles [12], [13]. However, the algorithm does not detail the
decision process regarding energy usage. Some scholars have
also considered buses or cabs as mobile RSUs responsible
for forwarding messages from other nodes in the VANET,
but the non-stop moving nature of buses and cabs may
lead to unstable network connections to other nodes in the
VANET [14], [15].

Zhao et al. [16] propose a parking space-based VANET
data distribution scheme that enables the data cache to be
stored on the parked vehicles at the roadside, providing con-
tinuous data distribution services to the passing vehicles.
Some scholars have also proposed the idea of parking edge
computing, where parked vehicles or surrounding vehicles
are used to assist the edge server in offloading task process-
ing, and relevant task scheduling algorithms are designed to
select the allocation of resources [17], [18], [19], [20], [21].
However, notmany of the above schemes and algorithms have
been studied in terms of energy consumption.

In terms of smart routing forWSNs, Hu et al. [22] proposed
a customized network topology based on intelligent trans-
portation systems that allows users to obtain traffic and road
information via wireless sensor networks directly from local
sources within their wireless range rather than remote ITS
data centers. Agarwal et al. [23] proposed a scheme for smart
data routing in WSNs based on mobile sinks and validated it
in terms of stability period and network performance metrics
such as network lifetime and throughput. Patel et al. [24]
proposed a cross-layer variant of AODV based on energy

conservation, replacing the hop count metric with link quality
and conflict counting. However, these schemes are not appli-
cable to E-VANETs.

A number of scholars have designed routing algorithms
to enhance the connectivity of the network by using parking
clusters or mobile vehicles as relay nodes [25], [26], [27],
[28]. Liu et al. [29] proposed a parking area-assisted spi-
der web routing protocol (PASRP) based on parked vehi-
cles as relay nodes, selecting the path with the least delay
as the transmission path. Zhu et al. [30] designed a new
messaging scheme to efficiently transmit messages to tar-
get vehicles through the proposed virtual overlay network.
Chang et al. [31] proposed an energy-efficient geographic
routing algorithm that exploits the direction, density, and
distance between nodes in a cross-roads routing strategy to
improve link stability. An improved multicast-based energy-
efficient opportunity data scheduling algorithm has also been
proposed to serve selected groups of users by multicasting
services at optimal data rates [32]. All these schemes are good
at enhancing the connectivity of the network, but they do not
pay much attention to the energy consumption aspect.

Moreover, many scholars have done other research on
VANET. For example, using aerial drones as relay nodes for
VANET to reduce the obstruction of buildings [33], [34], [35].
But this tends to have some impact on the environment.
Zhu et al. [36] proposed a reputation-based cooperative
content delivery mechanism using the relationship between
mobile vehicles, roadside units, and parked vehicles formu-
lated as a two-level auction game model to improve the effi-
ciency and security of content delivery. However, the authors
did not address the issue of limited energy.

In fact, many scholars have done a lot of research in the
field of energy management for VANET. Some scholars have
proposed to install solar panels on the top of electric vehicles
or on top of buildings to collect solar energy and convert it
into electricity to be stored in batteries [37], [38], [39], [40].
Some scholars have also implanted renewable energy sources
into RSUs to reduce their power consumption and extend the
life of their batteries [41]. Liu et al. [42] proposed a two-layer
optimization model with a hybrid genetic algorithm/particle
swarm optimization (GA/PSO) algorithm. Sun et al. [43] pre-
sented an optimal approach to enable parked vehicles to pro-
vide services in the most energy-efficient way, dynamically
exploiting external environmental factors to achieve energy
savings and emission reductions. All of the above solutions
have energy consumption studies, but are not applicable
to E-VANET.

III. PROBLEM STATEMENT AND MOTIVATION
In Section II, several related proposals are summarized and
referenced. This paper is based on one of the proposals to use
parked vehicles in parking clusters as mobile RSUs to reduce
RSU construction pressure and enhance E-VANET network
connectivity, as shown in Figure 1.
Electric vehicles parked in parking lots are mainly divided

into three categories: the first category is vehicles that are
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FIGURE 1. Model of parking cluster as relay node in E-VANET.

charging or not charging in CF-Parking Lots; the second
category is vehicles parked in NCF-Parking Lots; and the
third category is vehicles parked in indoor parking lots. Since
there are fewer vehicles parked in indoor parking lots and
the signal is unstable, it has little effect on the connectivity
enhancement of E-VANET, so the research background of
this paper is based on the first two cases only, as shown
in Figure 2.

Electric vehicles are parked in parking lots in both charging
and non-charging states. According to Patt et al. [44], the
percentage of vehicles in the CF-Parking Lot with more than
80% remaining energy is about 10.6%; between 60% and
80% is 19.3%; between 40% and 60% is 24.7%; between
15% and 40% is 25.5%; and below 15% is 19.9%. In the
NCF-Parking Lot, the proportion of vehicles with more than
80% of remaining energy is 16.5%; between 60% and 80% is
37.9%; between 40% and 60% is 30.1%; between 15% and
40% is 11.5%; below 15% is 4.0%, as shown in Figure 3 and
Figure 4. The survey results also show that about 60% of the
EVs in the CF-Parking Lot choose to charge, and the lower
the remaining charge, the higher the percentage of EVs that
choose to charge.

FIGURE 2. Parking cluster model for two types of parking lots.

For the electric vehicles parked in the parking lot, it is a
worthwhile research problem to select some of them to act
as mRSUs. In contrast to the problem that the battery does

FIGURE 3. Percentage of electric vehicles remaining in the CF-ParkingLot.

FIGURE 4. Percentage of electric vehicles remaining in the
NCF-ParkingLot.

not get energy after the fuel vehicle is parked, a portion of
electric vehicles have the option of recharging to replenish
energy in the parking lot, which makes the parking energy
saving algorithms proposed by some scholars not applicable
to electric vehicles [46]. In this paper, we design respec-
tive algorithms for parking clusters in surface parking lots
with charging facilities (CF-Parking Clusters) and on-street
parking lots without charging facilities (NCF-Parking Clus-
ters) from the perspective of energy saving. It improves the
energy-saving efficiency and reduces the wear and tear on
the battery while ensuring the quality of communication and
continuously optimizing the mRSU through reinforcement
learning.

Besides, the vehicle will not be in communication all the
time after it is selected, especially at night when there are not
many moving vehicles. Because being in communication all
the time will waste the power of the parked car. The vehi-
cle executes its own algorithm to continuously optimize the
energy structure of the vehicle as the environment changes,
at regular intervals, or when the parking cluster structure
changes.

IV. FORMULATION AND ALGORITHM DESIGN
In this section, the corresponding algorithms are designed
for the number of mRSUs, the selection of mRSUs, and the
selection of operating modes, respectively. The core ideas of
this paper mainly include the following points:

1) The algorithms all use reinforcement learning algo-
rithms in artificial intelligence, allowing the parking
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clusters to learn on their own and make better choices
based on the changing environment.

2) Based on the traffic flow and the parking cluster status
of the parking lot, etc., we determine whether a parking
cluster is suitable as a relay node, and select the appro-
priate number of mRSUs.

3) The electric vehicles in the selected parking clusters are
scored and compared based on their condition, and the
better vehicle is selected as the mRSU.

4) The selected vehicle can dynamically adjust its work-
ing mode according to the change in environment to
achieve an energy-saving effect.

In reinforcement learning, one of the most classic
and widely used algorithms is the Q-Learning algorithm.
The Q-Learning algorithm is the value-based algorithm in
the reinforcement learning algorithm. Q is Q(s, a), which
is the expectation that taking action a (a ∈ A) in state s
(s ∈ S) at a certain moment in time can lead to a gain, and
the environment will be based on the action of the intelligent
body’s feedback and the corresponding payoff. So the main
idea of the algorithm is to construct a Q-table of states and
actions to store Q-values, and then select the action that can
obtain themaximumgain according toQ-values. Specifically,
the Q-value is updated by the following formula:

Q(s, a)← Q(s, a)+ α

[
r + γ max

a′
Q

(
s′, a′

)
− Q(s, a)

]
(1)

where Q(s, a) represents the current Q-value of state s when
action a is chosen. At some state s, the intelligent body selects
an action a, which finds the maximum possible Q-value in the
next state s′. The current Q-value is updated assuming that a is
used. The discount factor γ (γ ∈ (0, 1)) represents the decay
value, the larger the value of the discount factor γ , the more
the Q-Learning algorithm will focus on future rewards; con-
versely, the smaller the value of γ , the more the Q-Learning
algorithm will consider the immediate benefits. The learning
rate α(α ∈ (0, 1)) is used to determine how much of the error
is to be learned this time.

Since the core algorithm of Q-Learning is to select the
optimal solution by continuous learning, and the purpose of
this paper is to make the parked vehicles select the most
suitable mRSU by themselves to achieve energy saving,
so the Q-Learning algorithm is the most suitable algorithm
for this study. Therefore, the three algorithms proposed in this
paper are designed based on the Q-Learning algorithm, which
are named as QL-mRSU-Num, QL-mRSU-Choose, and
QL-mRSU-Mode algorithms, respectively.

A. QL-mRSU-NUM
In this paper, it is necessary to select the appropriate mRSU
according to the environment and the condition of the vehicle
itself. But before that, the number of electric vehicles acting
as mRSUs in different parking clusters should be selected
based on the main factors. The main factors are as follows:

1) Traffic flow: the traffic flow is different on different
roads and at different times of the day. Therefore, the
traffic flow is an evaluation indicator for the selection
of mRSU.

2) Service demand quantity: in general, the traffic flow is
proportional to the service demand quantity, as shown
in Figure 5. On the road, not every vehicle needs
to access mRSU, the number of mRSU connections
should be selected according to the service require-
ments of the vehicle.

3) Charging facilities in the parking lot: mRSUs in
NCF-Parking Lots can only consume their own power
and cannot replenish it. However, in CF-Parking Lots,
mRSUs can choose to use charging facilities, so the
charging situation is also a very important factor.

FIGURE 5. Service demand quantity vs. traffic flow.

According to the previous description, it is first assumed
that the movement of mobile vehicles above the road fol-
lows Poisson distribution, and the number is Mv; the vehi-
cles parked in the parking lot and roadside are randomly
distributed; the length of the experimentally designed road
is D; and the maximum communication coverage radius is R.
From this, the distance between two adjacent vehicles is
exponentially distributed and follows the parameter 1/λ.

Because moving vehicles on the road follow the Poisson
distribution [43], [44]. Therefore, the probability of having x
moving vehicles on the road can be calculated by formula (2).

P[Mv = x] = e−λD
[
(λD)n

m!

]
(2)

According to the law of Poisson distribution, the average
number of vehicles traveling on a road section of length D
can be calculated using formula (3).

E[Mv] = D× λ (3)

Assume that the average energy saving efficiency is ω;
Pavg represents the average power of all parked vehicles;
Pall represents the power when all parked vehicles are on
communication, except for parked vehicles with remaining
power below the threshold; Pon represents the power when
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parked vehicles are on communication; and Poff represents
the power when parked vehicles are at rest.Mwork is the num-
ber of parked vehicles with communication equipment turned
on; Mrest is the number of parked vehicles in the rest state;
and Mclose is the number of parked vehicles with remaining
power below the threshold to enter the close state. Therefore,
the formulas of Pavg, Pall and Mrest can be expressed by (4),
(5), and (6).

Pavg =Pa (M −Mclose)Poff
+ Pb (Mwork Pon +MrestPoff) (4)

Pall = (M −Mclose)Pon (5)

Mrest =M −Mwork −Mclose (6)

FIGURE 6. The algorithm flow chart of QL-mRSU-Num.

where Pa denotes the probability that the driving vehicle
communicates directly without the intervention of themRSU,
and Pb denotes the probability that the driving vehicle needs
to communicate with the mRSU. Since the experiments are
based on the condition that the driving vehicle communicates
with the mRSU directly. Therefore, in this paper, Pa = 0 and
Pb= 1, fromwhich the formulas of the average energy saving
efficiency can be expressed by (7) and (8).

Pavg = MworkPon +MrestPoff

ω =
Pall − Pavg

Pall
(7)

= 1−
MworkPon − (M −Mwork −Mclose)Poff

(M −Mclose)Pon
(8)

Furthermore, formula (1) shows that the reward R plays
an important role. The average traffic flow Vveh, the traffic
flow veh, the service demand quantity demand , the number
of charging facilities in the parking lot Nfac, and the number
of charging facilities in use Nuse are the main components of
R in this section, as represented by formula (9), where a, b,
and c are weighting factors.

R = a×
veh
Vveh
+ b×

Demand
veh

+ c×
Nuse

Nfac + 1
(9)

where a+ b+ c = 1. Thus, the flowchart of the QL-mRSU-
Num algorithm as shown in Figure 6. The specific algorithm
is shown in Algorithm 1, and the key parameters are shown
in Table 2.

Algorithm 1 QL-mRSU-Num
Input: (1) Parameters for reinforcement learning α, γ ,

epsilon;
(2) Traffic flow veh, parking quantity Npark , service

demand quantityNdemand , daily average traffic flow Vveh,
parking lot charging facility quantity Nfac, number of
vehicles not participating in communication Nclose, num-
ber of charging facilities in use Nuse, thresholdW ;

(3) The weights a, b, c.
Output: Number of vehicles in this parking cluster that need

to act as mRSUs, NmRSU .
1: for each parking cluster do
2: Nclose = 0, NmRSU = 0;
3: for each parked car do
4: Collect remaining electricity Energy;
5: if Energy ≤ W then
6: Nclose = Nclose + 1;
7: end if
8: end for
9: Calculate R according to formula (9);

10: Run Q-Learning;
11: Select the optimal number of mRSUs, NmRSU ;
12: if NmRSU > NPark - Nclose then
13: Ignore this parking cluster;
14: end if
15: end for
16: return NmRSU .

TABLE 2. The key parameters of QL-mRSU-Num.
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B. QL-mRSU-CHOOSE
Scenario analysis: in this paper, based on a survey and study
of relevant parking lots, parking clusters in two types of
parking lots are mainly considered.

In the first scenario, the parking lot is a temporary parking
lot located on the side of the road. In this type of parking lot,
electric vehicles cannot be replenished with energy due to the
absence of charging facilities. Therefore, this type of parking
cluster is characterized by the following main features:

1) Short parking time. According to a survey study [44],
57% of the parking time in on-street parking lots is less
than 40 minutes; 70% of the parking time is less than
one hour; only 9% of the parking time is more than
3 hours; and the average parking time is 42 minutes.

2) The initial average power of parked electric vehicles
is generally high. Figure 4 shows that 54.4% of the
EVs parked on the roadside have a remaining energy
of more than 60%, while only 4% of the EVs have a
remaining energy of less than 15%.

3) The parking space utilization rate is high. According to
a research study by Adiv et al. [10], the utilization rate
of parking spaces in all participating on-street parking
lots was 100% during peak hours. Even during off-peak
hours, the utilization rate of parking spaces can reach
about 80%.

Thus, the incentive mechanism for the first type of parking
cluster can be represented by formula (10).

R = a×
Energy
VEnergy

+ b×
Demand
veh

+ c×
NmRSU

Npark − Nclose

(10)

where a, b and c represent the weighting factors, a + b +
c = 1. Energy represents the remaining energy of electric
vehicles; VEnergy represents the average remaining energy of
this parking cluster; veh represents the traffic flow within
the communication range of this parking cluster; Demand
represents service demands quantity; NmRSU represents the
number of mRSUs needed for this parking cluster as derived
fromAlgorithm 1;Npark represents the total number of parked
cars in the parking cluster; and Nclose represents the number
of vehicles with remaining energy below the threshold in the
close state.

In the second scenario, the parking lot is a surface parking
lot with charging facilities. In this type of parking lot, the
main differences and characteristics from the previous type
of parking lot are as follows:

1) Have charging facilities. In CF-Parking Lots, the range
of parking lots is more concentrated, and most of them
are near large commercial facilities, making it conve-
nient to build charging facilities.

2) Long parking time. According to the survey report [47],
19% of the parking time in the parking lot is less than
one hour; 48% of the parking time is less than three
hours; 40% of the parking time is more than four hours,
and the average parking time is 327 minutes.

3) The initial average power of parked vehicles is low.
From Figure 3, the percentage of EVs with more than
60% remaining energy is 29.9%, while the percent-
age of vehicles with less than 15% remaining energy
is 19.9%.

FIGURE 7. The algorithm flow chart of QL-mRSU-Choose.

TABLE 3. The key parameters of QL-mRSU-Choose.

Thus, according to the difference between CF-Parking Lots
and NCF-Parking Lots, the reward mechanism of the second
type of parking clusters is represented by formula (11).

R =a×
Energy
VEnergy

+ b×
Demand
veh

+ c×
NmRSU

Npark − Nclose
+ d × Icharge (11)

where a, b, c and d denote the weighting factors, a+ b+ c+
d = 1. Icharge (Icharge ∈ (0, 1)) is the charging index.
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In summary, different reward mechanisms need to be
designed according to the different features to select a more
suitable mRSU. The algorithm flow is shown in Figure 7,
the specific algorithm is shown in Algorithm 2 and the key
parameters are shown in Table 3.

Algorithm 2 QL-mRSU-Choose
Input: (1) Parameters for reinforcement learning α, γ ,

epsilon;
(2) Traffic flow veh, cycle time T , parking quan-

tity Npark , service demand quantity Ndemand , daily aver-
age traffic flow Vveh, number of charging facilities in
the parking lot Nfac, Charging index Icharge, number of
charging facilities in use in the parking lot Nuse, num-
ber of mRSUs in the parking cluster NmRSU , number
of vehicles not participating in communication Nclose,
thresholdW ;

(3) The weights a, b, c, d .
Output: Status of parked vehicles.
1: while (parking clusters change) or (go to the next cycle
T ) do

2: for each parked vehicle do
3: Vehicle initialization;
4: if NmRSU ≥ 1 then
5: Collecte remaining power Energy;
6: if Energy ≤ W then
7: Turn off the vehicle’s communication equip-

ment;
8: end if
9: if Energy > W then

10: Calculate R according to formula (10) or (11);
11: Run Q-Learning;
12: if Q-Valve =MAX Q-Valve then
13: NmRSU = NmRSU - 1;
14: Turn on the communication device and

become new mRSU;
15: Remove the vehicle from the next algorithm

selection;
16: continue;
17: end if
18: end if
19: end if
20: if NmRSU = 0 then
21: No more mRSUs are added to this parking clus-

ter;
22: break;
23: end if
24: end for
25: end while
26: return Status of parked vehicles.

C. QL-mRSU-MODE
In a parking cluster, this paper sets the mRSU in a cycle with
the following three states:

1) ‘‘Work’’ mode: after the parked vehicle is selected as
an mRSU, the communication device is turned on to
process or forward the information from other vehicles.

2) ‘‘Rest’’ mode: the parked vehicle turns off the com-
munication function and only turns on the listening
function, listening to the information from the moving
vehicles, and operates with low power consumption.

3) ‘‘Close’’ mode: In this mode, the vehicle turns off all
the functions, only retaining the necessary functions
such as the alarm function, in order to reduce battery
consumption.

During the selected period in the previous section, the
selected parked vehicles do not need to be in ‘‘Work’’ mode
all the time during a cycle, but can switch between ‘‘Work’’
mode and ‘‘Rest’’ mode according to the change in the exter-
nal environment. Once the remaining energy of the vehicle
is below the threshold, the vehicle will directly enter the
‘‘Close’’ mode, and all communication devices will be turned
off. Until the vehicle replenishes its energy to levels above the
threshold, at which point it can continue to participate in the
mRSU selection.

Therefore, according to the previous description, each
cycle T can be expressed by formula (12).

T = twork + trest (12)

where twork indicates the time that the vehicle is in ‘‘Work’’
mode during a cycle and trest indicates the time that the
vehicle is in ‘‘Rest’’ mode during a cycle.

The energy consumed in a cycle T , Wt , can be expressed
using formula (13).

Wt = Pon twork + Poff trest (13)

where Pon indicates the power when the parked vehicle turns
on the communication device, Poff indicates the power when
the parked vehicle is on standby.

The duty cycle f can be expressed by formula (14).

f =
twork
T

(14)

Therefore, the duty cycle energy efficiency formula can be
derived and expressed by formula (15).

ω = 1−
Mwork Pon f − (M −Mwork −Mclose )Poff

(M −Mclose )Pon

=

(
M −Mclose −

Mwork twork
T

)
Pon +Mrest Poff

(M −Mclose )Pon
(15)

Based on the communication scenario described earlier,
combined with the Q-Learning algorithm, this paper designs
the action selection of mRSUs to be determined by the num-
ber of time slots within a frame. In each mRSU, a set of
Q-values are stored, and each Q-value can be coupled to a
specific time slot within each frame. The Q-value represents
the reward obtained by themRSUwhen it is in ‘‘Work’’mode.
During the communication process, specific events occur in
the same time slot of each frame, and the Q-value is updated
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FIGURE 8. The algorithm flow chart of QL-mRSU-Mode.

as the specific events occur. In addition, the rewards obtained
by the mRSU are related to the state information of neigh-
boring nodes. Specifically, each Q-value update formula for
each mRSU can be represented by formula (16).

Qis(f + 1) = (1− α)Qis(f )+ αRis(f ) (16)

where Qis(f ) ∈ [0, 1] denotes the current Q-value associated
with the slot s on a given frame f . Qis(f + 1) denotes the
Q-value of the next frame f+1 of frame f , i.e., it is the updated
Q-value associated with the same slot s, and α ∈ (0, 1) is the
learning rate.Ris(f ) is the reward obtained in association with
a slot s on a certain frame f .

In this paper, we consider setting the discount factor γ

in formula (1) to 0, i.e., no future rewards are considered,
only the most recent ones. This approach requires a suitable
reward function that can consider both mRSU as well as
the communication of its domain nodes. Thus, after con-
sidering the traffic load aspect, Ris(f ) can be represented by
formula (17).

Ris(f ) = a×
(
TOT − RES

TOT

)
+ b× Pi + c×

∑|Nj|
j=1 Sj∣∣Nj∣∣


(17)

where RES denotes the number of received but unsent pack-
ets, TOT denotes the total number of packets received by
mRSU in the time slot of a certain frame f , Pi represents
the number of packets to be broadcast by mRSU in the time
slot, Sj represents the number of packets sent by neighboring
node j to mRSU in the time slot, and Nj represents the set of
neighbors of node j. a, b, and c represent different terms of
the corresponding weighting functions, respectively.

Algorithm 3 QL-mRSU-Mode
Input: (1) Parameters for reinforcement learning α, γ ,

epsilon;
(2) The number of packets heard by the mRSU RES,

the total number of packets received by the mRSU in the
frame TOT , the number of packets to be broadcast by
the mRSU during time slot s Pi, the number of packets
sent by neighboring nodes to the mRSU during time slot
s Sj, the set of neighbors of the mRSU Nj, the remain-
ing energy threshold W , open communication threshold
threshold ;

(3) The weights a, b, c.
Output: Operating state of mRSU.
1: for each mRSU do
2: Collect remaining energy Energy;
3: if Energy ≤ W then
4: Turn off the vehicle’s communication equipment

and enter the ‘‘Close’’ state;
5: Return to Algorithm 2;
6: end if
7: if Energy > W then
8: Initialize the Q-value of mRSU to 1;
9: Calculate R According to formula (17);

10: Run Q-Learning;
11: if Qis(f) ≥ threshold then
12: Keep the mRSU in ‘‘Work’’ mode;
13: else
14: Change the mRSU to ‘‘Rest’’ mode;
15: end if
16: end if
17: end for
18: return Operating state of mRSU.

After setting the duty cycle reward function of the mRSU,
the Q-value of each mRSU node is set to 1, i.e., all mRSUs
turn the communication device on for the whole frame. In the
subsequent learning process, the Q-value changes with the
reward function until a certain threshold is reached, and the
mRSU changes from ‘‘Work’’ mode to ‘‘Rest’’ mode and
goes to sleep. The specific process can be expressed by
formula (18).

mRSU(f ) =


Work, Qis(f ) ≥ threshold
Rest, Qis(f ) < threshold
Close, Energy ≤ W

(18)

where threshold represents the threshold of Q-value, Energy
represents the remaining energy of mRSU, andW represents
the energy threshold.

According to this formula, if the Q-value at a time slot s is
below the threshold, then the mRSU will switch to ‘‘Rest’’
mode for the entire time slot. On the contrary, the mRSU
should be in the ‘‘Work’’ mode during the whole time slot.
The algorithm flow chart is shown in Figure 8, the specific
algorithm can be found in Algorithm 3, and the key parame-
ters are shown in Table 4.
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TABLE 4. The key parameters of QL-mRSU-Mode.

D. SUMMARY OF QL-mRSU SERIES ALGORITHM
In the above three subsections, we describe the three algo-
rithms of QL-mRSU in detail and give the relevant param-
eters, algorithm flowcharts, and pseudo-code for each algo-
rithm. In this subsection, we link the three algorithms into one
that can be run for every parked car, and the specific algorithm
can be found in Algorithm 4.

In terms of computational complexity, the execution time
of the algorithm is proportional to the number of executions
per line of code, which can be expressed by formula (19).

T (n) = O(F(n)) (19)

where T (n) denotes the total algorithm execution time,
f (n) denotes the total number of code executions per line,
and n tends to denote the size of the data. We performed
calculations for three algorithms, QL-mRSU-Num, QL-
mRSU-Choose, and QL-mRSU-Mode, and verified that the
Q-Learning algorithm needs to be executed only once in each
QL-mRSU algorithm, so its time complexity is O(n) in all
cases.

V. SIMULATIONS AND ANALYSIS
The simulations presented in this paper are based on the
energy-saving scheme from the previous section, bringing in
the relevant parameters. The simulation results are mainly
compared based on the comparison method proposed by
Sun et al. [43]. The simulation experiment is divided into
three main parts: the first part is to simulate the number of
mRSUs needed for the parking cluster for parameters such
as the service demand quantity; the second part is to select
the corresponding mRSUs and simulate the energy saving
efficiency for parameters such as running time, density of
parked vehicles, and service demand quantity; the third part
is to switch the working mode according to the external
environment and compare the various working modes.

In order to ensure the stability and reference of the exper-
iment, this paper sets key parameters such as road section
length D, communication radius R, communication diame-
ter L, communication power consumption Pon, sleep power
consumption Poff, maximum connection numberCmax, stable
connection number Csta, maximum electric vehicle energy
Energy, remaining energy threshold ratio W and charging
powerWcharge, as shown in Table 5.
The battery capacity of electric vehicles decreases with

years of use. According to the Chinese national standard

Algorithm 4 Summary of QL-mRSU Series Algorithm
Input: QL-mRSU series algorithm parameters
Output: Operating state of mRSU.
1: for each parking cluster do
2: while (parking clusters change) or (go to the next cycle

T ) do
3: Nclose = 0, NmRSU = 0;
4: for each parked car do
5: Collect remaining electricity Energy;
6: if Energy ≤ W then
7: Nclose = Nclose + 1;
8: end if
9: end for
10: Calculate R according to formula (9);
11: Run Q-Learning and Select the optimal number of

mRSUs, NmRSU ;
12: if NmRSU ≤ NPark - Nclose then
13: for each parked car do
14: Vehicle initialization;
15: if NmRSU ≥ 1 then
16: Collecte remaining power Energy;
17: if Energy ≤ W then
18: Turn off the communication equipment;
19: else
20: Calculate R according to formula (10) or

(11);
21: Run Q-Learning;
22: if Q-Valve =MAX Q-Valve then
23: NmRSU = NmRSU - 1;
24: Set the vehicle to mRSU and remove it

from the next algorithm selection;
25: Initialize the Q-value of mRSU to 1;
26: Calculate RAccording to formula (17);

27: Run Q-Learning;
28: if Qis(f) ≥ threshold then
29: Keep the mRSU in ‘‘Work’’ mode;
30: else
31: Change the mRSU to ‘‘Rest’’ mode;
32: end if
33: end if
34: end if
35: end if
36: if NmRSU = 0 then
37: No more mRSUs are added to this parking

cluster;
38: end if
39: end for
40: else
41: Ignore this parking cluster;
42: end if
43: end while
44: end for
45: return Operating state of mRSU.
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TABLE 5. The values of key parameters.

GB/T-31484-2015, when the battery capacity is lower than
80% of the original capacity, the battery has reached the
upper limit of its service life. Therefore, in the simulation,
the relevant data also needs to consider battery depreciation.

A. THE NUMBER OF mRSUs
In Figure 9, the horizontal coordinate is the service demand
quantity, and the vertical coordinate is the number of mRSUs
selected for a particular parking cluster. The algorithm is
able to select 1, 2, 3, and 4 parked electric vehicles to
act as mRSUs stably when the service demand quantity

FIGURE 9. Number of mRSUs vs. service demand quantity.

FIGURE 10. Probability of choosing the number of mRSUs vs. service
demand quantity.

is 0–0.25 veh./m, 0.25–0.6 veh./m, 0.6–0.8 veh./m, and
0.8–1.0 veh./m, respectively.

Figure 10 mainly shows the changes generated by the
algorithm in the selection of the number of mRSUs after
the change in the service demand quantity. The different
color curves represent the probability of selecting different
numbers of mRSUs. From the figure, it can be seen that
as the number of service demands increases, the probability
of selecting a smaller number of mRSUs for this parking
cluster decreases, while the probability of selecting a larger
number of mRSUs increases. From the above results, it can be
seen that this algorithm can increase the number of mRSUs
more steadily with the increase of service demands to ensure
communication quality.

B. THE SELECTION OF mRSUs
In this section, the algorithms of the CF-Parking Cluster
and the NCF-Parking Cluster are simulated and analyzed,
respectively, while keeping the parameters unchanged.

Figure 11 and Figure 12 show the comparison of the
running time and the average remaining energy for the
CF-Parking Cluster and the NCF-Parking Cluster, respec-
tively. The horizontal and vertical coordinates are the running
time and the average remaining energy, respectively. It can be
seen from Figure 11 and Figure 12 that the average remaining
energy is higher for the dynamic operation than for the con-
tinuous and full operations, which indicates that the algorithm
has a better energy-saving effect for the CF-Parking Cluster
and the NCF-Parking Cluster.

In Figure 13, the relationship between simulation time
and energy saving efficiency is mainly simulated during the
peak period. The horizontal coordinate is the simulation time,
and the vertical coordinate is the energy efficiency. With a
parking cluster density of 0.02 veh./m, the energy efficiency
of the CF-Parking Cluster is about 82%, and that of the
NCF-Parking Cluster is about 55%; with a parking density
of 0.05 veh./m The energy efficiency is about 96% for the
CF-Parking Cluster and 86% for the NCF-Parking Cluster.
From the simulation results, it can be seen that the energy effi-
ciency of the CF-Parking Cluster is generally higher than that
of the NCF-Parking Cluster at both low and high densities.
In the same parking lot, the higher the density of the parking
clusters, the higher the energy efficiency. In addition, as the
simulation time increases, the corresponding energy saving
efficiency basically remains the same, which also verifies the
stability and robustness of the algorithm.

Figure 14 mainly shows the effect of the density of two
different parking clusters on the energy efficiency during
the peak period. From the simulation results, the parking
cluster cannot be selected as a communication node until the
parking cluster density is 0.002 veh./m. Between the densities
of 0.002 veh./m and 0.01 veh./m, the energy efficiency of
dynamic operation increases with the parking cluster density,
while after 0.01 veh./m, the energy efficiency curve no longer
increases with the parking cluster density, which indicates
that when the parking cluster density reaches 0.01 veh./m, the
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FIGURE 11. Average remaining energy vs. time (CF-Parking Cluster).

FIGURE 12. Average remaining energy vs. time (NCF-Parking Cluster).

FIGURE 13. Energy efficiency vs. simulation time.

parked vehicles acting as mRSU begin to saturate, and the
energy efficiency will not change significantly. In addition,
regardless of the parking clusters, the energy efficiency is
higher in the mode of dynamic operation than in continuous
operation.

The simulations shown in Figure 15 and Figure 16 are
designed to demonstrate the effect of the service demand
quantity on the energy efficiency at different parking cluster

FIGURE 14. Energy efficiency vs. parked vehicle density.

FIGURE 15. Energy efficiency vs. service demand quantity (Parking cluster
density is 0.02 veh./m).

FIGURE 16. Energy efficiency vs. service demand quantity (Parking cluster
density is 0.05 veh./m).

densities. The simulation results show that the energy effi-
ciency of both types of parking clusters does not increase
with the service demand quantity in the dynamically running
algorithm. By comparing the two simulation results, it can
be determined that the higher the density of parking clusters
in both operating conditions, the higher the energy efficiency
will be, and the energy efficiency of the dynamic operation
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FIGURE 17. Duty cycle vs. time.

algorithm is always higher than the energy efficiency of the
continuous operation.

C. THE OPERATING MODE OF mRSUs
This section simulates the effect of the external environment
on the operating mode of the mRSUs after the corresponding
mRSUs are selected by the algorithm in the previous section.

In Figure 17, the variation in duty cycle of mRSU is simu-
lated for two types of parking clusters over a 24-hour period.
Where the horizontal coordinate is the time and the vertical
coordinate is the duty cycle. The simulation results show that
the duty cycle of the two types of parking clusters is almost
the same, which also indicates that the differences in the
average remaining energy and the structure of the remaining
energy of the two types of parking clusters are not directly
related to the duty cycle.

As mentioned earlier, in a dynamically operating model,
both ‘‘Work’’ mode and ‘‘Rest’’ mode are mainly deter-
mined by the external environment. Therefore, in this section,
external environment variables such as the service demand
quantity, parking cluster density, and cycle time are simulated
to examine their influence on the choice of mode.

Figure 18 represents the effect of the service demand quan-
tity on the duty cycle for the parking cluster at different cycle
periods. As the service demand quantity increases, the duty
cycle of the parking cluster shows a more linear increase
until it reaches 1.0. It can be concluded that the mRSU
also increases the duty cycle as the service demand quantity
increases. The simulation results also show that the higher the
cycle times, which also means that there are fewer vehicles
that can becomemRSUs, the longer the mRSU is in operating
mode, which also leads to a higher duty cycle.

In Figure 19 and Figure 20, the relationship between the
density of parking clusters and the duty cycle is mainly
simulated for different cycle times during a certain time of
day and night. It can be seen from the figures that the duty
cycle of the parking clusters during the daytime is basically
larger than that of the parking clusters during the nighttime
at various parking densities under each cycle. There is no

FIGURE 18. Duty cycle vs. service demand quantity.

FIGURE 19. Duty cycle vs. parked vehicle density (Daytime).

FIGURE 20. Duty cycle vs. service demand quantity (Nighttime).

data for this parking cluster until the parking cluster density
reaches 0.002 veh./m, which also indicates that the parking
cluster does not have enough parked vehicle density to cause
it to not be selected as a relay node. At a certain time of the
day, when the parking cluster density is between 0.002 veh./m
and 0.004 veh./m, the duty cycle is 1.0 and the mRSU is
always in working mode; while at a certain time of the night,
the same parking cluster density is 0.002 veh./m, but the
mRSU is not always in working mode. When the parking
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cluster density is between 0.004 veh./m and 0.016 veh./m,
the duty cycle decreases, which also indicates that as the
parking cluster density increases, the number of vehicles that
can be replaced increases and the mRSU does not need to
be in operation all the time. After the parking cluster density
reaches 0.0016 veh./m, the duty cycle no longer decreases
with the increase of the parking cluster density, which means
that the parking cluster is saturated and the increase of parked
vehicles will not decrease the duty cycle of mRSU anymore.

D. NETWORK PERFORMANCE SIMULATION
In this section, we perform network performance simula-
tions for the QL-mRSU series of energy-efficient algorithms.
SUMO is used as the road, building, and vehicle simulator to
realistically simulate the local road network. OMNET++ is
used as the network simulator for vehicle networking. VEINS
is used as the infrastructure, and the parameters of radio
propagation, application layer nodes, MAC layer nodes, and
mobile modules are modified on this infrastructure to make
it closer to the experimental environment of this paper. The
running interface is shown in Figure 21.

FIGURE 21. OMNET++ network simulation runtime interface.

The steps of the simulation of the text design are mainly
the following steps. Firstly, the road network information is
built using SUMO and connected with OMNET++, and the
relevant network parameters of OMNET++ are adjusted.
Secondly, the network performance indexes under full

FIGURE 22. Packet loss rate in different operating modes.

FIGURE 23. Time delay in different operating modes.

operation, continuous operation, and dynamic operation are
tested, respectively, according to the results of algorithm
selection. Finally, the delay and packet loss rate under the
three operation modes are compared, and the results are
obtained, as shown in Figure 22 and Figure 23.
As can be seen in Figure 22 and Figure 23, there is no

significant difference in time delay or packet loss rate in
any of the three modes of operation. In terms of packet
loss rate, the dynamic operation mode only increases slightly
at the beginning of the communication and then starts to
decrease. In terms of delay, dynamic operation increases
slightly compared to the other two modes, but the increase
is small and even negligible compared to the energy savings.
The experiment verifies that the algorithm proposed in this
paper does not have a significant impact on communication.

VI. DISCUSSION AND CONCLUSION
This paper focuses on the continuous optimization of mRSU
by self-learning in different types of parking clusters for smart
electric vehicles to reduce the communication energy con-
sumption in E-VANET. The energy-saving scheme has three
main steps. First, the smart EVs parked in the parking lot are
clustered, and an algorithm is used to determine whether the
parking cluster is suitable as a communication node. Then,
the number of mRSUs in that parking cluster is determined by
the QL-mRSU-Num algorithm itself. Second, after a parking
cluster is selected as a communication node, the QL-mRSU-
Choose algorithm selects the most suitable mRSU based on
the external environment and its own parameters, and the
rest of the vehicles enter standby listening mode to achieve
energy saving. This paper also proposes a QL-mRSU-Mode
algorithm that decides the working mode of the parked car by
listening to packets. The research results show that dynamic
operation can lead to longer service times for the parking
clusters as well as less battery loss compared to full oper-
ation and continuous operation approaches. Compared with
the energy saving algorithm proposed by Sun et al. [43],
the algorithm in this paper integrates reinforcement learn-
ing with some electrical characteristics of electric vehicles,
which is not only more applicable to E-VANETs but also
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more intelligent, and can be more effective to better reduce
the communication energy consumption of E-VANETs while
ensuring the communication quality.

In the next step, we will continue to optimize the algorithm
for rapid changes in the service demand quantity and other
extreme cases, and improve the optimization speed of the
algorithm to achieve high and stable energy efficiency in the
face of most road conditions.
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